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A. Supplementary Methods 

 

A.1 Preprocessing of Tomograms 

A zero-mean normalization of voxel values is carried out for each input tomogram as 

follows: 

!∗ =
! − $
%

(1) 

where ! ∈ ℝ"×"×"  denotes the input tomogram, $  and %  denote the mean and standard 

deviation of !, respectively, and !∗ denotes the zero-mean normalized tomogram. 

 

A.2 Software Design 

DeepETPicker is open-source software implemented in Python with a user-friendly 

graphical interface (Supplementary Fig. 1). It integrates multiple functions, including picking of 

particles, visualization of annotated particles, pre-processing of input tomograms, generation of 

simplified masks, and configuration of parameters for training and inference. DeepETPicker 

picks 3D particles of varying sizes and structures from simulated and experimental cryo-ET 

datasets with the best overall speed and accuracy in comparing with competing state-of-the-art 

methods. 

 

A.3 Hyperparameter Setting  

There are several hyperparameters (+$, +%&$, +'(%), .etc) for DeepETPicker. Here, we discuss 

how the setting of these hyperparameters affects results of particle picking.  
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According to Equations (2, 3), the hyperparameter +$ determines the shape of Truncated-

Ball masks ( :;<=)*+,, ). The mask of :;<=)*+,,  becomes a Ball mask when +$ ≥

exp	(−0.5) ≈ 0.607, and it becomes a Cubic mask when +$ ≤ exp	(−1.5) ≈ 0.223. Therefore, 

:;<=)*+,,  will be a Truncated-Ball mask when +$ ∈ (0.223, 0.607). When +$  approaches 



0.223, the generated Truncated-Ball mask would be very similar to a Cubic mask; When +$ 

approaches 0.607, the generated Truncated-Ball mask would be very similar to a Ball mask. To 

generate a Truncated-Ball mask that differs sufficiently from Ball/Cubic masks, we choose the 

middle point between −0.5 and −1.5 and set +$ = exp	(−1) ≈ 0.368 in this study. When 

+$ = 0.368, equation (3) can be simply described as follows: 
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We initially used Ball masks (Ball-M) as our weak labels and tested different radius settings. 

However, the experimental results showed that Ball-M with a diameter of for example 7 usually 

could not pick all types of particles. Often one or more types of particles were missed. This 

motivated us to examine weak labels with different shapes, which should be easy to implement 

and should have good approximations in voxels for actual particle masks. The first type of weak 

labels we considered were Cubic masks (Cubic-M). However, because the surfaces of 

macromolecular particles are usually smooth, we found the regions near the edges of Cubic-M 

were noisy. To reduce the number of noisy voxels, we tried a new type of weak labels, Truncated 

Ball masks (TBall-M), which do not have the same sharp edges as Cubic masks. Overall, we 

examined these three different types of weak labels under different radius settings. Compared to 

Cubic-M and Ball-M masks, TBall-M masks provided more stable and better localization and 

classification performance, regardless of what radius was chosen (Fig. 2d and Supplementary 

Table 3). Another more important conclusion based on our experiments was that utilizing 

simplified masks with constant diameters as training labels achieved comparable, if not better, 

performance as real segmentation masks. Furthermore, simplified masks with constant 

diameters avoided the issue of class imbalance and simplified the selection of loss functions 

(Supplementary Methods A.5). Because TBall-M masks consistently achieved good 

performance in particle picking, we did not investigate other more complex shapes such as 

polygons. 

The output score maps of 3D-ResUNet are in the range of [0,1], in which the value of each 

voxel denotes its probability score of belonging to a certain class. +%&$ is a selected threshold 

that transforms a soft score map into a binary map: a voxel with its value below +%&$ is labeled 



as 0 and otherwise as 1 so that a binary map is generated. The influence of +%&$  on the 

classification performance of DeepETPicker trained by different types of masks on SHREC2021 

dataset is summarized in Supplementary Table 11. The results show that +%&$ has little effect 

on the classification performance when it varies from 0.1 to 0.9. Therefore, we set the default 

value of +%&$ to 0.5 in this study. 

The hyperparameter +'(%) is the threshold for the minimal Euclidean distance between two 

particles. Normally, +'(%) is set to be half of the diameter of the particle Z'7[, where ⌈∙⌉ denotes 

the round-up operation. If the Euclidean distance between two particles is lower than +'(%), the 

two particles are considered the same. 

The hyperparameter +,9 is a threshold determining whether a local maximum is a particle. 

In our study we set +,9  as a constant of 0.1. The hyperparameter _  is the size of a 

subtomogram. It needs to be a multiple of 8. It is recommended that this value be no less than 

64, and the default value is 72. The hyperparameter `;a_<@0B  is the padding size for the 

overlap-tile strategy. Usually, it ranges from 6 to 12, and the default value is 12. The 

hyperparameter :;! _B`E?ℎ is the total number of training epochs. The default value 60 is 

usually sufficient. The hyperparameter c;+?ℎ_<@0B is the number of samples processed before 

the model is updated. It is determined by the GPU memory. Reducing this parameter may be 

helpful if an out-of-memory error is encountered. 

In summary, while +'(%) is set to be a half of the particle diameter and c;+?ℎ_<@0B is 

determined by the GPU memory, other hyperparameters can generally use their default values. 

A more detailed description for the choice of hyperparameters can be found in 

https://github.com/cbmi-group/DeepETPicker. 

 

A.4 Ablation Study for 3D-ResUNet Architectural Customizations 

Coordinated convolution incorporates the spatial context of the input images into the 

convolutional filters, while image pyramid inputs preserve features of input images at different 

resolution levels, which can effectively improve the performance of convolutional neural 

networks. For validation, an ablation study for coordinated convolution and image pyramid 



inputs was carried out (Supplementary Table 12). We can observe that coordinated convolution 

or image pyramid inputs improve the mean F1-score by ~1.5% individually. They mainly 

improve the classification performance of tiny particles. When coordinated convolution and 

image pyramid inputs are added simultaneously, the mean F1-score of all complexes improves 

by 4.2%, and the mean F1-score of tiny complexes improves by 8.1%. An ablation study is also 

carried out for channels of 3D-ResUNet. We find that 3D-ResUNet with channels of [8, 16, 24, 

36] achieves comparable performance to that of [24, 48, 72, 108] (Supplementary Table 13). The 

model size of 3D-ResUNet with channels of [8, 16, 24, 36] is only 3.4 MBytes, which validates 

its architectural efficiency. 

 

A.5 Ablation Study for Loss functions 

A detailed study of different types of “weak labels” shows that simplified masks with 

constant diameters can be used to replace particles with different diameters, achieving 

performance comparable to that of real masks. Using simplified masks with constant diameters 

as the training labels eliminates the problem of class imbalance and simplifies our selection of 

loss functions. We performed an ablation study for loss functions, demonstrating that different 

losses achieve similar picking performances when using simplified masks with constant 

diameters (Supplementary Table 14). 

