Figure S1

Figure S1. THP-1 and HEL cell line xenografts are killed by NK cells *in vivo.* **(A-E)** NSG-Tg(Hu-IL15) mice were injected with 0.5x10⁶ **(A)** THP-1 cells or **(B-E)** HEL cells *i.v.*. In addition, the mice were injected with 10⁶ human NK cells 24 h prior to leukemic cell inoculation or left untreated. **(A)** NK cells **(**hCD45^{+(high)}NKp46⁺) in the splenic single cell suspensions of THP-1-injected animals on day 28 post injection were analyzed by flow cytometry. **(B,C): (B)** NK cells **(**hCD45^{+(high)}NKp46⁺) in the splenic single cell suspensions or **(C)** leukemic cells (hCD45^{low}) in bone marrow of HEL-injected animals were analyzed by flow cytometry on day 28 post injection. **(D, E): (D)** leukemic cells (hCD45^{low}) in bone marrow or **(E)** NK cells **(**hCD45^{+(high)}NKp46⁺) in the splenic single cell suspensions of HEL-injected animals were analyzed by flow cytometry at the disease endpoint. **(A)** Representative flow cytometry plots. **(B, C)** Bar graphs represent mean +/- SD from 1 experiment (n=2-3 per group); **(D, E)** Bar graphs represent mean +/- SD from 2 independent experiments (n=6 per group); **(B, C, E)** Statistical analysis was performed using unpaired t-test . * p<0.05;

Figure S2

Figure S2. STAT3-deficient AML cells escape NK cell recognition. (A) Levels of pSTAT3, STAT3 and β-actin were assessed by Western blot in cell lysates of THP-1 and HEL STAT3^{WT}, STAT3^{KO6} and STAT3^{KO8} and a representative blot out of three independent experiments is shown. (B) CFSE stained HEL STAT3^{WT} and STAT3^{KO6} and STAT3^{KO8} cells were mixed at 1:1 ratio with human primary NK cells from three different healthy donors and the percentage of CD107a+ NK cells (CFSE-; in contrast to CFSE+ target cells) was analyzed by flow cytometry. Bar graphs represent mean +/- SD of n= 4 per group (3 donors, 1-2 experiments per donor).(C, E) CFSE-stained THP-1 STAT3^{WT} and STAT3^{KO6} cells were mixed at indicated effector : target (E:T) ratios with (C) NK92 for 4 h or (E) expanded primary human NK cells for 2 h. (D) CFSE-stained THP-1 STAT3^{WT} and STAT3^{KO8} cells were mixed at indicated effector : target (E:T) ratios with (C-E) Symbols and bars represent mean of technical duplicates +/- SD. Statistical analysis for each ratio was performed using unpaired t-test. (F) NK92 cells were stained for intracellular IFNγ upon incubation with STAT3^{WT} or STAT3^{KO8} THP-1 or HEL cell line. Bar graphs represent mean +/- SD of n= 4 per group from 2 independent experiments. Statistical analysis for each cell line separately was performed using unpaired t-test . * *p* < 0.05; ** *p* < 0.01

Figure S3

Figure S3. Surface expression of NK cell ligands. (A, B) STAT3^{WT} and STAT3^{KO8} THP-1 and HEL were analyzed for surface expression of CD48, CD58, HLA-A/B/C, ULBP2/5/6, MICA/B, B7-H6 via flow cytometry. Bar graphs showing mean fluorescence intensity (MFI) as percentage of fold change of **(A)** CD48 **(B)** CD58, **(C)** HLA-A/B/C, **(D)** ULBP2/5/6, **(E)** MICA/B and **(F)** B7-H6 +/- SD are shown for each cell line (n=3-6 per group from 2-3 independent experiments). Statistical analysis was performed using unpaired t test for THP-1 and HEL cells separately; * p < 0.05; ****<0.0001

E:T

Α

В

С

Figure S4. STAT3-deficient AML cells form fewer synapses. (A) THP-1 STAT3^{WT} and STAT3^{KO8} or **(B, C)** HEL STAT3^{WT} and STAT3^{KO8} were incubated with **(A, C)** KHYG1 or **(B)** NK92 cells at 1:1 ratio and the amount of NK-target doublets was analyzed after **(A)** 10min or **(B, C)** 20 min. **(A)** Representative time course out of two independent experiments. For timepoint 10 min dots represent the mean percentage of doublets +/- SD (n=2). **(B, C)** Bar graphs represent the mean percentage of doublets +/- SD (n=2-4 per group from one to two independent experiment); (A-C) Statistical analysis was performed using unpaired t-test. * p < 0.05. **(D)** CFSE-stained HEL STAT3^{WT} and STAT3^{KO8} cells were preincubated with isotype control (IgG) or ICAM-1 blocking antibody and mixed at indicated effector : target (E:T) ratios with NK92 cells for 4 h. The specific lysis of target cells was assessed by flow cytometry. One representative out of two independent experiments is shown. Symbols and bars represent the mean of technical duplicates +/- SD. Statistical analysis was performed using one-way ANOVA with Tukey post-test for each ratio. Vertical lines indicate that the same significance level refers to all conditions covered by the line. ** p<0.05; **p<0.01

