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Supplementary Methods 
 

 

We use a block-coordinate descent approach to iteratively update individual parameters of the model, including the 

transcript abundance vector β, platform-specific library sizes sk, and the effect of confounding biases, represented by 

vector γ. 

 

1. Inferring β 
We start by showing how the maximum-likelihood estimate (MLE) of β can be obtained in the absence of a log-

normal prior on β. We will then show the inference of the maximum a posteriori (MAP) estimate of β with a log-

normal prior. As described in the Methods section, in the absence of a prior, for each platform k we have: 

∀𝑘 ∈ {1, … , 𝐾} | 𝝀𝑘 = (𝜆𝑘,1, … , 𝜆𝑘,|𝑈𝑘|)
⊤

= 𝑠𝑘𝑷𝑘𝜷  

∀𝑢 ∈ 𝑈𝑘| 𝑛𝑘,𝑢~Pois(𝜆𝑘,𝑢) 

Let’s define the matrix P as: 

𝑷 = [
𝑠1𝑷1

⋮
𝑠𝐾𝑷𝐾

] 

Then we can rewrite the model as: 

 

𝝀 = 𝑷𝜷 

∀𝑢 ∈ {𝑈1, … , 𝑈𝑈}| 𝑛𝑢~Pois(𝜆𝑢) 

 

The MLE can be obtained by minimizing the negative log-likelihood function: 

𝜷̂ = arg min𝜷 ∑(𝜆𝑢 − 𝑛𝑢 log 𝜆𝑢)

𝑢∈𝑈

 

We use a sequential coordinate-wise descent (SCD) approach to iteratively solve each element βt of β (t∈T). Consider 

the current estimate βt
i, where i denotes the last iteration of the optimization algorithm. Let’s assume that in the next 

iteration (i+1), the updated estimate for βt will be different from the current estimate by δ[i+1]; i.e., the next estimate 

will be βt
[i+1]= βt

[i]+δ[i+1]. If the vector of the current predicted OU abundances is λ[i], then the next set of predicted 

fragment abundances is given by: 

𝜆𝑢
[𝑖+1]

= 𝜆𝑢
[𝑖]

+ 𝛿 [𝑖+1]𝑝𝑢,𝑡 

Therefore: 

𝛽𝑡
[𝑖+1]

= 𝛽𝑡
[𝑖]

+ 𝛿 [𝑖+1] 

𝛿 [𝑖+1] = arg min𝛿 ∑ [𝜆𝑢
[𝑖]

+ 𝛿𝑝𝑢,𝑡 − 𝑛𝑢 log(𝜆𝑢
[𝑖]

+ 𝛿𝑝𝑢,𝑡)]

𝑢∈𝑈

 

To solve for δ[i+1], we take the derivative of the negative log-likelihood function with respect to δ and set it to zero: 
𝑑

𝑑𝛿
∑[𝜆𝑢

𝑖 + 𝛿𝑝𝑢,𝑡 − 𝑛𝑢 log(𝜆𝑢
𝑖 + 𝛿𝑝𝑢,𝑡)]

𝑢∈𝑈

= 0 

∑ 𝑝𝑢,𝑡 −
𝑛𝑢𝑝𝑢,𝑡

𝜆𝑢
𝑖 + 𝛿𝑝𝑢,𝑡

𝑢∈𝑈

= 0 

To find the root of this function, we use Newton’s method to update δ in each iteration: 

𝑓(𝛿) = ∑ [𝑝𝑢,𝑡 −
𝑛𝑢𝑝𝑢,𝑡

𝜆𝑢
𝑖 + 𝛿𝑝𝑢,𝑡

]
𝑢∈𝑈

= ∑ 𝑝𝑢,𝑡 (1 −
𝑛𝑢𝑝𝑢,𝑡

𝜆𝑢
𝑖 + 𝛿𝑝𝑢,𝑡

)

𝑢∈𝑈

 

𝛿 [𝑖+1] = 𝛿 [𝑖] −
𝑓(𝛿 [𝑖])

𝑓′(𝛿[𝑖])
 

