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Peer Review File

DeepETPicker: Fast and accurate 3D particle picking for cryo-

electron tomography using weakly supervised deep learning



Reviewer #1 (Remarks to the Author):

The authors introduce a simple, but very effective, algorithm to identify macromolecules in 

electron tomograms. This is still an open problem in which any new contribution is welcome and 

expected to have an important impact on daily practice. The algorithm is technically sound and 

well-described. The authors present a very extensive analysis of its performance on various 

datasets, both simulated and experimental.

This reviewer finds that the manuscript can be published unaltered.

Reviewer #2 (Remarks to the Author):

This manuscript introduced DeepETPicker, a novel deep-learning-based method for performing 

particle picking in 3D cryo-electron tomograms along with a user-friendly GUI. This method only 

requires the particle center locations to be provided for training purposes and does not require the 

voxel level segmentation maps of tomograms, unlike the other cryo-ET particle picking methods. 

The method is based on U-Net architecture like similar methods but incorporated several other 

modules including mask formation, MP-NMS, OT, etc. The authors validated their approach on two 

simulated benchmark datasets and two experimental ribosome tomogram datasets. DeepETPicker 

resulted in overall better performance in picking than the baseline and produced a higher 

resolution structure when combined with subtomogram averaging. By requiring only particle 

centers for training and by providing an interactive GUI for selecting particle centers, DeepETPicker 

stands out from other methods as a practically useful particle picking approach.

Despite showing much promise, there are several major and some minor concerns regarding the 

paper which are mentioned below:

Major concerns:

1. The authors mentioned tuning hyperparameters as a drawback of reference-free DoG picking. 

However, their method requires several hyperparameters (t_g, t_{seg}, t_{dist}) as well. For 

t_{g}, they have always used 0.368. But is there any rationale behind choosing this value? The 

paper did not mention clearly how t_{seg} was chosen. The paper would benefit from discussing 

how the choice of hyperparameter values affects the final picking results.

2. For the evaluation of simulated SHREC cryo-ET tomograms, the proposed method outperformed 

the baseline methods in several metrics, such as Precision, Recall, and F1 score. The improvement 

ranged between 2%-9%. However, in terms of another commonly used metric, AD (average 

distance), its performance was 24.3% less than that of the baseline method. Is there any 

justification behind this?

3. One of the lucrative selling points of the paper is that it only requires labeling the particle centre 

coordinates to prepare training data. The authors claimed that labeling the centers of the particles 

is easy and efficient, which was certainly the case for the tomograms they used for validation. But 

will it be the case for other tomograms as well, particularly when the particle size is small and the 

SNR of tomograms is lower? It would be nice to see a discussion on the ease of selecting particle 

centers with respect to the particle size and the noise level in the tomogram.

Minor concerns:

1. It is not clear how the method benefited from the use of coordinated convolution and image 

pyramid inputs. A detailed ablation study would be helpful.

2. The authors referred to supplementary figures 2c and 2d from the main manuscript. If 

supplementary figure 2 is very important to understand the manuscript, then I would recommend 

moving it to the main manuscript.



3. A table corresponding to Figure 2f would better help the reader to understand the relative 

improvement by DeepETPicker for simulated tomograms.

4. Can the method lead to any significant biological insight? Apparently, it does seem to directly 

present any new biological insight.

Reviewer #3 (Remarks to the Author):

This manuscript describes a supervised deep learning method for identifying macromolecule 

species in cryo-ET images. Evaluation is performed on a simulated benchmark dataset, as well as 

two experimental datasets. Comparison to two state-of-the-art methods (template matching and 

DeepFinder) is provided.

I recognise that the authors have put considerable efforts into the evaluation. Also, the method 

shows encouraging scores on the simulated benchmark. However, I consider that additional efforts 

are necessary for publication in Nature Communications. A major revision is needed. Below are the 

main reasons:

- I notice that evaluation on experimental focus on ribosomes, which among the macromolecule 

species is the easiest to identify. While these results validate the ability of DeepETPicker to identify 

ribosomes, I consider that the evaluation should also be focused on macromolecules that are 

representative of contemporary research in structural biology, i.e. macromolecules with a 

molecular weight < 1MDa.

- While this method presents novelties, I find that the method is an incremental work compared to 

DeepFinder. This is not something bad in itself, but it should be mentioned (please refer to [1] for 

more details). Some aspects of the method are unclear. Also, the way the authors implemented 

one of their method features, the "gaussian mask" is quite odd, and I have a number of doubts 

(see [2]).

- I have several concerns about the evaluation protocol on the experimental datasets (see [3]).

[1] Similarities and differences to DeepFinder

[1.1] What is similar to DeepFinder:

- use of a 3D semantic segmentation network to detect macromolecules

- same sampling strategy: sampling of 3D patches (subtomograms) centered on annotated 

coordinates, so that each patch contains at least 1 macromolecule. This is to mitigate the under-

representation of the object classes w.r.t. to background class. This process is key for a succesfull 

training.

- use of "weak labels", i.e. placing spheres at annotated macromolecule positions

- overlap-tile strategy in inference stage

- use of Dice loss

[1.2] What is different:

- the network architecture.

- post-processing of the produced segmentation maps to obtain macromolecule coordinates. 

DeepFinder uses spatial meanshift clustering, and DeepETPicker uses mean-pooling and non-

maximum suppression.

The way you applied NMS here is unclear to me (even with suppl Fig2. D). Could you please 

elaborate? Also, see [4.2] for a remark on how you implemented NMS.

[2] About the use of "weak labels"

[2.1] Implementation of "gaussian masks"



The authors compare 3 ways of generating weak labels: cubic, ball (i.e. sphere) and gaussian. The 

benefits of using a gaussian function is that it produces smooth values (decreasing from the 

center), which can be useful for generating score-maps to be used as training targets (which would 

need a regression loss function, e.g. MSE). But the authors binarize the gaussian function so that 

the training targets correspond to segmentation maps (and proceed to use Dice loss). But a 

binarised 3D gaussian (as described in Eq. (3) of the manuscript) is... a sphere. Even though in 

Suppl. Fig. 2 (a) the masks "Bal-M" and "Gau-M" appear to be different, actually "Gau-M" is still a 

sphere whose radius is larger than the used observation window. So the authors present 

experiments to demonstrate that their gaussian masks are better than spherical masks (the latter 

being already used in cryoET, see ref [13] of the manuscript), but it turns out both are identical. 

Could you please explain?

[2.2] Interrogation about the use of spherical masks

You advocate for the use spherical/"gaussian" masks, which is a good approximation for 

macromolecules whose shape is sphere-like. How do you plan to handle the case of elongated 

macromolecules (for ex. double-capped 26S proteasome, EMD-3932)? In this case the overlap 

between the real shape (cylindrical) and the modelled shape (spherical) is reduced, and hence the 

label noise is increased, which may prevent the training from converging.

[2.3] Remark on how the "weak label" strategy is presented

In the abstract, the authors write: "Training of DeepETPicker requires only weak supervision by 

simplified Gaussian-type labels, which reduce the burden of manual annotation of tomograms 

under very low signal-to-noise ratios"

Also, on p.5, l.12: "Model training of DeepETPicker requires only weak supervision using simplified 

labels, resulting in substantially reduced cost of manual annotation".

The authors make is seem as if their "simplified labels" will save biologists a lot of time in the 

annotation process, who would otherwise have to produce voxel-wise annotations. In reality, 

producing manually voxel-wise annotations for macromolecules is an impossible task, because of 

very weak contrast and blurry edges. So in fact, without the "weak annotation strategy", their 

method would simply be impracticable, which is quite different to the authors statement.

[3] About the evaluation protocol for the EMPIAR datasets

[3.1] Concern about the described subtomogram averaging pipeline

According to p.13 l.28, the authors use 3D classification in their subtomogram averaging 

procedure, which is very disturbing. This means that the authors apply post-classification to the 

particle picking method outputs. They should compare the raw output of the methods, else they do 

not measure the method performances, but the performance of a [method + post-classification] 

pipeline. This basically invalidates all subtomogram averaging results on EMPIAR-10045 and 

EMPIAR-10499.