Α

	Affymetrix ID	ICAM-1 202638_s_at	STAT3 225289_at
ICAM-1	202638_s_at	1 (p<1E-04)	
STAT3	225289_at	0.2175 (p=2e-04)	1 (p<1E-04)

D

В

	Multivariate analysis		
	Hazard ratio	95% CI	p value
Age	1.01	1.004-1.024	0.004
Gender	0.98	0.75-1.21	n.s.
Karyotype	2.08	1.90-2.26	7.1E-07
	Univariate analysis		
	Hazard ratio	95% CI	p value
Age	1.03	1.022-1.030	1.2E-06
Gender	0.96	0.79-1.13	n.s.
Karyotype	1.85	1.71-1.99	6.7E-07

Figure S5. *STAT3* correlates with *ICAM1* in AML patients. (A, B) The correlation between (A) *STAT3* and *ICAM1or* (B) *STAT1* and *ICAM1* expression was analyzed using Pearson test in (A) publicly available dataset (kmplot.com) and (B) in a cohort of 79 AML patients as described in Fig. 5. (C) Enrichment plot of the hallmark IL6_JAK_STAT3_SIGNALING. Red and blue colors represent, respectively, positive and negative Spearman's correlations with *ICAM1*. Analysis was performed on normalized gene expression RNA-seq data of human AML patients (TCGA-LAML) from The Cancer Genome Atlas (TCGA). Normalized enrichment score (NES) and false discovery rate (FDR) q value are indicated. (D) Uni- and multivariate Cox regression analysis was performed to correlate survival and *ICAM1* expression, age, gender, karyotype. The multivariate analysis was performed by pairing *ICAM1* with the clinical variables and the hazard ratio, 95% confidence interval (CI) and p value are shown for each variable.

Table S1

Total number of patients	79
Males	50 (63.3%)
Females	29 (36.7%)
Age (years)	
Median	66
Range	23-89
WBC at diagnosis (10 ⁹ /I)	
Median	6
Range	0-388
BM blasts at diagnosis (%)	
Median	68
Range	15-100
Pathogenic/likely pathogenic mutations (number of samples)	
KRAS	12
NRAS	14
RUNX1	13
IDH2	8
WT1	2
ASXL1	14
TET2	24
DNMT3A	13
NPM1	11
СЕВРА	13
TP53	17
FLT3 / FLT3-IDH	0
Other Mutations (IDH1, CRSF2, STAG2, KIT, etc.)	48
Therapy	
Intensive incl. allogeneic hematopoietic stem cell transplantation	45
Non-intensive	28
Best supportive care	6

Table S1. Characteristics of 79 AML patients.

GAPDH Fw	TCTCCTCTGACTTCAACAGCG
GAPDH Rev	ACCACCCTGTTGCTGTAGCC
<i>ULBP1</i> Fw	TTTCCTTAAAGGGCAACTGCT
ULBP1 Rev	AGGAACTGCCAAGATCCTCT
MICA Fw	GAATCCGGCGTAGTCCTGAG
MICA Rev	TCCGGGGATAGAAGCTGGAA
<i>B7H</i> 6 Fw	TTTTCCATTCATTGGTGGCCT
<i>B7H</i> 6 Rev	TGCCCGAGTGCAAAAGAATATG
<i>HLA_A</i> Fw	AGATACACCTGCCATGTGCAGC
HLA_A Rev	GATCACAGCTCCAAGGAGAACC
<i>ICAM1</i> Fw	AGCGGCTGACGTGTGCAGTAA T
ICAM1 Rev	TCTGAGACCTCTGGCTTCGTCA
<i>CD4</i> 8 Fw	GCTTGAAACCACCCTTATGCCAC
CD48 Rev	CGTGACCACTAGCCAACTTGCA
<i>CD</i> 58 Fw	GACACTGTGTCAGGTAGCCTCA
CD58 Rev	GCACAAGTTAGTGTGGGAGATGG
STAT3 Fw	CTGACCCAGGTAGCGCTGCCCCATACC
STAT3 Rev	TCACAATGGGGGAGGTAGCGCACTCCG

 Table S2. Primer list used for RT-qPCR analysis.