 

A.6 Ablation Study for Data Augmentation 

The data augmentation used in our study is composed of two types of transformations, 

namely mirror transformation and spatial transformation (including random cropping, elastic 

deformation, scaling and rotation). An ablation study was carried out for these two types of 

transformations (Supplementary Table 15). We find that on the SHREC2021 dataset, mirror 

transformation substantially improves classification F1-score by 8.3% and slightly improves the 

localization F1-score by 1.0%. Spatial transformation improves the localization F1-score by 2% 

and classification F1-score by 2%. This is because the spatial transformations such as random 

rotation/cropping effectively increase the diversity of the tomogram training data. When mirror 

transformation and spatial transformation are used jointly, the mean F1-score of classification is 



improved by 9.5% and the F1-score of localization is improved by 3.4%. The ablation study 

described above indicates that mirror transformation can effectively improve classification 

performance.  

 

A.7 Threshold settings for DeepFinder and TM 

For DeepFinder, its processing of a dataset would generate a file with five columns, i.e., 

class label, x, y, z and cluster size. For particle coordinates of clustering results from DeepFinder, 

we found that the number of particles it detected is much larger than the number of manually 

labeled particles. When we plot the picked particles back to the tomogram, we found that there 

are many false-positive particles. If we use the particles detected by DeepFinder for sub-sequent 

analysis, the performance of DeepFinder will be underestimated. For DeepFinder, the voxels of 

the cryo-ET tomogram were first classified into N classes. Then the multi-class voxel-wise 

classification map was spatially clustered into 3D connected components, with each cluster 

corresponding to a unique particle. In the original paper of DeepFinder, it was written that 

“Clusters that are significantly smaller than the size of target particles are considered as false 

positives and are discarded”. Thus, for a fair comparison with DeepFinder, we interactively 

adjusted the volume threshold as 0-20% the size of target particles based on visual inspection. 

Indeed, when we compared the F1-scores of DeepFinder with and without setting the volume 

thresholds on the testing set, we found that for the three experimental datasets the F1-score 

consistently improved after setting the thresholds. 

� For the EMPIAR-10045 and EMPIAR-10499 datasets, the diameter of ribosomes is about 

23~24 voxels. During the training stage, we use spheres with a radius of 11 as labels. For a 

sphere with a diameter of 23, its volume can be calculated as d = :;8"
< =

:;×==.?"
< . In the 

inference stage, we interactively adjusted the volume threshold based on visual inspection. 

Eventually, particles with a cluster size larger than 0.1d are selected as the final result for 

EMPIAR-10045. Particles with a cluster size larger than 0.2d are selected as the final 

result for EMPIAR-10499.  



� For EMPIAR-10651, we use spheres with a radius of 11 as the labels, and its volume can 

be calculated as d = :;8"
< =

:;×=="
< . In the inference stage, we interactively adjusted the 

volume threshold based on visual inspection. Particles with a cluster size larger than 0.1d 

are selected as the final result for EMPIAR-10651.  

� For EMPIAR-11125, we use spheres with a radius of 7 as the labels, and its volume can be 

calculated as d = :;8"
< =

:;×@"
< . In the inference stage, we interactively adjusted the 

volume threshold based on visual inspection. Particles with a cluster size larger than 0.1d 

are selected as the final result for EMPIAR-11125. 

 

When we compared the F1-scores of DeepFinder with and without setting the volume 

thresholds on the testing set, we found that for the three experimental datasets the F1-score 

consistently improved after setting the thresholds (Supplementary Table 16 and Supplementary 

Fig. 16). For template matching, we use mainly the template matching function “dynamo_match” 

of Dynamo. There are two parameters that may affect particle selection. The parameter 'cr' (cone 

range) defines orientations that will be looked for inside a cone. In our experiment, we use the 

most typical value of 360 (sampling the full sphere). The parameter 'cs '(cone sampling) 

determines the scanning density inside the sphere. In our experiment, we use the most typical 

values of 30 (sampling the full sphere). It will generate tbl-format table files, where the tenth 

column shows the cross-correction coefficient. For each tomogram, we obtain a plot of the cross-

correlation values found on the local maxima of the cc volume with the order. The cross-

correlation values of the peaks appeared in an ascending order. We check the quality of the peaks 

by auxiliary clicking on the curve to select one particle and then selecting certain visualization 

option. We click on a few particles in the kink area in the cross-correlation to roughly estimate 

the cross-correlation threshold. The detailed thresholds for TM for different datasets are 

provided in the following Supplementary Table 17. 

 

A.8 Split of Training/Validation/Test Sets 



In practice, a scheme commonly followed by structural biologists for particle picking is to 

manually label a small number of particles, use these particles for training the deep learning 

model selected for particle picking, and, finally, use the trained model to pick particles from all 

tomograms.  

To completely eliminate the risk of overlap between training and validation particles, for 

all the four experimental datasets, we manually picked particles from a tomogram that differs 

from the tomograms used for picking training particles. Specifically, the particles used for 

training were kept and the particles for validating were manually picked from a different 

tomogram. The particles used for the training, validation, and testing of different deep-learning 

based methods for experimental datasets can be found in Supplementary Table 18 and 

Supplementary Table 19. Taking EMPIAR-10045 as example, a total of 3120 particles are 

manually labeled from different tomograms. For each tomogram, the coordinates of the 

manually picked particles are sorted in the order of z, y, and x from the smallest to the largest. 

For crYOLO, DeepFinder, and DeepETPicker, 135 particles from tomo0 are used for training, 

and 15 particles from tomo1 are used for validation. The manually labeled particles with training 

and validation particles excluded are used for testing. Noting that for DeepFinder, because its 

initial training using 106 particles fails to converge on EMPIAR-10499 dataset, we increase the 

number of training and validation particles to 650 and 53, respectively.  

1) For the two simulation datasets from SHREC2020 and SHREC2021 Challenges, the 

training, validation, and test sets were well separated by following the protocols 

provided by the organizers. Because a relatively small training set and a large test set 

are used, there can be a risk of batch-effect related to the training data. Section A11 

reports the experiments that test for the potential batch-effect. The results show no 

evidence for such batch-effect.  

2) For the experimental datasets of EMPIAR-10045 and EMPIAR-10499, the training, 

validation, and test set were well separated. Please refer to Supplementary Table 18 and 

Supplementary Table 19. 



3) For the experimental datasets of EMPIAR-10651 and EMPIAR-11125, the training, 

validation and test sets were well separated in calculating the precision-recall curves 

(Fig. 5b and Supplementary Fig. 10b). Please refer to Supplementary Table 18 and 

Supplementary Table 19. However, when we calculated the B-factor, global resolution, 

local resolution, and log-likelihood distribution for two of the experimental datasets, 

EMPIAR-100651 and EMPIAR-11125, we combined the training and validation 

particles with the testing particles for reconstruction. This was mainly because the 

numbers of particles were very limited. Although this does affect the reported B-factor, 

global resolution, local resolution, and log-likelihood distribution, it was performed in 

the same way for all the methods compared to ensure a fair comparison. Furthermore, 

it is consistent with the practice of users in real-world applications when the goal is to 

use the maximal number of real particles for reconstruction.  