[3.2] Questions about your evaluation criteria

The term "quality of particles" is mentioned around 15 times in the text, but this term is vague and 

the authors do not define what they mean by that. For all experiments involving subtomogram 

averaging, they put a considerable amount of effort measuring this "quality", see for example:

p.10, l.23: "For real experimental datasets without ground truth, we used B-factor, global 

resolution, local resolution, and log-likelihood distribution to evaluate and compare the quality of 

particles picked by DeepETPicker and other competing state-of-the-art methods".

What exactly do you mean by particle "quality"? The SNR of the subtomogram? How does 

measuring this "quality" help quantifying the performance of a particle picker? Shouldn't a good 

particle picker detect all target macromolecules, regardless of the SNR amount (even the most 

noisiest ones)?

As a reminder, the resolution of a subtomogram average quantifies the structural homogeneity of 

picked particles. The resolution is low when the average is noisy (e.g. particle count is low), or 

when the average is blurry (e.g. particles are not similar enough). Structural heterogeneity occurs 



when: (i) picked particles are not of the same macromolecule species (i.e. false positives), and (ii) 

picked particles are of the same macromolecule species, but with different structural 

conformations.

Here is an example to illustrate my point. The 26S proteasome has 2 assembly states: single-

caped, double-caped. Including both states in the average will produce blur at the cap locations 

(i.e. resolution is low at these locations). As for the detector, it did not make any mistakes, as it 

picked proteasomes correctly (regardless of their assembly state). So in this case, the resolution of 

obtained subtomogram average does not reflect well the performance of the particle picker.

I think that it would be beneficial to the paper to discuss how the resolution of an obtained 

subtomogram average is correlated to the performance of a particle picker (and under which 

conditions).

[3.3] When comparing DeepETPicker to template matching and DeepFinder on the EMPIAR 

datasets, the authors do not explain how they chose the score thresholds of the last two methods. 

Yet the performance of TM and DeepFinder depends greatly on the chosen threshold, and therefore 

it should be mentioned when making a comparison.

[3.4] For all subtomogram averages you show, please indicate the number of particles used to 

compute it, as poor resolution may be due to low particle count. I noticed that you give some 

particle counts in Suppl. Table 9, however it would be easier to interpret the averages if you also 

display these values on the figures.

[3.5] According to Suppl. Table 9, we have:

- Subset TM " DeepETPicker: nb_of_particles=3662, resolution=19.2 A

- Subset TM - DeepETPicker: nb_of_particles=6333, resolution=19.2 A

Both subset averages have the same resolution of 19.2A, which suggests that both subsets have a 

good true positive rate. This also suggests that DeepETPicker missed 6333 ribosomes, which is a 

lot. Could you please comment on this?

[3.6] For the intersection of two sets A and B, we should have A"B = B"A. Could you please 

explain why this is not the case in Suppl. Tables 8 and 9? For ex. in Suppl. Table 9, DeepETPicker "

TM, and TM " DeepETPicker contain 3618 and 3662 particles, respectively (i.e. a difference of 44 

particles!).

[3.7] Why don't you compare the detections to the manual annotations (via precision, recall, F1-

score)? It is true that manual annotations are not a ground truth, but it gives an indicator of how 

close the particle picking method is to what an expert has picked.

[3.8] How do you explain that DeepFinder performs well on EMPIAR-10045 and poorly on EMPIAR-

10499? Given that DeepFinder has been shown to have state-of-the-art performance for detecting 

ribosomes (and even differentiate between two binding states of the ribosome) in cellular 

tomograms (Chlamydomonas reinhardtii cells)?

[3.9] p.13, l.22: "We selected 150 particles from manual annotation to train DeepETPicker, 

DeepFinder and TM."

Did you make sure that the train and test particles do not originate from the same tomograms? 

When sampling 3D patches centered around annotated particles, there are good chances that the 

patches also includes additional neighboring particles. If the split into train and test sets is not 

done carefully, there is a risk of overlap between train and test sets (i.e. a test patch may contain 

particles from train set), which results in metrics being overestimated.

[3.10] p.14, l.13: "We manually picked 117 particles to train crYOLO and DeepETPicker, and 703 

particles to train DeepFinder"

Why are you using more particles for DeepFinder? Does this mean that the train and test sets are 

not the same for all compared methods? Please describe clearly the train, valid and test sets for 

the EMPIAR-100045 and EMPIAR-10499 datasets.



[4] Other remarks

[4.0] The authors announce their software to be open-source, but the github page they link to 

does not contain the source code. However it does contain a docker image, which I was not able to 

execute (this might be due to my configuration). I could nevertheless access their code through 

the docker image, but it would be better to be able to visualize the code in github directly. This 

would allow users to estimate the quality of the code more easily. For example, it seems like the 

authors repository does not follow the standard organisation of a python package (as needed for 

distribution on PyPI). Following these standards allow for better reproducibility and reusability of 

the method. I am well aware that this is not a condition for publishing, please consider this as a 

strong recommendation.

[4.1] p.8 l.11: "The value of each voxel in the segmentation maps [...] denotes its probability 

score of belonging to a certain class, and the score is in the range of [0,1]"

You seem to confuse the terms "segmentation map" and "score map". A segmentation map has 

integer values in the range of [0, n_classes]. A score map has float values in the range of [0,1].

[4.2] p.8, l.17: "Then the proposed MP-NMS operation [...] are performed on the binary image to 

obtain local maxima" and then p.8, l.24: "The larger the local maximum, the higher the probability 

that this is a particle"

I find it quite odd to estimate local maxima on binary images. Even more so if you use this value 

for non-maximum suppression, given that all local maxima will have the same value: 1.

[4.3] p.8, l.26: "Compared with clustering algorithm such as mean-shift used in DeepFinder, our 

proposed MP-NMS operation is substantially faster when accelerated using a GPU"

Here you should point to Suppl. Table 6. Which brings me to the next point: this table is supposed 

to compare computing times, however for each method a different GPU is used (sometimes even 

multiple GPUs). Therefore these numbers are not comparable, and you should not call this table a 

"comparison". Also, the computing times reported in Fig.2 (e) do not mention which hardware was 

used.

[4.4] p.16, l.16: "DeepETPicker achieves similar performance improvements over methods in the 

SHREC2020 challenge. This is because DeepETPicker utilizes customized lightweight and efficient 

architecture in its 3D-RestUNet segmentation model as well as a GPU accelerated pooling-based 

post-processing method"

The authors claim that their architecture is more lightweight than competing methods in the 

SHREC2020 challenge, and that this is one of the reasons why DeepETPicker performs better. 

However, when I compare their architecture (21 convolutional layers) on Suppl. Fig. 2 to the 

architecture (15 convolutional layers) used in DeepFinder (one of the competitors in SHREC2020), 

it seems to me that the latter has less parameters (taking into account the number and the size of 

the filters).

[4.5] p.9, l.23: "Specifically, the following transformations are performed on the training datasets: 

random cropping, mirror transformation, elastic deformation less than 5%, scaling in the range of 

[0.95, 1.05], and random rotation in angles withing [-15°, 15°]"

In my opinion, data augmentations should not change the data distribution in ways that are not 

desirable. Here is what I mean by that: firstly, the main clue for identifying a macromolecule 

species is its shape, which includes its chirality. Therefore, should you be using mirror operations? 

Secondly, cryo electron tomograms have an anisotropic resolution. If you use random rotations, 

the orientation of mentioned anisotropy is changed. Should your model be invariant to the 

anisotropy orientation?

[4.6] p.15, l.23: "Precise localization of particle centers is crucial for sub-tomogram averaging"

While it is certainly desirable to obtain a precise localization, it is not "crucial" for sub-tomogram 



averaging. Having small localisation errors is fine, as in subtomogram averaging, not only the 

macromolecule orientation is estimated, but also a spatial shift.

[4.7] p.2 l.7: "adoption of automated particle-picking methods remains limited because of their 

limitations in [...] training cost"

This is in my opinion an odd wording. How can a training cost be "limited"? With respect to what?