𝛿 [𝑖+1] = 𝛿 [𝑖] −

∑ 𝑝𝑢,𝑡 (1 −
𝑛𝑢

𝜆𝑢
𝑖 + 𝛿 [𝑖]𝑝𝑢,𝑡

)𝑢∈𝑈

∑ 𝑛𝑢 (
𝑝𝑢,𝑡

𝜆𝑢
𝑖 + 𝛿 [𝑖]𝑝𝑢,𝑡

)

2

𝑢∈𝑈

 



3 

 

Note that since δ[i+1] is calculated with respect to the current value of βt
[i], then δ[i] must also be calculated relative to 

βt
[i], which means that δ[i]= βt

[i]–βt
[i]=0. Therefore: 

𝛿 [𝑖+1] = −

∑ 𝑝𝑢,𝑡 (1 −
𝑛𝑢

𝜆𝑢
𝑖 )𝑢∈𝑈

∑ 𝑛𝑢 (
𝑝𝑢,𝑡

𝜆𝑢
𝑖 )

2

𝑢∈𝑈

 

This provides an iterative procedure where each βt is updated by adding the value of δ[i+1] from the equation above, 

followed by updating each λu
[i] (for u∈U) by adding δ[i+1]pu,t to it. 

 

Now, we will modify the equations above to show how the MAP estimate of β can be obtained when a log-normal 

prior is placed on β: 

log 𝜷 ~𝒩(𝟎, 𝜎2𝑰) 

𝝀 = 𝑷𝜷 

𝑛𝑢~Pois(𝜆𝑢) 

In this case, the negative log-likelihood function also includes a regularization term that acts to shrink the logarithm 

of each βt: 

𝜷̂ = arg min𝜷 [
1

2𝜎2 ∑(log 𝛽𝑡)2

𝑡∈𝑇

+ ∑(𝜆𝑢 − 𝑛𝑢 log 𝜆𝑢)

𝑢∈𝑈

] 

Following the same method as above, we can see that for each transcript t, its abundance in iteration i+1 can be updated 

as: 

𝛽𝑡
[𝑖+1]

= 𝛽𝑡
[𝑖]

+ 𝛿 [𝑖+1] 

𝛿 [𝑖+1] = arg min𝛿 [
1

2𝜎2
[log(𝛽𝑡

[𝑖]
+ 𝛿)]

2

+ ∑ [𝜆𝑢
[𝑖]

+ 𝛿𝑝𝑢,𝑡 − 𝑛𝑢 log(𝜆𝑢
[𝑖]

+ 𝛿𝑝𝑢,𝑡)]

𝑢∈𝑈

] 

Again, using Newton’s method and following the same method as above, we can see that: 

𝛿[𝑖+1] = −

log 𝛽𝑡
[𝑖]

𝜎2𝛽𝑡
[𝑖] + ∑ 𝑝𝑢,𝑡 (1 −

𝑛𝑢

𝜆𝑢
𝑖 )𝑢∈𝑈

− log 𝛽𝑡
[𝑖]

+ 1

𝜎2(𝛽𝑡
[𝑖]

)
2 + ∑ 𝑛𝑢 (

𝑝𝑢,𝑡

𝜆𝑢
𝑖 )

2

𝑢∈𝑈

 

In practice, we have found that in the presence of a log-normal prior, Newton’s method occasionally overshoots for 

some transcripts in some of the early iterations of the optimization algorithm. We detect such overshoot events by 

examining whether δ[i+1], as calculated by Newtons’s method using the equation above, is outside the range between 

the value obtained from the MLE estimate and 1 (the latter is equivalent to log βt
[i+1]=0, i.e., equal to the mean of the 

prior). When this occurs, we minimize the negative log-likelihood function using the ‘optimize’ function in R. This 

procedure, in practice, resolves the overshoot problem in a few iterations, so that in the subsequent iterations Newton’s 

method can be used without any overshoots. 

 

2. The variance of the prior distribution for β 
We use an adaptive prior, which is iteratively updated based on the distribution of all values βt (for all t∈T). In other 

words, after each iteration i, we update the prior variance σ2 to be the variance of log(β). 