 

A.9 Performance Comparison Using Precision-Recall Curves 

Each of the four methods (DeepETPicker, crYOLO, DeepFinder, and TM) have a 

confidence metric for its picked particles. For DeepETPicker and DeepFinder, the voxels of the 

cryo-ET tomogram are classified into N classes. The confidence of a particle is measured by the 

volume of voxel-wise classification map belonging to this particle. For crYOLO, each detected 

particle has a confidence metric provided in the result file directly. This confidence metric 

denotes the probability that the detected particle is an authentic particle. For TM, the confidence 

of a particle is measured by the cross-correlation coefficient.  

For a fair comparison between different methods, we sorted the particles of each method 

based on its confidence metric from the highest to the lowest. Using the manual annotation as 

the reference, the precision and recall of particles with confidence larger than different threshold 

were calculated. The precision-recall curves of different methods were then plotted together for 

performance comparison (Figures 3b, 4b, 5b and Supplementary Fig. 10b). This would eliminate 

the influence of manual setting of confidence threshold on the performance comparison of 

different methods.  



 

A.10 Experiments with Different Weak Labels and Multiple Training Runs on the 

SHREC2021 Dataset 

We have conducted two new groups of experiments with multiple training runs to check 

whether the performance differences observed in our study between DeepETPicker and 

competing models are statistically significant. 

 

In the first group of experiments, we performed 10-fold cross-validation experiments to 

characterize performance of DeepETPicker on the SHREC2021 dataset, which consists of 10 

tomograms. For each experiment, we randomly selected 8 tomograms for training, 1 tomogram 

for validation data, and 1 tomogram for testing. Mean classification F1-score is used as the 

performance metric. In each experiment, the same random seed is used for three different 

simplified masks. Overall, performance of DeepETPicker varies in the experiments 

(Supplementary Fig. 17a), presumably because of the different settings of simulation parameters 

such as defocus levels, electron doses, and particle type compositions in generating these 

tomograms, as reported by the organizers of the challenge (Gubins et al, SHREC 2021: 

Classification in cryo-electron tomograms, Eurographics Proceedings, 2021). For example, we 

observed that DeepETPicker generally achieves lower classification and localization F1-scores 

on tomograms with lower signal-to-noise ratios. 

We found no statistically significant difference between the three types of weak labels in 

terms of mean classification and localization F1-scores (Supplementary Fig. 18). However, 

compared to Ball-M and Cubic-M labels, TBall-M masks provide more stable performance 

(Source Data.xlsx). Specifically, in all experiments, TBall-M picked all types of particles. In 4 

out of 10 experiments, the Ball-M mask failed to pick all types of particles, missing either one 

or more types of particles. In 1 out of 10 experiments, the Cubic-M mask failed to pick all types 

of particles.  

 

The experiments in the first group provide insights into the performance of DeepETPicker. 

However, the results cannot be compared directly with results of those methods from the 



SHREC2021 challenge. This is because the training, validation, and test sets were partitioned 

following the protocols provided by the organizers. To generate results that can be used to 

compare DeepETPicker with the methods from SHREC2021, we performed the second group 

of experiments in which we followed the same protocols of partitioning training/validation/test 

sets and performed the experiments 10 times using 10 different random seeds. Overall, we found 

that the variations of both localization F1-scores and mean classification F1-scoress of 

DeepETPicker in the experiments are small, generally on the level of 0.003~0.005 

(Supplementary Fig. 17 and Supplementary Table 20). Because only a single F1-score is 

provided by the SHREC 2021 organizer for each method without its statistical distribution, it is 

not feasible to perform statistical performance comparison of DeepETPicker versus these 

methods, However, given the observed low level of variations in F1-scores, the observed 

performance difference in e.g. Supplementary Table 4, Supplementary Table 5, Supplementary 

Fig. 18 and Figure 2e are generally much higher than 0.003~0.005 and therefore are likely 

significant. We note that it is common in deep learning studies to compare performance of 

competing methods without using explicit statistical tests.  

 

Compared with Ball-M and Cubic-M masks, TBall-M mask provides more consistent 

localization and classification performances with highest mean and lowest standard deviation 

(Supplementary Fig. 18 and Supplementary Table 20). Through rndttest2 and ranksum analysis, 

there is significant difference between TBall-M and Ball-M in term of classification F1-score, 

with P-value 0.027 for rndttest2 and 0.023 for ranksum (Supplementary Fig. 18b). Through 

rndttest2 analysis, there is significant different between TBall-M and Ball-M in term of 

localization F1-score, with P-value 0.0432 (Supplementary Fig. 18c). Besides, similar to the 

conclusion of 10-fold cross-validation, TBall-M mask provides more stable classification 

performance than Ball-M and Cubic-M masks (Source Data.xlsx). Specifically, TBall-M picks 

all types of particles in all experiments. In 1 out of 10 experiments, Ball-M mask does not pick 

all types of particles. In 2 out of 10 experiments, Cubic-M mask does not pick all types of 

particles.  



 

A.11 Testing Batch-Effect on Experimental Datasets 

For experimental data, when a relatively small training data and a large testing data are used, 

there can be a batch-effect related to the training data. To obtain a realistic estimation of the 

robustness of the model performance, we fixed the validation set and the test set. We then 

randomly sampled five training sets to obtain five testing results on EMPIAR-10045 and 

EMPIAR-10499 datasets. Details on partitioning the training/validation/testing sets are 

summarized in Supplementary Table 21. Specifically, EMPIAR-10045 dataset consists of 7 

tomograms. Five training sets and one validation set are randomly sampled from tomograms 

labeled tomo0 to tomo3. And tomograms labeled tomo4 to tomo6 are used for testing. EMPIAR-

10499 dataset consists of 10 tomograms. Five training sets and one validation set are randomly 

sampled from tomograms labeled tomo0 to tomo5. And tomograms labeled tomo6 to tomo9 are 

used for testing. In this way, five testing results are obtained for both EMPIAR-10045 and 

EMPIAR-10499.  

 

� For the EMPIAR-10045 dataset, three methods, i.e., DeepETPicker, Deepfinder and 

crYOLO, were trained by the five training sets and tested on the same test set. In 

terms of picking performance, compared with Deepfinder and crYOLO, 

DeepETPicker provides more consistent localization F1-score with the highest mean 

and the lowest standard deviation (Supplementary Fig. 19a). In terms of inference 

time, the average time for DeepETPicker is 62 seconds, which is 25 times faster than 

Deepfinder and 2.5 times faster than crYOLO (Supplementary Fig. 19b). 

 

� For the EMPIAR-10499 dataset, two methods, i.e., DeepETPicker and crYOLO are 

trained by five training sets and measured on the same test set. Because training of 

DeepFinder failed to converge in training, performance metrics could not be 

reported. In terms of picking performance, DeepETPicker provides much more 

consistent localization F1-score with higher mean and lower standard deviation than 

crYOLO (Supplementary Fig. 19c). In terms of inference time, the average time for 



DeepETPicker is 108 seconds, which is comparable to 103 seconds for crYOLO 

(Supplementary Fig. 19d). 