[4.8] p.4, l.9: when speaking of the DoG picker, you should mention that this picker is not class-

specific, unlike all other methods mentioned. DoG picks particles regardless of their class.

[4.9] p.10, l.14-18: "TP is shorthand for 'true positive', namely a positive particle is predicted to 

be positive ..."

The authors provide detailed definitions for the terms true positives, false positives and false 

negatives. In my opinion this is not necessary, and it will make you save some lines.

[4.10] p.19, l.3: "Therefore, although the additional particles by DeepFinder and TM improves the 

SNR of the whole dataset [...]"

This statement is bizarre. How does a particle picking method improve the SNR of the "whole 

dataset"? I assume that by "whole dataset" you mean the tomogram set. You are not performing 

denoising, so what do you mean by "improve the SNR"?

[4.11] p.19, l.12: "The crowded cellular environment adds additional background to make particle 

picking [...] more difficult".

This sentence is clumsy. There is no background that is being added (the "amount" of background 

stays the same). With a crowded cellular environment, the background becomes rather more 

complex/challenging.
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A Point-by-Point Response to Reviewers’ Comments 

We thank the reviewers for their thoughtful and constructive comments. To address the 

concerns raised in the comments, we have performed new experiments for more 

comprehensive evaluation of DeepETPicker. We have also expanded description of its 

technical details to provide further information. In addition, we have revised the 

manuscript to improve its clarity. All changes to the manuscript have been marked in 

red. We address specific concerns of the reviewers below.  

 

Reviewer #1 

Comments: The authors introduce a simple, but very effective, algorithm to 

identify macromolecules in tomograms. This is still an open problem in which any 

new contribution is welcome and expected to have an important impact on daily 

practice. The algorithm is technically sound and well-described. The authors 

present a very extensive analysis of its performance on various datasets, both 

simulated and experimental. 

This reviewer finds that the manuscript can be published unaltered. 

Response: We thank the reviewer for the positive and constructive comments. We 

perform the study in the hope of providing a fast and accurate tool to support 

automated 3D particle picking for high-resolution cryo-electron tomography in situ. 
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Reviewer #2 

Comments: This manuscript introduced DeepETPicker, a novel deep-learning-

based method for performing particle picking in 3D cryo-electron tomograms 

along with a user-friendly GUI. This method only requires the particle center 

locations to be provided for training purposes and does not require the voxel level 

segmentation maps of tomograms, unlike the other cryo-ET particle picking 

methods. The method is based on U-Net architecture like similar methods but 

incorporated several other modules including mask formation, MP-NMS, OT, etc. 

The authors validated their approach on two simulated benchmark datasets and 

two experimental ribosome tomogram datasets. DeepETPicker resulted in overall 

better performance in picking than the baseline and produced a higher resolution 

structure when combined with subtomogram averaging. By requiring only 

particle centers for training and by providing an interactive GUI for selecting 

particle centers, DeepETPicker stands out from other methods as a practically 

useful particle picking approach. 

Despite showing much promise, there are several major and some minor concerns 

regarding the paper which are mentioned below 

Response: We thank the reviewer for the positive and constructive comments. We 

address specific concerns of the reviewer below.  

Comments: Major concerns: 

1. The authors mentioned tuning hyperparameters as a drawback of reference-

free DoG picking. However, their method requires several hyperparameters (30, 

32/0, 3.123) as well. For 30, they have always used 0.368. But is there any rationale 

behind choosing this value? The paper did not mention clearly how 32/0  was 

chosen. The paper would benefit from discussing how the choice of 

hyperparameter values affects the final picking results. 

Response: A major drawback of traditional particle picking methods such as the 

DoG is that their hyperparameters require frequent tuning for different datasets to 

achieve optimized performance. Even after hyperparameter tuning, their 

performance is generally inferior compared to that of deep learning models. 

Hyperparameters of deep neural network models also require tuning. But it is 

performed primarily in model training. We have added Section A.3 to the 

Supplementary Methods to provide a detailed discussion on the setting of 

hyperparameters for DeepETPicker. We have also modified the text accordingly 

(page 4, first paragraph, last sentence; page 7, last paragraph, line 2 from the 

bottom). In the following, for the reviewer’s reference, we copy the discussion on 

the setting of 30 and 32/0 from Supplementary Methods A.3.    

The hyperparameter 30 determines the shape of Gaussian masks (+)-*>=CBB?=@). 

The Gaussian mask +)-*>=CBB?=@  becomes a ball mask when 30 K
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exp LF0.5M I 0.607 , and it becomes a cubic mask when 30 J exp LF1.5M I

0.223.  Therefore, +)-*>=CBB?=@  will be a Gaussian mask when 30 "

L0.223, 0.607M. To generate a Gaussian mask that is sufficiently different from 

ball/cubic masks, we choose the middle point between F0.5 and F1.5 and set 

30 H exp LF1M I 0.368 in our study. Related definitions have been revised for 

more clarity. See equations (1), (2), (3) and (4). 

The output score maps of 3D-ResUNet are in the range of [0,1], in which the value 

of each voxel denotes its probability score of belonging to a certain class. '&$% is a 

selected threshold that transforms a score maps into a binary map: a voxel with a 

value below '&$%  is labelled as 0 and otherwise as 1 so that a binary map is 

generated. The influence of 32/0  on the classification performance of 

DeepETPicker trained by different types of masks on SHREC2021 dataset is 

summarized in Supplementary Table A1 of the revised Supplementary 

Information. The results show that the selecting of 32/0 has little effect on the 

classification performance when it is within the range between 0.1 and 0.9. 

Therefore, we set the default value of 32/0 to 0.5 in our study.  

Please see Supplementary Methods A.3 for a more detailed and comprehensive 

discussion on the setting of hyperparameters. 

 

Comments: For the evaluation of simulated SHREC cryo-ET tomograms, the 

proposed method outperformed the baseline methods in several metrics, such as 

Precision, Recall, and F1 score. The improvement ranged between 2%-9%. 

However, in terms of another commonly used metric, AD (average distance), its 

performance was 24.3% less than that of the baseline method. Is there any 

justification behind this? 

Response: For metrics such as Precision, Recall, and F1-score, the higher their 

values are the better. However, for AD (the average distance calculated in voxels 

from the center of the predicted particle to the ground truth), the lower its value is 

the better. A lower AD means the center of the predicted particle is closer to the 

ground truth. On simulated SHREC cryo-ET tomograms, DeepETPicker 

outperformed the baseline methods in metrics (precision, recall, F1-score) by a 

margin between 2%-9%. In terms of AD, DeepETPicker has an improvement of 

24.3% over the baseline method. 

 

Comments: One of the lucrative selling points of the paper is that it only requires 

labeling the particle center coordinates to prepare training data. The authors 

claimed that labeling the centers of the particles is easy and efficient, which was 

certainly the case for the tomograms they used for validation. But will it be the 

case for other tomograms as well, particularly when the particle size is small and 

the SNR of tomograms is lower? It would be nice to see a discussion on the ease of 
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selecting particle centers with respect to the particle size and the noise level in the 

tomogram. 

Response: We appreciate the thoughtful and constructive comments. We added 

Gaussian noise of different levels to the SHREC2021 dataset and examined the 

influence of the noise level on performance of DeepETPicker in picking particles 

of different sizes (see Fig. 2h; See also Supplementary Table 7 for detailed SNR 

levels). Under lower SNR levels, performance of DeepETPicker measured in F1-

score gets worse (Fig. 2h). Moreover, the worsening in performance is more 

pronounced on smaller particles.  

Under the typically low SNRs of tomograms, manually labelled particle centers 

generally deviate from real particle centers. But we find that the deviation is mostly 

smaller than half the particle radius. Taking EMPIAR-10499 as an example, we 

calculate the Euclidean distances between manually labeled centers and actual 

centers before and after refinement (Supplementary Fig. 6). We found that 80% 

of manually labelled centers are within 0.52 times the particle radius from the actual 

centers, and 90% of manually labelled centers are within 0.625 times the particle 

radius from the actual center. To further study the impact of the deviation of manual 

labeling on particle picking performance of DeepETPicker, we randomly add a shift 

within 0.5, and 0.7, to particle centers. We find that the randomly added shifts 

have minimal impact on the picking performance of DeepETPicker for all 

complexes with different sizes (Fig. 2i). Overall, this indicates that DeepETPicker 

has good robustness against the unavoidable deviation in particle center positions 

identified by manual labeling. 