 

3. The library size sk 
 

At each iteration i, we update sk for each platform as: 

𝑠𝑘
[𝑖+1]

=
∑ 𝑛𝑘,𝑢𝑢∈𝑈𝑘

∑ ∑ 𝑝𝑘,𝑢,𝑡𝛽𝑡
[𝑖]

𝑡∈𝑇𝑢∈𝑈𝑘

 

 

4. The sources of bias in long-read RNA-seq data (γ) 
As described in the Methods section, we model the submatrix Pk matrix for long-read data as: 

𝑷𝑘 = diag[exp(𝑪𝜸)] 
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where k is the index of the dataset containing long-read counts, and C is a |T|×|D| matrix representing the value of 

variables D, the potential sources of bias, across |T| transcripts. Therefore, we can model the OU counts observed in 

dataset k as: 

𝜆𝑢∈𝑈𝑘
= 𝛽𝑡(𝑢) ∑ exp(𝑐𝑢,𝑑𝛾𝑑)

𝑑∈𝐷

 

𝑛𝑢∈𝑈𝑘
~Pois(𝜆𝑢∈𝑈𝑘

) 

Here, t(u) represents the transcript that corresponds to OU u (note that there is a one-to-one relationship between OUs 

in the long-read data and the transcripts). cu,d represents the element (u,d) of matrix C. At each iteration i, we update 

γ by maximizing the model likelihood using the ‘glm’ function in R with a Poisson error distribution and log-link, 

with the long-read counts as the dependent variable, C as the independent variables, and β[i] as the offset. 
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Supplementary Figures 
 

 

 

 
Supplementary Figure 1. MPAQT’s performance on (a) salmon and (b) RSEM’s outliers. 
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Supplementary Figure 2. Comparison of quantification tools after widening the range of acceptable Cq values. 

Widening the range of Cq to values between 8-35 does not significantly change the MPAQT performance, while the 

number of outliers for the other three tools almost doubles. The number of genes remaining after filtering increases 

from 14,956 to 16,104. (a-d) Similar to Figure 1b-e, respectively, but for the extended Cq range. 
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Supplementary Figure 3. Characterization of transcripts differentially quantified by MPAQT upon addition of LR 

data. Transcripts with substantially different inferences were between SR and LR+SR analyses were extracted 

(outlier analysis based on Mahalanobis distance >6.36, equivalent to upper-tail P<10–10 for normally distributed 

data), separately for each of the three randomly generated simulated datasets (with exponential distribution of 

expression).  (a) For the subset of outlier genes, quantifications correlate better with ground-truth TPMs in MPAQT 

analysis of LR+SR data than SR alone across all three replicates.  (b) Venn diagram of the outliers of the three 

simulated samples, for genes longer than 250bp. 
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Supplementary Figure 4. Differentiation of hESCs to neurons. (a) Schematic of neuronal differentiation. Two 

replicates were collected for each sample, followed by RNA-seq of each replicate using either short-read or long-

read sequencing. (b) Volcano plots of upregulated (blue), downregulated (red) and non-DE (green) genes between 

days 0 and 41 (left) and days 41 and 61 (right). (c) Heatmaps showing the TPM of neuronal marker genes from ref1 

(top), and different neuronal subclasses from ref2 (bottom). 

  



9 

 

 

 
 

Supplementary Figure 5. Characteristics of differentially quantified transcripts between SR-only and LR+SR 

inferences at day 61. 
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Supplementary Figure 6. Cell type and disease associations of top genes whose cassette exons are differentially 

quantified between SR-only and LR+SR analyses. (a) A dot plot representing the cell type-specific expression, 

based on RNA single-cell data from Human Protein Atlas3. Dot size represents TPM of each gene in each cell type, 

relative to the cell type with maximum expression of that gene. (b) Reported gene-disease associations (GDAs); data 

from DisGenNet4. The rows represent disease classes, and the columns are the genes. The size of each dot represents 

the number of associations with GDA score >0.1, normalized for each gene to the disease class with the largest 

number of associations. 
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Supplementary Figure 7. Predicting cassette exon inclusion. The scatterplot of predicted vs. observed PSI (similar 

to Figure 6d) is shown on the left. Exons with observed PSI >0.8 are considered as “positive” observations, and 

those with PSI <0.2 as “negative” observations, in order to construct the classification ROC curve shown on the 

right. 
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