 
 
 
 
 
 

 



 

B． Supplementary Figures 
 

 

Supplementary Fig. 1 | Graphical user interface of DeepETPicker. a, The particle picking 

interface provides the following functions: manual annotation of particle centers and visualization of 

annotated particle centers. b, The pre-processing interface provides the following functions: pre-

processing of raw cryo-ET tomograms and generation of simplified masks centered on annotated 

particle centers. c, The training interface provides the following functions: hyperparameter 

configuration and segmentation model selection. d, The inference interface provides the following 

functions: loading pretrained segmentation model, hyperparameter configuration, particle centers 

generation and format conversion for particle coordinates. 

 

a b

c d



 

 

Supplementary Fig. 2 | Illustration of simplified masks and network architecture of 3D-

ResUNet. a, Rendering of simplified/weak masks with a diameter ! = 23 and their corresponding 

cross-sections at different positions %. Ball-M: Ball masks. TBall-M: Truncated-Ball masks. Cubic-

M: Cubic masks. b, Detailed architecture of the segmentation neural network 3D-ResUNet, which is 

based on 3D-Unet2 and adds residual connections of ResNet3. c1, c2, c3, c4 are feature map channels 

at different resolution levels. 

 

  



 

  

 

Supplementary Fig. 3 | An explanation of intersection and difference sets of particles picked by 

methods A and B. Solid boxes represent particles in the intersection set, and dashed boxes represent 

particles in the difference set. Particles picked by methods A and B are denoted in blue and red, 

respectively. Several representative cases of particles are shown. Case i shows a particle picked by 

both methods. Method A identifies it as a single particle, but method B identifies it as two separate 

particles with different centers. Case ii shows two particles in close proximity. Method A recognizes 

them as two separate particles with different centers, but method B recognizes it as a single particle. 

Cases iii and iv shows difference particles identified only by method A and method B, respectively. 

Case v shows particles missed by both methods. Case vi shows a false-positive particle similar in 

size or shape to the target particle identified by method B. Case vii shows a false-positive particle 

excluded by both methods. Either case i or ii may lead to different numbers of intersection sets 

between & ∩ ( and ( ∩ &. Specifically, taking case i as an example, under the above definition of 

“same particles”, the particle will count as 1 in A!B and will count as 2 in B!A. In summary, the 

seemingly counterintuitive asymmetry is caused the above definition of “same particles”. Although this 

counter- intuitive asymmetry can be eliminated by modifying the definition of “same particles”, the 

current way of setting & ∩ (  and ( ∩ &  is maintained in this study because it carries useful 

information.  



 

 

Supplementary Fig. 4 | Sub-tomogram analysis workflow. a, We use the aligned tilt series in the 

subdirectory of the EMPIAR entry to perform ICON reconstruction, which is then used for particle 

picking. The original tomograms of the entry are then utilized for sub-tomogram analysis, including 

CTF estimation, particle extraction, 2D classification, 3D auto-refine, and post-processing. The CTF 

model of each particle was generated by CTFFIND 4 in RELION 2.1.0. b, We use the aligned tilt 

series contained in subdirectory of the EMPIAR entry (EMPIAR-10651) to perform reconstruction 

by tomo3d (version: January 2015). Particle coordinates and the unbinned tomograms are utilized 

for sub-tomogram analysis by RELION 2.1.0, including CTF estimation, particle extraction, 3D 

classification, 3D auto-refinement. The CTF model of each particle was generated by CTFFIND 4 

in RELION 2.1.0. c, Pre-processing operations of EMPIAR-10499 tilt series include motion 



 

correction and CTF estimation by Warp 1.0.9, tilt series alignment by IMOD 4.9.12, and 

reconstruction by weighted back projection in IMOD 4.9.12. After particle picking, all subsequent 

processes, including particle extraction, 3D classification, 3D auto-refine, and post-processing, are 

performed using RELION 2.1.0. The CTF model of each particle was generated by CTFFIND 4 in 

RELION 2.1.0. d, The pre-processing of EMPIAR-11125 tilt series include motion correction and 

CTF estimation by Warp 1.0.9, alignment by Dynamo v1.1.509_MCR-9.6.0, and reconstruction by 

Warp. After particle picking, the particle coordinates are used for particle extraction in Warp and the 

subsequent 3D classification and auto-refinement are performed using RELION 3.1 beta.  

 
 

 



 

 

Supplementary Fig. 5 | Particle picking performance of DeepETPicker in comparison with 

that of competing methods on the SHREC2020 dataset. a, Classification performance 

measured in F1-score is plotted against particle molecular weight for DeepETPicker and other 

particle picking methods reported in the SHREC2020 challenge4. b, DeepETPicker runs 

substantially faster and achieves substantially higher classification performance than competing 

particle picking methods on the SHREC2020 dataset. Inference of DeepETPicker is performed 

on an Nvidia GeForce GTX 2080Ti. See Supplementary Table 6 for further details. c, 

Classification performance of DeepETPicker in comparison with DeepFinder measured in F1-

score plotted under different numbers of training tomograms and particles with different sizes 



 

on the SHREC2020 dataset. The particles are divided into four groups with different sizes, including 

Tiny (1s3x, 3qm1, 3gl1), Small (3h84, 2cg9, 3d2f, 1u6g), Medium (3cf3, 1bxn, 1qvr), and Large 

(4cr2, 4d8q). Source data are provided as a Source Data file.  



 

 

Supplementary Fig. 6 | Euclidean distances between particle coordinates obtained by manual 

picking and particle coordinates after refinement, based on the dataset EMPIAR-10499: 

Probability plot (a) and cumulative probability plot (b) of the distances, which are normalized by the 

particle radius. 

  



 

 

Supplementary Fig. 7 | The log-likelihood contributions of the intersection (a) and difference 

(b) sets of particles between DeepETPicker and the other four methods on EMPIAR-10045 

dataset. The results of DeepETPicker and each of the other four methods are shown in blue and 

green, respectively. Source data are provided as a Source Data file. 

  



 

 
Supplementary Fig. 8 | Comparison of sub-tomogram averaging for the intersection and 

difference sets of particles picked by different methods on the EMPIAR-10045 dataset of S. 

cerevisiae 80S ribosome.  The four figure panels are the 75th, 95th and 125th sections of the sub-

tomogram averaging result and the density map. Source data are provided as a Source Data file. 

  



 

 

Supplementary Fig. 9 | Comparison of FSC curves achieved by the intersection (a) and 

difference (b) sets of particles selected by different methods on the EMPIAR-10045 dataset of 

S. cerevisiae 80S ribosome. Source data are provided as a Source Data file. 

  



 

 

Supplementary Fig. 10 | Particle picking results on the EMPIAR-10651 dataset. a. Comparison 

of particle distributions between DeepETPicker and the other four methods (manual pick, crYOLO, 

template matching, and Deepfinder). Different color shows the intersection and differences of two 

particle sets. (This is a slice of % = 100  from the reconstruction of k2dft20s_14apra0023). 