Comments: It is not clear how the method benefited from the use of coordinated 

convolution and image pyramid inputs. A detailed ablation study would be helpful. 

Response: Coordinated convolution incorporates the spatial context of the input 

image into the convolutional filters, while image pyramid inputs effectively 

preserve features of the original input image at different resolution levels. These 

architectural design strategies effectively improve the performance of 

convolutional neural networks. We have revised the text to reflect these 

clarifications (see page 8, paragraph 3, last sentence). 

To further verify the effectiveness of these strategies, we have also performed an 

ablation study on coordinated convolution and image pyramid inputs 

(Supplementary Table A2). We observe that coordinated convolution or image 

pyramid inputs can improve the mean F1-score by ~1.5% individually. Specifically, 

they improve the classification performance of tiny particles. When coordinated 

convolution and image pyramid inputs are utilized jointly, the mean F1-score of 
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classification on all complexes improves by 4.2%, and the mean F1-score of 

classification on tiny complexes improves by 8.1%.  

Comments: The authors referred to supplementary figures 2c and 2d from the 

main manuscript. If supplementary figure 2 is very important to understand the 

manuscript, then I would recommend moving it to the main manuscript. 

Response: We thank the reviewer for the suggestion and have moved the original 

Supplementary Figures 2c and 2d to Figure 1 in the revised manuscript. 

Comments: A table corresponding to Figure 2f would better help the reader to 

understand the relative improvement by DeepETPicker for simulated tomograms. 

Response: We thank the reviewer for the suggestion and have added 

Supplementary Table 5 to summarizes relative improvement by DeepETPicker 

for simulated tomograms. 

 

Comments: Can the method lead to any significant biological insight? Apparently, 

it does seem to directly present any new biological insight. 

Response: We fully expect that DeepETPicker will enable significant biological 

insights by providing a fast and accurate tool for automated 3D particle picking for 

high-resolution cryo-electron tomography in situ. However, we feel that in this 

paper we should focus on the development and evaluation of DeepETPicker. To 

this end, we focus on presenting performance evaluation results on two simulated 

tomogram datasets and four experimental tomogram datasets. In our follow-up 

studies, we are using DeepETPicker to solve structural biology problems and to 

gain new biological insights. 
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Reviewer #3 

Comments: This manuscript describes a supervised deep learning method for 

identifying macromolecule species in cryo-ET images. Evaluation is performed on 

a simulated benchmark dataset, as well as two experimental datasets. Comparison 

to two state-of-the-art methods (template matching and DeepFinder) is provided. 

I recognize that the authors have put considerable efforts into the evaluation. Also, 

the method shows encouraging scores on the simulated benchmark. However, I 

consider that additional efforts are necessary for publication in Nature 

Communications. A major revision is needed. Below are the main reasons: 

Response: We thank the reviewer for the positive and constructive comments. We 

address specific concerns of the reviewer below. 

 

Comments: I notice that evaluation on experimental focus on ribosomes, which 

among the macromolecule species is the easiest to identify. While these results 

validate the ability of DeepETPicker to identify ribosomes, I consider that the 

evaluation should also be focused on macromolecules that are representative of 

contemporary research in structural biology, i.e. macromolecules with a molecular 

weight < 1MDa. 

Response: We appreciate the suggestion. We have added results on another public 

cryo-ET dataset of H. neapolitanus alpha-carboxysomes (EMPIAR-11125) to 

evaluate the performance of DeepETPicker for picking smaller particles in situ. See 

page 24-25 of the revised manuscript for a summary of the results.  

The molecular weight of alpha-carboxysome is 562 kDa. Following the same 

protocol, we compared performance of DeepETPicker, DeepFinder, crYOLO, and 

TM on this dataset. We found that DeepETPicker can pick true positive particles 

that are missed by DeepFinder, crYOLO and TM (Fig. 5a). Although crYOLO also 

picks particles not selected by DeepETPicker, these particles do not appear to be 

true positives upon initial visual inspection.  

To check whether this observation is true, a comparison of particle detections 

between different methods (DeepETPicker, crYOLO, DeepFinder and TM) and 

manual annotation is carried out using precision and recall as metrics. At a fixed 

recall, DeepETPicker achieves the highest precision, followed by DeepFinder, TM 

and crYOLO (Fig. 5b). This indicates that DeepETPicker achieves the highest 

consistency with manual annotation. It also achieves the highest recall, indicating 

that more manual labelled particles are picked by DeepETPicker. 

In addition, we performed sub-tomogram averaging to further check the quality of 

the picked particles (Figs. 5c-d) by utilizing the same analysis protocol for 

EMPIAR-10045. The global resolutions of reconstructed maps from particles picked 

by DeepETPicker, DeepFinder and TM are similar, at around 7 # (Fig. 5c). However, 
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the particles picked by crYOLO fail to yield a correct reconstruction. In addition, 

the map reconstructed from particles picked by DeepETPicker shows more 

structural details and better local resolutions (Fig. 5d). 

 

Comments: While this method presents novelties, I find that the method is an 

incremental work compared to DeepFinder. This is not something bad in itself, but 

it should be mentioned (please refer to [1] for more details). Some aspects of the 

method are unclear. 

[1] Similarities and differences to DeepFinder 

[1.1] What is similar to DeepFinder:  

- use of a 3D semantic segmentation network to detect macromolecules  

- same sampling strategy: sampling of 3D patches (subtomograms) centered on 

annotated coordinates, so that each patch contains at least 1 macromolecule. This 

is to mitigate the under-representation of the object classes w.r.t. to background 

class. This process is key for a successful training.  

- use of "weak labels", i.e. placing spheres at annotated macromolecule positions 

- overlap-tile strategy in inference stage  

- use of Dice loss 

[1.2] What is different:  

- the network architecture.  

- post-processing of the produced segmentation maps to obtain macromolecule 

coordinates. DeepFinder uses spatial mean-shift clustering, and DeepETPicker 

uses mean-pooling and non-maximum suppression. 

The way you applied NMS here is unclear to me (even with suppl Fig2. D). Could 

you please elaborate? Also, see [4.2] for a remark on how you implemented NMS. 

Response: We certainly acknowledge that DeepETPicker is inspired by the work of 

DeepFinder. We thank the reviewer for the thoughtful summary of the similarities 

and differences. In the following, we would also like to note some specific research 

contributions of our study.  

a) A detailed study is conducted on different types of “weak labels” with 

different radius configurations.

For “weak labels”, DeepFinder place spheres (referred to as Ball masks in our study) 

with size-dependent radius at annotated macromolecule positions. In our study, we 

conduct a detailed study on different types of “weak labels” (Gaussian mask, Ball 

mask and Cubic mask) and different diameter settings (constant diameter, size-

dependent diameter). Experimental results on simulated tomograms show that 

Gaussian masks provide stabler and better performance than Cubic masks and Ball 



 8

masks. Interestingly, we find that DeepETPicker trained by simplified masks with a 

constant diameter achieves essentially the same localization and classification 

performance as different sized particles. Therefore, different from DeepFinder, 

DeepETPicker uses Gaussian masks with constant diameters.  

b) DeepETPicker is not sensitive to selection of loss functions.  

Using simplified masks with constant diameters as the training labels effectively 

eliminates the problem of class imbalance and simplifies our selection of loss 

functions. We performed an ablation study for loss function, finding that different 

losses such as Dice loss, Focal loss, MSE loss and IoU loss give similar picking 

performances (see Supplementary Table A4). 

c) A different implementation is developed for the overlap-tile strategy in the 

inference stage.  

