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Supplementary Methods

We use a block-coordinate descent approach to iteratively update individual parameters of the model, including the
transcript abundance vector g, platform-specific library sizes sy, and the effect of confounding biases, represented by
vector p.

1. Inferring g

We start by showing how the maximum-likelihood estimate (MLE) of # can be obtained in the absence of a log-
normal prior on B. We will then show the inference of the maximum a posteriori (MAP) estimate of g with a log-
normal prior. As described in the Methods section, in the absence of a prior, for each platform k we have:
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Let’s define the matrix P as:
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Then we can rewrite the model as:

A=PB
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The MLE can be obtained by minimizing the negative log-likelihood function:
B =arg ming Z (A, — ny logdy)
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We use a sequential coordinate-wise descent (SCD) approach to iteratively solve each element g; of g (t€T). Consider

the current estimate ¢, where i denotes the last iteration of the optimization algorithm. Let’s assume that in the next
iteration (i+1), the updated estimate for g; will be different from the current estimate by 60*%; i.e., the next estimate
will be pdi*+H= glil+s0+1 1f the vector of the current predicted OU abundances is A7, then the next set of predicted
fragment abundances is given by:

A = 20+ 50,
Therefore:
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To solve for 64, we take the derivative of the negative log-likelihood function with respect to ¢ and set it to zero:
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To find the root of this function, we use Newton’s method to update ¢ in each iteration:

NyPu,t Ny Put
=3 g2 |1
f@6) = [put A +5put] ueuPu,t( Ah"‘apu,t)

uev )
6[i+1] — 6[1’] _ f(a[l])
£t

n
Yueu Put (1 - %Tu[’]put)

2
pu,t
Yueu My (m)

Sslit1l = gl —



Note that since ol is calculated with respect to the current value of Y, then 6t must also be calculated relative to
Al which means that ol1= glil-g[1=0, Therefore:
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This provides an iterative procedure where each g is updated by adding the value of 5% from the equation above,
followed by updating each A, (for ueU) by adding s™py; to it.

sliv1l — _

Now, we will modify the equations above to show how the MAP estimate of # can be obtained when a log-normal
prior is placed on g:
log B ~N(0,521)
A=Pp
n,~Pois(4,)
In this case, the negative log-likelihood function also includes a regularization term that acts to shrink the logarithm
of each g

= 1
B = argming [—20_2 Z(log B)? + Z(lu —n, log Au)l
teT uevu
Following the same method as above, we can see that for each transcript t, its abundance in iteration i+1 can be updated

as.
,Bt[Hl] — ,Bt[i] + 6[i+1]
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Again, using Newton’s method and following the same method as above, we can see that:
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In practice, we have found that in the presence of a log-normal prior, Newton’s method occasionally overshoots for
some transcripts in some of the early iterations of the optimization algorithm. We detect such overshoot events by
examining whether 601, as calculated by Newtons’s method using the equation above, is outside the range between
the value obtained from the MLE estimate and 1 (the latter is equivalent to log A{*11=0, i.e., equal to the mean of the
prior). When this occurs, we minimize the negative log-likelihood function using the ‘optimize’ function in R. This
procedure, in practice, resolves the overshoot problem in a few iterations, so that in the subsequent iterations Newton’s
method can be used without any overshoots.

sli+1] — _

2. The variance of the prior distribution for g
We use an adaptive prior, which is iteratively updated based on the distribution of all values g (for all t€T). In other
words, after each iteration i, we update the prior variance &2 to be the variance of log(s).

3. The library size s¢

At each iteration i, we update sy for each platform as:
Slit1l Zueuk Ng,u

. n
Zueuk Dter pk.u,tﬁt[l]

4. The sources of bias in long-read RNA-seq data (y)
As described in the Methods section, we model the submatrix Py matrix for long-read data as:

P, = diag[exp(Cy)]



where k is the index of the dataset containing long-read counts, and C is a |T|X|D| matrix representing the value of
variables D, the potential sources of bias, across |T| transcripts. Therefore, we can model the OU counts observed in
dataset k as:

/‘luEUk = ,Bt(u) Z eXp(Cu,dyd)
debD
nuEUk"'POiS(AuEUk)
Here, t(u) represents the transcript that corresponds to OU u (note that there is a one-to-one relationship between OUs
in the long-read data and the transcripts). ¢, represents the element (u,d) of matrix C. At each iteration i, we update
y by maximizing the model likelihood using the ‘glm’ function in R with a Poisson error distribution and log-link,
with the long-read counts as the dependent variable, C as the independent variables, and p!7 as the offset.
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Supplementary Figure 1. MPAQT’s performance on (a) salmon and (b) RSEM’s outliers.
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Supplementary Figure 2. Comparison of quantification tools after widening the range of acceptable Cq values.
Widening the range of Cq to values between 8-35 does not significantly change the MPAQT performance, while the
number of outliers for the other three tools almost doubles. The number of genes remaining after filtering increases
from 14,956 to 16,104. (a-d) Similar to Figure 1b-e, respectively, but for the extended Cq range.
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Supplementary Figure 3. Characterization of transcripts differentially quantified by MPAQT upon addition of LR
data. Transcripts with substantially different inferences were between SR and LR+SR analyses were extracted
(outlier analysis based on Mahalanobis distance >6.36, equivalent to upper-tail P<10-10 for normally distributed
data), separately for each of the three randomly generated simulated datasets (with exponential distribution of
expression). (a) For the subset of outlier genes, quantifications correlate better with ground-truth TPMs in MPAQT
analysis of LR+SR data than SR alone across all three replicates. (b) Venn diagram of the outliers of the three
simulated samples, for genes longer than 250bp.
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Supplementary Figure 4. Differentiation of hESCs to neurons. (a) Schematic of neuronal differentiation. Two
replicates were collected for each sample, followed by RNA-seq of each replicate using either short-read or long-
read sequencing. (b) Volcano plots of upregulated (blue), downregulated (red) and non-DE (green) genes between
days 0 and 41 (left) and days 41 and 61 (right). (c) Heatmaps showing the TPM of neuronal marker genes from ref!
(top), and different neuronal subclasses from ref? (bottom).
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Supplementary Figure 5. Characteristics of differentially quantified transcripts between SR-only and LR+SR
inferences at day 61.
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Supplementary Figure 6. Cell type and disease associations of top genes whose cassette exons are differentially
quantified between SR-only and LR+SR analyses. (a) A dot plot representing the cell type-specific expression,
based on RNA single-cell data from Human Protein Atlas®. Dot size represents TPM of each gene in each cell type,
relative to the cell type with maximum expression of that gene. (b) Reported gene-disease associations (GDAs); data
from DisGenNet“. The rows represent disease classes, and the columns are the genes. The size of each dot represents
the number of associations with GDA score >0.1, normalized for each gene to the disease class with the largest
number of associations.
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Supplementary Figure 7. Predicting cassette exon inclusion. The scatterplot of predicted vs. observed PSI (similar
to Figure 6d) is shown on the left. Exons with observed PSI >0.8 are considered as “positive” observations, and

those with PSI <0.2 as “negative” observations, in order to construct the classification ROC curve shown on the
right.
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