Intersection set particles picked by DeepETPicker and the other method are shown in blue, difference 

set particles picked by DeepETPicker and the other method are shown in red and cyan, respectively. 

b. Precision-recall curves of different methods using manual particles as the reference. c. 

Comparative of gold standard FSC curves of particles picked by different methods on EMPIAR-

10651 dataset. Of note, the oscillations of FSC curves are due to the small number of particles used. 

d. Comparison of the local resolutions of sub-tomogram averages using different particle picking 



 

methods (DeepETPicker, crYOLO, Deepfinder and template matching). Source data are provided 

as a Source Data file. 

  



 

 

Supplementary Fig. 11 | Log-likelihood contributions of the intersection (a) and difference (b) 

sets of particles between DeepETPicker and the other three methods on EMPIAR-10499 

dataset. The results of DeepETPicker and each of the other three competing methods are shown in 

blue and green, respectively. Source data are provided as a Source Data file. 

  



 

 

Supplementary Fig. 12 | Comparison of subtomogram averaging for the intersection and 

difference sets of particles selected by different methods on EMPIAR-10499 dataset of native 



 

M. pneumoniae cells. The four figure panels are the 75th, 95th and 125th sections of the sub-tomogram 

averaging result and the density map. Source data are provided as a Source Data file. 

  

Supplementary Fig. 13 | Comparison of FSC curves achieved by the intersection (a) and 

difference (b) sets of particles picked by different methods on EMPIAR-10499 dataset of native 

M. pneumoniae cells. Source data are provided as a Source Data file. 

  



 

  

Supplementary Fig. 14 | The two-norm of center shifts for the same particles picked by 

DeepETPicker and the competing methods on EMPIAR-10499 dataset. (a) DeepETPicker vs 

crYOLO. (b) DeepETPicker vs DeepFinder. (c) DeepETPicker vs TM. Source data are provided as 

a Source Data file. 

 

 

  



 

 

Supplementary Fig. 15 | The two-norm of center shifts for the same particles picked by 

DeepETPicker and the competing methods on EMPIAR-11125 dataset. (a) DeepETPicker vs 

crYOLO. (b) DeepETPicker vs DeepFinder. (c) DeepETPicker vs TM. Source data are provided as 

a Source Data file. 

  



 

 

Supplementary Fig. 16. The performance of DeepFinder with different thresholds of cluster 
size on test set on four experimental datasets. The black vertical dotted line is the threshold 
corresponding to current result. The blue point corresponds to the maximal of F1-score. Source data 
are provided as a Source Data file. 
 
 



 

 
Supplementary Fig. 17. Experiments with multiple training runs on the SHREC2021 dataset. 
a, 10-fold cross-validation of DeepETPicker trained by TBall-M. b, c, Following the same protocol 
of partitioning the training/validation/test sets as in the SHREC2021 challenge, experiments are 
performed multiple times by using 10 different random seeds. Source data are provided as a Source 
Data file. 

 



 

 
Supplementary Fig. 18. Performance of weak labels with multiple training runs on the 
SHREC2021 dataset. a, 10-fold cross-validation of DeepETPicker trained by three different 
simplified masks. b, c, Following the same split protocols of training/validation/test set as the 
challenge, experiments are performed multiple times by using 10 different random seeds. 
Randomized two sample t-test (rndttest2) as well as nonparametric ranksum test were performed for 
statistical comparison. Data are presented as mean values, and the error bar denotes the standard 
deviation of different experiments. ‘Best of SHREC2021’ denotes the best results of reported 
methods in SHREC2021 challenges. *: p<0.05; **: p < 0.01; ***: p < 0.001. n.s.: non-significant. 
Source data are provided as a Source Data file. 
 
 
  



 

 
Supplementary Fig. 19. Testing for batch-effect of experimental datasets. a, Boxplot of maximal 
F1-score of each tomogram for five test results for different methods on EMPIAR-10045 dataset. b, 
The mean inference time for five test results for different methods on EMPIAR-10045 dataset. c, 
Boxplot of maximal F1-score of each tomogram for five test results for different methods on 
EMPIAR-10499 dataset. d, The mean inference time from five test runs for different methods on 
EMPIAR-10499 dataset. The green upper triangle symbol denotes the mean F1-score of five test 
results. The inference time is measured by one Nvidia GeForce GTX 2080Ti. Randomized two 
sample t-test (rndttest2) as well as nonparametric ranksum test were performed for statistical 
comparison. *: p<0.05; **: p < 0.01; ***: p < 0.001. n.s.: non-significant. Source data are provided 
as a Source Data file. 
 

 



 

C. Supplementary Tables 
 

 
Supplementary Table 1 | Hyperparameters of DeepETPicker on different datasets. Source data are provided as a Source Data file. 
 

Datasets 
Parameters 

SHREC2020 SHREC2021 
EMPIAR-

10045 
EMPIAR-

10499 
EMPIAR-

10651 
EMPIAR-

11125 
Parameter description 

!! 0.368 Threshold for truncated-ball masks 

!"#! 0.5 
Threshold for transforming segmentation maps into 
binary maps 

" 7~19 7~19 25 25 21 13 Diameter of the particles 

!$%"& #"2% 
Threshold to distinguish whether two adjacent particles 
are the same particle, where ⌈∙⌉ denotes the round-up 
operation 

!'( 0.1 
Threshold for determine whether a local maximum is a 
particle 

) 72 72 72 72 72 72 Size of sub-tomograms 

*+"_-./0 12 12 12 12 12 12 Padding size for the overlap strategy 

12 0.001 0.001 0.001 0.001 0.001 0.001 Initial learning rate 

3+!4ℎ_-./0 16 16 24 24 24 24 Batch size 

max_0*94ℎ 60 60 60 60 60 60 Total number of training epochs  
 



 

 
 

 

 

 

 

 

 

 

 

Supplementary Table 2 | Three types of simplified masks, i.e., truncated-ball masks (TBall-
M), cubic masks (Cubic-M) and ball masks (Ball-M), with different diameters. Size Based 
denotes the diameter of the generated mask is set as proportional to the size of real mask, Const7 
and Const9 denote the diameters of the generated masks are set as 7 and 9, respectively. Source 
data are provided as a Source Data file. 
 

Simplified Mask 1s3x 3qm1 3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 5mrc fiducial 

TBall-M 

Size Based 7 7 7 7 9 9 9 11 13 13 13 17 7 

Const7 7 

Const9 9 

Cubic-M 

Size Based 7 7 7 7 9 9 9 11 13 13 13 17 7 

Const7 7 

Const9 9 

Ball-M 

Size Based 7 7 7 7 9 9 9 11 13 13 13 17 7 

Const7 7 

Const9 9 

 
 

 



 

Supplementary Table 3 | Localization and classification performance of DeepETPicker trained by different types of simplified masks on the SHREC2021 
dataset. Source data are provided as a Source Data file. 
 