For the overlap-tile strategy, both DeepFinder and DeepETPicker crop the edge 

voxels of sub-tomogram to eliminate its poor segmentation accuracy, as shown in 

Figure R1a below. However, during the stage of merging subtomograms into a 

whole tomogram, patches of DeepFinder have an overlap area (Figure R1b) while 

patches of DeepETPicker have no overlap area (Figure R1c). Our experiment shows 

that overlap of cropped patches yields no improvement in performance. Further 

details can be found in the source code.  

 

Figure R1. Comparison of overlap-tile strategies of Deepfinder and DeepETPicker 

  

d) Several design features are incorporated in the architecture of 

DeepETPicker. 

DeepETPicker uses 3D-ResUNet as its segmentation model. Specifically, the idea 

of residual connections in 2D-ResNet is incorporated into 3D-Unet, with the aim to 

better extract features from tomograms. ELU is used as the activation function to 

accelerate convergence of training. Incorporation of coordinated convolution and 

image pyramid inputs into 3D-ResUNet improves localization of particles.  
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e) Different post-processing methods 

 Compared to Deepfinder, DeepETPicker uses different post-processing to obtain 

macromolecule coordinates. Specifically, the Mean Pooling and Non-Maximum 

Suppression (MP-NMS) operation is proposed. Compared to clustering algorithms 

such as the mean-shift used in DeepFinder, the MP-NMS operation is substantially 

faster when performed using a GPU. 

Regarding how NMS is applied.  

MP-NMS operation is performed on 3D segmentation maps. To facilitate 

understanding of this operation, Fig. 1h in the revised manuscript shows an example 

of MP-NMS operation on 2D images. Further details regarding implementation of 

NMS can be found in the response to Comments [4.2] below (page 18, last 

paragraph). 

 

 

Comments: Also, the way the authors implemented one of their method features, 

the "gaussian mask" is quite odd, and I have a number of doubts (see [2]). 

[2] About the use of "weak labels"  

[2.1] Implementation of "gaussian masks" The authors compare 3 ways of 

generating weak labels: cubic, ball (i.e. sphere) and gaussian. The benefits of using 

a gaussian function is that it produces smooth values (decreasing from the center), 

which can be useful for generating score-maps to be used as training targets 

(which would need a regression loss function, e.g. MSE). But the authors binarize 

the gaussian function so that the training targets correspond to segmentation maps 

(and proceed to use Dice loss). But a binarised 3D gaussian (as described in Eq. (3) 

of the manuscript) is... a sphere. Even though in Suppl. Fig. 2 (a) the masks "Bal-

M" and "Gau-M" appear to be different, actually "Gau-M" is still a sphere whose 

radius is larger than the used observation window. So the authors present 

experiments to demonstrate that their gaussian masks are better than spherical 

masks (the latter being already used in cryoET, see ref [13] of the manuscript), but 

it turns out both are identical. Could you please explain? 

Response: We regret the confusion caused by the text. Indeed, a similar concern 

was also raised by Reviewer #2. The question of the reviewer can be answered by 

looking at the setting of hyperparameter 30. Please see our response above to the 

first question of Reviewer #2, specifically the text regarding the setting of 

hyperparameter 30. For the reviewer’s reference, we copy the answer below. We 

have also revised related definitions for clarity. See equations (1), (2), (3) and (4) 

on page 7.  
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“The hyperparameter 30 determines the shape of Gaussian masks (+)-*>=CBB?=@). 

The Gaussian mask +)-*>=CBB?=@  becomes a ball mask when 30 K

exp LF0.5M I 0.607 , and it becomes a cubic mask when 30 J exp LF1.5M I

0.223.  Therefore, +)-*>=CBB?=@  will be a Gaussian mask when 30 "

L0.223, 0.607M. To generate a Gaussian mask that is sufficiently different from 

ball/cubic masks, we choose the middle point between F0.5 and F1.5 and set 

30 H exp LF1M I 0.368 in our study. Related definitions have been revised for 

more clarity. See equations (1), (2), (3) and (4).”

 

Comments: [2.2] Interrogation about the use of spherical masks  

You advocate for the use spherical/"gaussian" masks, which is a good 

approximation for macromolecules whose shape is sphere-like. How do you plan 

to handle the case of elongated macromolecules (for ex. double-capped 26S 

proteasome, EMD-3932)? In this case the overlap between the real shape 

(cylindrical) and the modelled shape (spherical) is reduced, and hence the label 

noise is increased, which may prevent the training from converging. 

Response: For particles with different shapes and sizes, we first experimented on 

the dataset from the SHREC2021 challenge. The dataset contains 12 types of 

particles whose molecular weights range from 70KDa to 3325.59 kDa and whose 

shapes vary from spherical and elongated. DeepETPicker achieved the best overall 

picking performance for this dataset using simplified Gaussian masks with a 

constant diameter.  

Unfortunately, we could not find the raw tilt-series for the double-capped 26S 

proteasome (EMD-3932). Instead, to evaluate the ability of DeepETPicker to pick 

elongated macromolecules, we chose the public cryo-ET dataset of T20S 

proteasome (accession code EMPIAR-10651), which has a cylindrical shape. We 

picked particles using DeepETPicker, crYOLO, DeepFinder, TM methods as well 

as by manual annotation. The results showed that DeepETPicker can pick true 

positive particles that are missed by crYOLO and DeepFinder (Supplementary Fig. 

10a). Regarding precision and recall, DeepETPicker and TM achieve comparable 

performance, which are slightly better than that of DeepFinder and much better than 

that of crYOLO (Supplementary Fig. 10b). The map reconstructed from particles 

picked by DeepETPicker shows more structural details and better local resolutions 

(Supplementary Fig. 10d). See page 22 of the revised manuscript for further 

details. 
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Comments: [2.3] Remark on how the "weak label" strategy is presented  

In the abstract, the authors write: "Training of DeepETPicker requires only weak 

supervision by simplified Gaussian-type labels, which reduce the burden of 

manual annotation of tomograms under very low signal-to-noise ratios"  

Also, on p.5, l.12: "Model training of DeepETPicker requires only weak 

supervision using simplified labels, resulting in substantially reduced cost of 

manual annotation".  

The authors make is seem as if their "simplified labels" will save biologists a lot of 

time in the annotation process, who would otherwise have to produce voxel-wise 

annotations. In reality, producing manually voxel-wise annotations for 

macromolecules is an impossible task, because of very weak contrast and blurry 

edges. So in fact, without the "weak annotation strategy", their method would 

simply be impracticable, which is quite different to the authors statement. 

Response: Compared to existing deep-learning based methods such as DeepFinder, 

DeepETPicker requires less training data to achieve the same level of performance 

(Fig. 2g). This reduces the burden of manual annotation of tomograms under very 

low signal-to-noise ratios. For example, for EMPIAR-10499, DeepETPicker 

requires 117 particles for training to achieve relatively good performance while 

DeepFinder requires substantially more.  

We have revised the sentence "Model training of DeepETPicker requires only weak 

supervision using simplified labels, resulting in substantially reduced cost of 

manual annotation" in the abstract as “The training of DeepETPicker requires only 

weak supervision with low numbers of simplified Gaussian-type labels, reducing 

the burden of manual annotation of tomograms under very low signal-to-noise 

ratios.” (page 2, line 9 of the revised manuscript).  

We have revised the sentences "Training of DeepETPicker requires only weak 

supervision by simplified Gaussian-type labels, which reduce the burden of manual 

annotation of tomograms under very low signal-to-noise ratios" as “The model 

training process of DeepETPicker requires only weak supervision using simplified 

labels and fewer training labels to attain performance comparable to that of 

competing methods, which reduce the cost of manual annotation.” (page 5, line 11 

of the revised manuscript).  

 

Comments: I have several concerns about the evaluation protocol on the 

experimental datasets (see [3]). 

[3] About the evaluation protocol for the EMPIAR datasets 

[3.1] Concern about the described subtomogram averaging pipeline  

According to p.13 l.28, the authors use 3D classification in their subtomogram 

averaging procedure, which is very disturbing. This means that the authors apply 

post-classification to the particle picking method outputs. They should compare 
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the raw output of the methods, else they do not measure the method performances, 

but the performance of a [method + post-classification] pipeline. This basically 

invalidates all subtomogram averaging results on EMPIAR-10045 and EMPIAR-

10499. 