 Localization Classification 

Mask Type RR TP FP FN MH AD R P F1 1s3x 3qm

1 

3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 5mrc fiducial mean F1 

Real Mask 1609 1479 70 86 59 1.47  0.94  0.92  0.93 

 

 

 

 

  

0.39  0.52  0.58  0.81  0.80  0.83  0.79  0.96  0.99  0.95  0.97  0.99  1.00  0.81  

TBall-M 
Size Based 1510 1441 42 124 26  1.16  0.92  0.95  0.94  0.37  0.54  0.60  0.83  0.84  0.89  0.82  0.99  0.99  0.99  1.00  1.00  1.00  0.84  

Const7 1510 1447 43 118 19  1.15  0.92  0.96  0.94  0.41  0.44  0.60  0.88  0.81  0.89  0.81  0.98  1.00  0.99  1.00  1.00  1.00  0.83  

Const9 1508 1446 41 119 18  1.22  0.92  0.96  0.94  0.45  0.54  0.64  0.83  0.81  0.89  0.82  0.97  0.99  0.98  1.00  1.00  1.00  0.84  

Cubic-M 
Size Based 1473 1421 33 144 19  1.22  0.91  0.97  0.93  0.33  0.53  0.60  0.85  0.76  0.87  0.77  0.97  0.98  0.97  1.00  1.00  1.00  0.82  

Const7 1573 1466 82 99 24  1.13  0.93  0.93  0.93  0.46  0.55  0.59  0.83  0.83  0.88  0.83  0.99  1.00  0.96  1.00  1.00  1.00  0.84  

Const9 1543 1438 71 127 31  1.22  0.92  0.93  0.92  0.35  0.47  0.48  0.82  0.77  0.85  0.82  1.00  1.00  0.98  1.00  1.00  1.00  0.81  

Ball-M 
Size Based 1497 1434 43 131 18 1.172 0.91  0.96  0.94  0.46  0.51  0.62  0.75  0.77  0.81  0.81  0.96  0.99  0.97  1.00  1.00  1.00  0.82  

Const7 1284 1202 73 363 9 1.192 0.77  0.94  0.84  0.47  0.46  0.61  0.83  0.81  0.83  0.80  0.97  0.99  0.97  0.00  0.00  1.00  0.67  

Const9 1474 1418 43 147 11 1.214 0.90  0.96  0.93  0.36  0.53  0.63  0.88  0.81  0.87  0.80  0.99  1.00  0.98  1.00  1.00  1.00  0.84  

 

 



 

 

Supplementary Table 4 | Comparison of DeepETPicker versus competing methods in localization performance. The methods such as URFinder, DeepFinder, 

U-CLSTM, MC-DS-Net, YOPO, TM-F and TM are reported in the SHREC2021 challenge2. RR: detected number of particles; TP: true positive; FP: false positive, 

FN: false negative, MH: multiple hits, AD: average Euclidean distance from predicted particle center in voxels; Recall: uniquely selected true locations divided by 

actual number of particles in the test tomogram; Precision: uniquely selected true locations divided by RR; Miss rate: percentage of results that yield negative results; 

F1 Score: harmonic average of the precision and recall. The best results in each column are highlighted in bold. ↑ indicates that the higher the better, ↓ indicates that 

the lower the better. Source data are provided as a Source Data file. 
 

Methods RR TP ↑ FP ↓  FN ↓ MH ↓ AD ↓ Recall ↑ Precision ↑ Miss rate ↓ F1 Score ↑ 

URFinder 1969 1298 377 267 149 1.84 0.826 0.659 0.174 0.733 
YOPO 1627 1224 232 341 14 1.66 0.720 0.752 0.221 0.765 
CFN 1765 1364 239 201 20 1.52 0.868 0.773 0.132 0.818 

U-CLSTM 1460 1253 49 312 44 2.13 0.798 0.858 0.202 0.827 
MC DS Net 1760 1415 239 150 56 1.59 0.901 0.804 0.099 0.850 
DeepFinder 1567 1362 64 203 20 2.22 0.867 0.869 0.133 0.868 

DeepETPicker 1510 1447 43 118 19 1.15 0.921 0.958 0.079 0.939 

 

  

  



 

Supplementary Table 5 | Comparison of DeepETPicker versus competing methods in classification performance measured in F1-score on specific particle 
classes. The competing methods such as URFinder, DeepFinder, U-CLSTM, MC-DS-Net, YOPO, TM-F and TM are reported in SHREC2021 challenge2. The best 

results in each column are highlighted in bold. Source data are provided as a Source Data file. 
 

Methods 1s3x 3qm1 3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 5mrc fiducial mean F1 

URFinder 0.00  0.42  0.45  0.60  0.54  0.67  0.67  0.87  0.97  0.86  0.93  0.95  0.43  0.64  

YOPO 0.20  0.15  0.47  0.60  0.63  0.63  0.61  0.88  0.94  0.92  0.98  0.97  0.95  0.69  

U-CLSTM 0.28  0.42  0.39  0.56  0.51  0.65  0.57  0.95  0.99  0.90  0.99  1.00  1.00  0.71  

DeepFinder 0.40  0.48  0.52  0.70  0.72  0.77  0.74  0.96  0.99  0.95  0.97  1.00  1.00  0.78  

CFN 0.25  0.51  0.61  0.77  0.71  0.76  0.73  0.97  1.00  0.97  1.00  1.00  1.00  0.79  

MC DS Net 0.32  0.49  0.60  0.78  0.78  0.79  0.80  0.96  0.99  0.93  0.98  1.00  1.00  0.80  

DeepETPicker 0.41  0.44  0.60  0.88  0.81  0.89  0.81  0.98  1.00  0.99  1.00  1.00  1.00  0.83  

 

 

  



 

Supplementary Table 6 | Reported computing time in training and inference stages for processing one SHREC2021 tomogram of size #$$ × &'# × &'#. 
Calculation of estimated speedup ratios of DeepETPicker in the inference stage is based on the assumption that the calculation is mainly completed by the GPU. Source 
data are provided as a Source Data file. 
 

Methods Training stage Inference stage Hardware FP32 TFLOPS  Estimated speedup ratio of DeepETPicker in inference stage 

URFinder 300h 2h6m Nvidia Quodro RTX 8000 GPU (2×) 16.3 x 2 654.42 

DeepFinder 50h 20m Nvidia M40 (1×) 6.83 21.76 

U-CLSTM 120h 15m Nvidia Quodro RTX-5000 GPU (1×) 11.2 26.77 

MC DS Net 22h 5m Nvidia GeForce RTX 3090 GPU (1×) 35.58 28.34 

YOPO 8h 40m Nvidia GeForce Titan X GPU (1×) 6.69 42.63 

CFN 96h - Nvidia GeForce RTX 3090 GPU (2×) 35.58 x 2 - 

TM-F/TM GPU N/A 4h26m Nvidia GeForce GTX 1080Ti (1×) 11.34 480.58 

DeepETPicker 17h 28s Nvidia GeForce GTX 2080Ti (1×) 13.45 1.00 

 



 

Supplementary Table 7 | Relationship between standard deviation of Gaussian kernels and SNR levels of the SHREC2021 dataset. Source data are 

provided as a Source Data file. 

 

Standard deviation of Gaussian kernel SNR level of SHREC2021 datasets 

0 0.127-0.587 

0.5 0.116-0.535 

1.1 0.101-0.463 

1.5 0.077-0.348 

2 0.056-0.254 

3 0.039-0.171 

5 0.026-0.110 

 



 

Supplementary Table 8 | Ablation Study of DeepETPicker. RC=Residual Connection, CC=Coord Conv, IP=Image Pyramid, DA=Data Augmentation, DD=De-

Duplication, OT=Overlap-tile Strategy. Source data are provided as a Source Data file. 
 

Ablation Study Localization Classification 

RC CC IP DA DD OT RR TP FP FN MH AD R P F1 1s3x 3qm

1 

3gl1 3h84 2cg9 3d2f 1u6g 3cf3 1bxn 1qvr 4cr2 5mrc fiducial mean F1 
      1353 1221 17 344 106 1.40  0.78  0.90  0.84  0.20  0.36  0.37  0.57  0.59  0.67  0.58  0.85  0.98  0.87  0.98  0.97  1.00  0.69  

ü      1295 1197 21 368 71 1.38  0.76  0.92  0.84  0.21  0.33  0.39  0.62  0.61  0.67  0.61  0.86  0.97  0.89  0.97  0.97  1.00  0.70  

ü ü ü    1528 1286 28 279 184 1.49  0.82  0.84  0.83  0.36  0.37  0.39  0.59  0.61  0.68  0.66  0.85  0.97  0.85  0.97  0.95  1.00  0.71  

ü ü ü ü   1424 1314 35 251 72 1.27  0.84  0.92  0.88  0.38  0.42  0.56  0.77  0.72  0.83  0.77  0.93  1.00  0.92  0.98  0.99  1.00  0.79  

ü ü ü ü ü  1376 1313 33 252 28 1.27  0.84  0.95  0.89  0.37  0.42  0.54  0.77  0.73  0.83  0.77  0.95  1.00  0.93  0.98  0.99  1.00  0.79  

ü ü ü ü ü ü 1510 1447 43 118 19 1.15  0.92  0.96  0.94  0.41  0.44  0.60  0.88  0.81  0.89  0.81  0.98  1.00  0.99  1.00  1.00  1.00  0.83  

 



 

 

Supplementary Table 9 | Comparison of DeepETPicker versus competing methods in global resolution achieved by the intersection and difference sets 
of particles selected by different methods on EMPIAR-10045 dataset of S. cerevisiae 80S ribosome. RH resolution is the theoretical resolution estimated 
based on the Rosenthal and Henderson B-factor plot (RH plot)1. Source data are provided as a Source Data file. 
 

Method 
No of particles 

for 3D 
reconstruction 

Resolution 
(Å) 

RH 
Resolution 

(Å) 
Method 

No of particles 
for 3D 

reconstruction 

Resolution 
(Å) 

RH 
Resolution 

(Å) 
 

 

DeepETPicker ∩ reported result 2533 15.5 15.7 reported result ∩ DeepETPicker 2571 15.6 -  

DeepETPicker − reported result 1284 18.1 17.8 reported result − DeepETPicker 138 31.2 -  

DeepETPicker ∩ crYOLO 2542 15.0 15.7 crYOLO ∩ DeepETPicker 2507 15.5 16.0  

DeepETPicker − crYOLO 1275 18.9 17.8 crYOLO − DeepETPicker 300 31.0 24.7  

DeepETPicker ∩ DeepFinder 3038 15.0 15.3 DeepFinder ∩ DeepETPicker 2996 15.0 16.4  

DeepETPicker − DeepFinder 779 20.7 19.9 DeepFinder − DeepETPicker 1433 28.9 18.8  

DeepETPicker ∩ TM 3613 15.0 14.9 TM ∩ DeepETPicker 3555 15.0 16.2  

DeepETPicker − TM 204 33.4 35.6 TM − DeepETPicker 2742 28.9 17.0  

 
 



 

Supplementary Table 10 | Comparison of DeepETPicker versus competing methods in global resolution achieved by the intersection and difference 
sets of particles selected by different methods on EMPIAR-10499 dataset of native M. pneumoniae cells. RH resolution is the theoretical resolution 
estimated based on the Rosenthal and Henderson B-factor plot (RH plot)1. Source data are provided as a Source Data file. 
 

Method 

No of particles 
picked & 

selected for 3D 
reconstruction 

Resolution 
(Å) 

RH 
Resolution 

(Å) 
Method 

No of particles 
picked & 

selected for 3D 
reconstruction 

Resolution 
(Å) 

RH 
Resolution 

(Å) 
 

 

DeepETPicker ∩ crYOLO 4222 19.2 19.3 crYOLO ∩ DeepETPicker 4190 19.2 20.3  

DeepETPicker − crYOLO 2532 27.2 20.6 crYOLO − DeepETPicker  2710 32.6 21.4  

DeepETPicker ∩ DeepFinder 3267 19.2 20.0 DeepFinder ∩ DeepETPicker 3353 19.2 34.0  

DeepETPicker − DeepFinder 3487 20.4 19.8 DeepFinder − DeepETPicker 13060 29.7 29.5  

DeepETPicker ∩ TM 3549 19.2 19.8 TM ∩ DeepETPicker 3592 19.2 22.9  

DeepETPicker − TM 3205 21.8 20.0 TM − DeepETPicker 6338 19.2 20.9  

 



 

Supplementary Table 11 | Influence of !!"# on classification performance of DeepETPicker 

trained by different types of masks on the SHREC2021 dataset. Source data are provided as a 
Source Data file. 
 

Label Type 
"$%& 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Real Mask 0.817 0.816 0.816 0.815 0.815 0.815 0.815 0.815 0.815 
TBall-M, d=9 0.830 0.830 0.830 0.830 0.830 0.831 0.831 0.830 0.830 
Cubic-M, d=9 0.827 0.827 0.828 0.828 0.828 0.828 0.828 0.827 0.828 
Ball-M, d=9 0.829 0.828 0.828 0.829 0.829 0.829 0.829 0.829 0.828 

 
 
 
 
Supplementary Table 12 | An ablation study for coordinated convolution and image pyramid 

inputs on the SHREC2021 dataset. CC denotes coordinate convolution, and IP denotes image 
pyramid inputs. Tomograms 0 to 2 are used for training of DeepETPicker, tomogram 8 is used for 
validation and tomogram 9 is used for testing. In the ablation study, pad_size is set as 0, and data 
augmentation is not used. Source data are provided as a Source Data file. 
 

Ablation Study Mean F1-score of classification 

CC IP Tiny Small Medium Large Total 

  0.227 0.488 0.830 0.922 0.612 

Ö  0.234 0.500 0.871 0.915 0.627 

 Ö 0.253 0.485 0.868 0.928 0.627 

Ö Ö 0.308 0.525 0.873 0.930 0.654 

 
 
 
 
Supplementary Table 13 | An ablation study for channels of 3D-ResUNet on the SHREC2021 

dataset. Tomograms 0 to 7 are used for training of DeepETPicker, tomogram 8 is used for validation 
and tomogram 9 is used for testing. Source data are provided as a Source Data file. 
 