Response: For subtomogram averaging of each dataset, we used the same data 

processing process to ensure fair comparison of different algorithms 

(Supplementary Fig. 4). No particles were removed in post-processing, avoiding 

influence of subjective biases. On page 17, line 23-26 of the original manuscript, 

we wrote “To make an objective comparison, we performed no particle screening 

during the subsequent alignment and classification because otherwise the quality 

measurement of picked particles will be affected by the screening protocols used.

We only set one class in the 3D classification step…”. Finally, all particles are used 

for 3D refinement by Relion to compare the final resolution.  

Although we performed 3D classification, we used only one class for the purpose 

of calculating metrics such as log-likelihood contribution and max value probability, 

which could only be obtained from 3D classification. We have revised the text to 

note that only one class is used in 3D classification. See page 15 line 2 and line 19 

as well as page 16 line 15.   

In the revised manuscript, we have added the comparison of raw output for all 

methods. Specifically, before post-processing, we compared the precision/recall of 

the 4 tested methods by comparing the coordinates of particles picked by them with 

the coordinates of particles manually picked by experts (Figs. 3-5).  

Comments: [3.2] Questions about your evaluation criteria  

The term "quality of particles" is mentioned around 15 times in the text, but this 

term is vague and the authors do not define what they mean by that. For all 

experiments involving subtomogram averaging, they put a considerable amount 

of effort measuring this "quality", see for example:  

p.10, l.23: "For real experimental datasets without ground truth, we used B-factor, 

global resolution, local resolution, and log-likelihood distribution to evaluate and 

compare the quality of particles picked by DeepETPicker and other competing 

state-of-the-art methods".  

What exactly do you mean by particle "quality"? The SNR of the subtomogram? 

How does measuring this "quality" help quantifying the performance of a particle 

picker? Shouldn't a good particle picker detect all target macromolecules, 

regardless of the SNR amount (even the most noisiest ones)?  

As a reminder, the resolution of a subtomogram average quantifies the structural 

homogeneity of picked particles. The resolution is low when the average is noisy 
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(e.g. particle count is low), or when the average is blurry (e.g. particles are not 

similar enough). Structural heterogeneity occurs when: (i) picked particles are not 

of the same macromolecule species (i.e. false positives), and (ii) picked particles 

are of the same macromolecule species, but with different structural 

conformations.  

Here is an example to illustrate my point. The 26S proteasome has 2 assembly 

states: single-caped, double-caped. Including both states in the average will 

produce blur at the cap locations (i.e. resolution is low at these locations). As for 

the detector, it did not make any mistakes, as it picked proteasomes correctly 

(regardless of their assembly state). So in this case, the resolution of obtained 

subtomogram average does not reflect well the performance of the particle picker.  

I think that it would be beneficial to the paper to discuss how the resolution of an 

obtained subtomogram average is correlated to the performance of a particle 

picker (and under which conditions). 

Response: We appreciate the thoughtful comments. In the Methods section, we 

have added a subsection titled “Quality metrics for picked particles” to summarize 

the specific metrics used in our study. In addition to precision, recall, and F1-score, 

for real experimental datasets without ground truths, we use the B-factor, global 

resolution, local resolution, and log-likelihood distribution to evaluate and 

compare the quality of the particles picked by DeepETPicker and other competing 

methods. Conceptually, particle “quality” can be assessed by the authenticity of the 

particles, the accuracy of the particle coordinates, and the contribution of the 

particles to subtomogram averaging.  

In our paper, different methods (DeepETPicker, crYOLO, DeepFinder and TM) 

are compared on the same dataset following the same analysis protocol. In this case, 

because other conditions are kept the same, if particles picked by a certain method 

achieves higher resolution than competing methods, we consider the particles 

picked by this method to be of higher overall quality. We have added this discussion 

on page 12, paragraph 2, last sentence.  

Comments: [3.3] When comparing DeepETPicker to template matching and 

DeepFinder on the EMPIAR datasets, the authors do not explain how they chose 

the score thresholds of the last two methods. Yet the performance of TM and 

DeepFinder depends greatly on the chosen threshold, and therefore it should be 

mentioned when making a comparison. 

Response: We have added Supplementary Methods Section A.7 to explain how 

these thresholds are set in our study. For the reviewer’s reference, the text below 

is copied from that section.  
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For DeepFinder, it would generate a file with five columns, i.e., class label, x, y, z 

and cluster size. For the EMPIAR-10045 and EMPIAR-10499 datasets, the 

diameter of ribosomes is about 23~24 voxels. During the training stage, we use 

spheres with a radius of 11 as the labels. For a sphere with a diameter of 23, its 

volume can be calculated as ( H
6DAE

5
H

6DG44.7E

5
. In the inference stage, particles 

with a cluster size in the range of [0.1V, 2V] are selected as the final result for 

EMPIAR-10045. Particles with a cluster size in the range of [0.2V, 2V] are selected 

as the final result for EMPIAR-10499. For EMPIAR-10651, we use spheres with 

a radius of 11 as the labels, and its volume can be calculated as ( H
6DAE

5
H

6DG44E

5
. 

In the inference stage, particles with a cluster size in the range of [0.1V, 2V] are 

selected as the final result for EMPIAR-10651. For EMPIAR-11125, we use 

spheres with a radius of 7 as the labels, and its volume can be calculated as ( H

6DAE

5
H

6DG8E

5
. In the inference stage, particles with a cluster size in the range of 

[0.1V, 4V] are selected as the final result for EMPIAR-11125. 

For template matching, we use mainly the template matching function 

“dynamo_match” of Dynamo. There are two parameters that may affect particle 

selection. The parameter 'cr' (cone range) defines orientations that will be looked 

for inside a cone. In our experiment, we use the most typical value of 360 (sample 

the full sphere). The parameter 'cs '(cone sampling) determines the scanning 

density inside the sphere. In our experiment, we use the most typical values of 30 

(sample the full sphere). It will generate tbl-format table files, where the tenth 

column shows the cross-correction coefficient. For each tomogram, we obtain a 

plot of the cross-correlation values found on the local maxima of the cc volume 

with the order. The cross-correlation values of the peaks appeared in an ascending 

order. We check the quality of the peaks by auxiliary clicking on the curve to select 

one particle and then selecting some visualization option. We click on a couple of 

particles in the area of kink in the cross-correlation to roughly estimate the cross-

correlation threshold. The detailed thresholds for TM for different datasets are 

provided in Supplementary Table A6. 

 

Comments: [3.4] For all subtomogram averages you show, please indicate the 

number of particles used to compute it, as poor resolution may be due to low 

particle count. I noticed that you give some particle counts in Suppl. Table 9, 

however it would be easier to interpret the averages if you also display these values 

on the figures. 

Response: We thank the reviewer for the suggestion. For all subtomogram averages 

(FSC curves and subtomogram averaging maps), we have shown the number of 

particles used in their computation. More details can be found in Figs. 3-5, 
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Supplementary Figs. 8-9, and Supplementary Figs. 12-13 of the revised 

manuscript.

 

Comments: [3.5] According to Suppl. Table 9, we have: 

- Subset TM " DeepETPicker: nb_of_particles=3662, resolution=19.2 A  

- Subset TM - DeepETPicker: nb_of_particles=6333, resolution=19.2 A  

Both subset averages have the same resolution of 19.2A, which suggests that both 

subsets have a good true positive rate. This also suggests that DeepETPicker 

missed 6333 ribosomes, which is a lot. Could you please comment on this? 

Response: Resolution represents the consistency of two half sets: even if both half 

sets contain error information, it is possible to obtain high resolution. Therefore, 

although subsets ‘TM " DeepETPicker’ and ‘TM-DeepETPicker’ have the same 

resolution of 19.2 Å, it does not necessarily mean that they have a high true positive 

rate. This is confirmed by the reconstruction maps of subtomogram averaging for 

subsets of ‘TM " DeepETPicker’ and ‘TM-DeepETPicker’ (Supplementary Fig. 

12). The subset ‘TM-DeepETPicker’ yields erroneous reconstruction maps, 

indicating that the particles picked by TM by not DeepETPicker are mostly false 

positives with poor quality.  

 

Comments: [3.6] For the intersection of two sets A and B, we should have A"B = 

B"A. Could you please explain why this is not the case in Suppl. Tables 8 and 9? 

For ex. in Suppl. Table 9, DeepETPicker " TM, and TM " DeepETPicker contain 

3618 and 3662 particles, respectively (i.e. a difference of 44 particles!). 

Response: Mathematically, we would expect A"B = B"A. However, in our study, 

if the minimal Euclidean distance between two particles is lower than a specific 

threshold t9:;<, which normally is set to be half of the diameter of the particle, the 

two particles are considered the same. An illustration of the intersection and 

difference sets of particles picked by two methods A and B is given in 

Supplementary Fig. 3. In Case i, Method A identifies a particle as a single particle, 

but method B identifies the same particle as two separate particles with different 

centers. In Case ii, Method A identifies a particle as two separate particles with 

different centers, but method B identifies it as a single particle. Either case i or ii 

may lead to different number of intersection particles of two methods, indicating that 

the number of intersection particles of two methods may not be exactly the same. 

Specifically, taking Case i as an example, under the above definition of “same 

particles”, the particle will count as 1 in A"B and will count as 2 in B"A. In 

summary, the seemingly counterintuitive asymmetry is caused the above definition 

of “same particles”. Although this counterintuitive asymmetry can be eliminated by 

modifying the definition of “same particles”, we choose not to do so because the 

current way of computing A # B and B # A provides useful information. We have 

added this discussion to the legend of Supplementary Fig. 3. 
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Comments: [3.7] Why don't you compare the detections to the manual annotations 

(via precision, recall, F1-score)? It is true that manual annotations are not a 

ground truth, but it gives an indicator of how close the particle picking method is 

to what an expert has picked. 

Response: The comparison has been performed. Expert annotation of EMPIAR-

10045 is provided by the original paper. We have obtained expert manual 

annotations for EMPIAR-10499, EMPIAR-10651 and EMPIAR-11125. Results of 

comparing particle detection results of different methods (DeepETPicker, crYOLO, 

DeepFinder and Template Matching) and manual annotation are shown in Figs. 3-

5 and Supplementary Fig. 10 of the revised manuscript.

 

 

Comments: [3.8] How do you explain that DeepFinder performs well on EMPIAR-

10045 and poorly on EMPIAR- 10499? Given that DeepFinder has been shown to 

have state-of-the-art performance for detecting ribosomes (and even differentiate 

between two binding states of the ribosome) in cellular tomograms 

(Chlamydomonas reinhardtii cells)? 

Response: EMPIAR-10045 is a dataset of purified ribosomes, while EMPIAR-

10499 is a dataset of ribosomes in situ. Compared to EMPIAR-10045, EMPIAR-

10499 has a lower signal-to-noise ratio (SNR) and more complex background, 

making it more difficult to pick particles from EMPIAR-10499. In the original 

paper of DeepFinder, the dataset used for training DeepFinder composed of 

multiple tomograms and has thousands of particles (e.g. the training dataset of 

Chlamydomonas reinhardtii cells consists of 6834 mb-robos and 6687 ct-ribo 

particles). However, for both EMPIAR-10045 and EMPIAR-10499 datasets, our 

study uses only one annotated tomogram for training, which contains only hundreds 

of particles. According to Fig. 2g for the SHREC2020 simulated datasets, 

DeepFinder underperforms DeepETPicker when the number of training tomograms 

is low.  

 

Comments: [3.9] p.13, l.22: "We selected 150 particles from manual annotation to 

train DeepETPicker, DeepFinder and TM." Did you make sure that the train and 

test particles do not originate from the same tomograms? When sampling 3D 

patches centered around annotated particles, there are good chances that the 

patches also includes additional neighboring particles. If the split into train and 

test sets is not done carefully, there is a risk of overlap between train and test sets 

(i.e. a test patch may contain particles from train set), which results in metrics 

being overestimated. 

Response: We appreciate the thoughtful comments. We have added Section A.8 to 

the Supplementary Methods to provide details on the split of 
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training/validation/test sets. For all the four experimental tomogram datasets, the 

coordinates of the manually picked particles are sorted in the order of z, y, and x 

from the smallest to the largest before split of the training and validation sets. This 

sorting strategy reduces the risk of overlap between the training and the validation 

sets. 

For comparing performance of DeepETPicker with other methods on the simulated 

tomogram datasets, we follow the protocol provided by the SHREC challenges. For 

comparison of performance of DeepETPicker with competing methods on the real 

tomogram datasets, we use all the tomograms as test datasets for all the methods. 

For EMPIAR-10045 and EMPIAR-10499, to avoid the performance metrics being 

overestimated, we remove training particles from the detected particles for all 

methods. 

For EMPIAR-10651 and EMPIAR-11125, we can only find 3 raw tilt-series. 

Consequently, the total number of particles detected by all methods are quite low. 

To ensure there are enough particles for subtomogram averaging, we choose not to 

remove the training particles. We agree with the reviewer and acknowledge that the 

performance metrics of all methods on these two datasets are overestimated. We 

have compared the results with and without a split of the training and test sets in 

Supplementary Figure A1. The conclusions on comparing performance of 

different methods do not change qualitatively.  

 

Comments: [3.10] p.14, l.13: "We manually picked 117 particles to train crYOLO 

and DeepETPicker, and 703 particles to train DeepFinder" Why are you using 

more particles for DeepFinder? Does this mean that the train and test sets are not 

the same for all compared methods? Please describe clearly the train, valid and 

test sets for the EMPIAR-100045 and EMPIAR-10499 datasets. 

Response: The split of training/validation/test sets are described in detail in Section 

A.8 of the Supplementary Methods. For EMPIAR-10499, a total of 117 particles 

are manually labelled. For crYOLO and DeepETPicker, 106 particles are used for 

training. However, because using 106 particles to train DeepFinder failed, we 

increased the training particle number to 650 particles.  

For the reviewer’s reference, the following text is copied from Section A.8 of the 

Supplementary Methods.  

For EMPIAR-10045, 150 particles were manually labelled along consecutive 

different z slices. The coordinates of these 150 particles are sorted in order of z, y, 

and x from the smallest to the largest. For crYOLO, DeepFinder and DeepETPicker, 
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the first 135 sorted particles are used for training, and the remaining 15 particles are 

used for validation. In the inference stage, the trained model of each method is used 

to pick particles on all tomograms. 

For EMPIAR-10499, 117 particles were manually labelled along consecutive 

different z slices. The coordinates of these 117 particles are sorted in order of z, y, 

and x from the smallest to the largest. For crYOLO and DeepETPicker, the first 106 

particles are used for training and the remaining 11 particles are used for validation. 

For DeepFinder, because its initial training using 106 particles fails to converge, we 

increase the number of manually labelled particles to 703, with the first 650 

particles used for training and the remaining 53 particles used for validation. In the 

inference stage, the trained model of each method is used to pick particles on all 

tomograms. 

 

 

Comments: [4] Other remarks  

[4.0] The authors announce their software to be open-source, but the github page 

they link to does not contain the source code. However it does contain a docker 

image, which I was not able to execute (this might be due to my configuration). I 

could nevertheless access their code through the docker image, but it would be 

better to be able to visualize the code in github directly. This would allow users to 

estimate the quality of the code more easily. For example, it seems like the authors 

repository does not follow the standard organisation of a python package (as 

needed for distribution on PyPI). Following these standards allow for better 

reproducibility and reusability of the method. I am well aware that this is not a 

condition for publishing, please consider this as a strong recommendation. 

Response: We really appreciate the recommendation. We have initially made the 

source code publicly accessible through GitHub. Docker deployment is a popular 

method for distributing software. Multiple end users have provided feedback that the 

Docker image runs successfully. As recommended, we have now added another 

installation method using conda so that the code can be directly visualized in GitHub. 

Further details can be found in https://github.com/cbmi-group/DeepETPicker.