Channels 
[c1, c2, c3, c4] 

Model 
size 

Localization  
performance 

Classification 
Performance 

AD Recall Precision F1-score Mean F1-score 
[24, 48, 72, 108] 28M 1.18 0.933 0.961 0.947 0.835 
[8, 16, 24, 36] 3.4M 1.217 0.927 0.944 0.935 0.829 
DeepFinder 11M 2.22 0.867 0.869 0.868 0.784 

 
 



 

Supplementary Table 14. An ablation study for loss functions on the SHREC2021 dataset. 
Truncated-Ball masks with constant diameter of 9 is used. Tomograms 0 to 2 are used for training of 
DeepETPicker, tomogram 8 is used for validation and tomogram 9 is used for testing. Source data 
are provided as a Source Data file. 
 

Loss function 
Localization performance Classification 

AD Recall Precision F1-score mean F1-score 

Dice 1.34 0.902 0.971 0.935 0.786 
MSE 1.417 0.908 0.978 0.942 0.773 
Focal 1.373 0.911 0.977 0.943 0.759 
IoU 1.304 0.881 0.985 0.93 0.767 

 
 
 
 
Supplementary Table 15.  An ablation study for different transformations on the 

SHREC2021 dataset. Tomograms 0 to 2 are used for training of DeepETPicker, tomogram 8 is used 
for validation and tomogram 9 is used for testing. Source data are provided as a Source Data file. 
 

Mirror 
Transformation 

Spatial  
Transformation 

Localization performance Classification 
AD Recall Precision F1-score mean F1-score 

  1.513 0.859 0.947 0.901 0.691 
Ö  1.372 0.891 0.932 0.911 0.774 
 Ö 1.469 0.878 0.968 0.921 0.711 
Ö Ö 1.34 0.902 0.971 0.935 0.786 

 
 
 
 
Supplementary Table 16. The classification F1-score of DeepFinder with and without volume 

threshold on test set of four experimental datasets. Source data are provided as a Source Data 
file. 
 

Dataset name Without volume threshold 

(default result of DeepFinder) 
With volume threshold 

EMPIAR-10045 0.500 0.576 
EMPIAR-10499 0.146 0.276 
EMPIAR-10651 0.510 0.468 
EMPIAR-11125 0.705 0.711 

 
 
 
 



 

Supplementary Table 17. Cross-correlation threshold of TM for different datasets. 

Source data are provided as a Source Data file. 
 

EMPIAR-10045 EMPIAR-10499 

IS002_291013_005 0.182 TS_77 0.060 

IS002_291013_006 0.188 TS_78 0.060 

IS002_291013_007 0.163 TS_79 0.062 

IS002_291013_008 0.150 TS_80 0.065 

IS002_291013_009 0.160 TS_81 0.050 

IS002_291013_010 0.170 TS_82 0.053 

IS002_291013_011 0.157 TS_84 0.057 

  TS_85 0.059 

  TS_87 0.061 

  TS_88 0.063 

EMPIAR-10651 EMPIAR-11125 

k2dft20s_14apra0006 0.440 CB_02 0.250 

k2dft20s_14apra0011 0.440 CB_29 0.240 

k2dft20s_14apra0023 0.440 CB_59 0.260 

 

 

 

 

Supplementary Table 18. Training, validation, testing set of different deep-learning based 

methods for experimental datasets. Source data are provided as a Source Data file. 
 

Dataset 
name 

Number of 
tomograms 

(index) 

Manually 
labelled particles 

from all 
tomograms 

Number of 
particles for 

training 

Number of 
particles for 
validation 

Number of particles 
for testing 

(excluded training 
and validation 

particles) 

Particle 
picking 
methods 

EMPIAR-
10045 

7 (tomo0-
tomo6) 3120 135 from 

tomo0 
15 from 
tomo1 

2970 particles from 
tomo0-tomo6 

DeepETPicker 
crYOLO 

DeepFinder 

EMPIAR-
10499 

10 (tomo0-
tomo9) 12624 

106 from 
tomo5 

11 from 
tomo4 11921 particles from 

tomo0-tomo9 

DeepETPicker 
crYOLO 

650 from 
tomo5 

53 from 
tomo4 DeepFinder 

EMPIAR-
10651 

3 (tomo0-
tomo2) 1340 128 from 

tomo2 
14 from 
tomo1 

1198 from tomo0-
tomo2 

DeepETPicker 
crYOLO 

DeepFinder 

EMPIAR-
11125 

3 (tomo0-
tomo2) 2972 514 from 

tomo0 
57 from 
tomo1 

2401 from tomo0-
tmo2 

DeepETPicker 
crYOLO 

DeepFinder 

  



 

Supplementary Table 19. Tomogram names and their abbreviation for experimental datasets. 

Source data are provided as a Source Data file. 
 

Dataset Original names of tomograms 
Shortened names of 

tomograms 

EMPIAR-10045 

IS002_291013_005 tomo0 
IS002_291013_006 tomo1 
IS002_291013_007 tomo2 
IS002_291013_008 tomo3 
IS002_291013_009 tomo4 
IS002_291013_010 tomo5 
IS002_291013_011 tomo6 

EMPIAR-10651 

k2dft20s_14apra0006 tomo0 
k2dft20s_14apra0011 tomo1 
k2dft20s_14apra0023 tomo2 

EMPIAR-10499 

TS_77 tomo0 
TS_78 tomo1 
TS_79 tomo2 
TS_80 tomo3 
TS_81 tomo4 
TS_82 tomo5 
TS_84 tomo6 
TS_85 tomo7 
TS_87 tomo8 
TS_88 tomo9 

EMPIAR-11125 
CB_02 tomo0 
CB_29 tomo1 
CB_59 tomo2 

 

Supplementary Table 20. Mean and standard deviation of all experiments performed multiple 

times by using 10 different random seeds. Source data are provided as a Source Data file. 
 

Metrics TBall7 Cubic7 Ball7 

Classification  

F1-score 

Mean  0.835 0.820 0.822 
Standard deviation 0.005 0.032 0.021 

Localization  

F1-score 

Mean  0.947 0.942 0.939 
Standard deviation 0.003 0.013 0.014 

 

Supplementary Table 21. Training, validation, testing set of batch-effect experiments on two 

experimental datasets. Source data are provided as a Source Data file. 

Dataset name 
Number of 
tomograms 

(index) 

Train 
set1 

Train 
set2 

Train 
set3 

Train 
set4 

Train 
set5 

Validation 
set 

Test 
set 

EMPIAR-10045 
7 (tomo0-

tomo6) 

135 from 

tomo0 

135 from 

tomo0 

135 from 

tomo1 

135 from 

tomo1 

135 from 

tomo3 

15 from 

tomo2 

1391 from 

tomo4-tomo6 

EMPIAR-10499 
10 (tomo0-

tomo9) 

106 from 

tomo0 

106 from 

tomo1 

106 from 

tomo2 

106 from 

tomo3 

106 from 

tomo5 

11 from 

tomo4 

6429 from 

tomo6-tomo9 
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