 

Comments: [4.1] p.8 l.11: "The value of each voxel in the segmentation maps [...] 

denotes its probability score of belonging to a certain class, and the score is in the 

range of [0,1]" You seem to confuse the terms "segmentation map" and "score 

map". A segmentation map has integer values in the range of [0, n_classes]. A score 

map has float values in the range of [0,1]. 

Response: We have revised the sentence as “The value of each voxel in the score 

map generated by 3D-ResUNet denotes its probability of belonging to a certain 

class, which is in the range of [0, 1].” See page 9, third paragraph, first sentence. 
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Comments: [4.2] p.8, l.17: "Then the proposed MP-NMS operation [...] are 

performed on the binary image to obtain local maxima" and then p.8, l.24: "The 

larger the local maximum, the higher the probability that this is a particle" 

I find it quite odd to estimate local maxima on binary images. Even more so if you 

use this value for non-maximum suppression, given that all local maxima will have 

the same value: 1. 

Response: We regret the confusion caused by our writing. We have now revised 

the sentence as “the proposed MP-NMS operation, consisting of multiple iterations 

of mean pooling (MP) and one iteration of nonmaximum suppression, is performed 

on the binary map as the initial input”. The binary map is used only as the initial 

input. Outputs of different iterations of mean pooling are no longer binary. The 

following is a more detailed explanation of the procedure.   

To obtain macromolecule coordinates from the produced segmentation maps, we 

propose Mean Pooling and Non-Maximum Suppression (MP-NMS) operation. Fig. 

1h shows an example of MP-NMS operation on 2D images. MP-NMS mainly 

consists of two steps. The first step of MP-NMS is to transform a binary mask to a 

soft mask by using multiple iterations of mean-pooling (MP), as shown in the first 

row in Fig. 1h. After each MP operation, voxels in mask edge are pulled closer to 

the voxel value of background. As the number of rounds of MP increases, all voxels 

of the mask will be changed. Eventually, the binary mask will be converted into a 

soft mask. The further a voxel in the mask is from the background, the larger its 

value. Thus, the centroid of the mask should be a local maximum. The second step 

is to get the local maximums (coordinate of particle centroid) by performing non-

maximum suppression on the soft mask, as shown in the third row in Fig. 1h. Each 

local maximum can be considered as a candidate particle center.  

 

 

Comments: [4.3] p.8, l.26: "Compared with clustering algorithm such as mean-

shift used in DeepFinder, our proposed MP-NMS operation is substantially faster 

when accelerated using a GPU" Here you should point to Suppl. Table 6. Which 

brings me to the next point: this table is supposed to compare computing times, 

however for each method a different GPU is used (sometimes even multiple GPUs). 

Therefore these numbers are not comparable, and you should not call this table a 

"comparison". Also, the computing times reported in Fig.2 (e) do not mention 

which hardware was used.

Response: We thank the review for the constructive comments. Training and 

inference of DeepETPicker was performed on a single Nvidia GeForce GTX 

2080Ti GPU. We have revised the text accordingly (page 6, second paragraph, last 

line; page 10, first paragraph, last line) and have updated Supplementary Table 6.  
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For deep learning methods, their inference time in practice is mainly determined by 

the GPU hardware used. Specifically, the inference time of a GPU is mainly 

determined by its performance parameter TFLOPs (i.e., the number of floating-

point operations per second) and the number of GPU used. To compare the 

inference time of different methods calculated by different GPUs, we estimated the 

total number of floating-point operations of each method based on the GPU used, 

GPU number, and inference time. Then the total number of floating-point 

operations of different methods are normalized by that of DeepETPicker to obtain 

what we refer to as estimated speedup ratio, which estimates the acceleration effect 

of DeepETPicker (Supplementary Table 6). We found that compared with e.g., 

DeepFinder, DeepETPicker takes ~1/21.76 of its inference time. In our revised 

manuscript, we have changed “comparison of computing time” into “reported 

computing time” to make it more accurate. 

 

 

 

Comments: [4.4] p.16, l.16: "DeepETPicker achieves similar performance 

improvements over methods in the SHREC2020 challenge. This is because 

DeepETPicker utilizes customized lightweight and efficient architecture in its 3D-

RestUNet segmentation model as well as a GPU accelerated pooling-based 

postprocessing method"  

The authors claim that their architecture is more lightweight than competing 

methods in the SHREC2020 challenge, and that this is one of the reasons why 

DeepETPicker performs better. However, when I compare their architecture (21 

convolutional layers) on Suppl. Fig. 2 to the architecture (15 convolutional layers) 

used in DeepFinder (one of the competitors in SHREC2020), it seems to me that 

the latter has less parameters (taking into account the number and the size of the 

filters). 

Response: It appears that the sentence causes some misunderstanding. We attribute 

the good performance of DeepETPicker to the synergy of several factors, including 

its lightweight architecture and its GPU-accelerated postprocessing. We have not 

made any direct comparison of the architecture of DeepETPicker with those of 

competing methods. To avoid the misunderstanding, we have revised the sentence 

as “The customized lightweight and efficient architecture of 3D-ResUNet as well 

as its GPU-accelerated pooling-based postprocessing method, namely MP-NMP, 

are key factors that contribute to the performance of DeepETPicker.” (page 18, 

second paragraph, last sentence). 
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Supplementary Fig. 2 in the original manuscript shows a specific architecture of 

3D-ResUNet with the numbers of channels as [c1, c2, c3, c4] = [24, 48, 72, 108]. 

To check the architectural efficiency of 3D-ResUNet, we decrease the channels of 

feature maps to [8, 16, 24, 36]. The localization and classification performance are 

comparable to that of [24, 48, 72, 108] and are better than that of DeepFinder 

(Supplementary Table A3). Furthermore, 3D-ResUNet with channels [8, 16, 24, 

36] has a model size of 3.4M, which is substantially smaller than DeepFinder with 

a model size of 11M, validating the efficient architecture of DeepETPicker. In our 

revised manuscript, we modified the Supplementary Fig. 2 and added an ablation 

study on the number of channels of 3D-ResUNet to evaluate its architectural 

efficiency (Supplementary Table A3).  

 

Comments: [4.5] p.9, l.23: "Specifically, the following transformations are 

performed on the training datasets: random cropping, mirror transformation, 

elastic deformation less than 5%, scaling in the range of [0.95, 1.05], and random 

rotation in angles withing [-15°, 15°]"  

In my opinion, data augmentations should not change the data distribution in 

ways that are not desirable. Here is what I mean by that: firstly, the main clue for 

identifying a macromolecule species is its shape, which includes its chirality. 

Therefore, should you be using mirror operations? Secondly, cryo electron 

tomograms have an anisotropic resolution. If you use random rotations, the 

orientation of mentioned anisotropy is changed. Should your model be invariant 

to the anisotropy orientation? 

Response: We thank the reviewer for the thoughtful comments. Indeed, 

biomacromolecules have chirality, and cryo-electron tomograms have anisotropic 

resolutions. The data augmentation used in our study i.e., mirror transformation and 

spatial transformation, are not realistic from a purely biological perspective. 

However, data augmentation operations such as rotation and mirror transformation 

increase the diversity of tomograms for a given dataset. These operations are 

standard practices in deep learning. Our ablation study showed that data 

augmentation operations such as mirror transformation and spatial transformation 

effectively improve the particle picking performance of DeepETPicker 

(Supplementary Table A5), although we currently cannot explain this 

improvement from a purely biological perspective. In addition, cryo-ET particles in 

experimental tomograms generally exhibit a preferred range of orientations. In 

principle, increasing the diversity of tomograms via random rotation can enhance 

the picking performance of the DeepETPicker for particles in other orientations, 

especially when the number of particles in a certain orientation is low. We plan to 

investigate these issues in depth in follow-up studies.  
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Comments: [4.6] p.15, l.23: "Precise localization of particle centers is crucial for 

sub-tomogram averaging" While it is certainly desirable to obtain a precise 

localization, it is not "crucial" for sub-tomogram averaging. Having small 

localisation errors is fine, as in subtomogram averaging, not only the 

macromolecule orientation is estimated, but also a spatial shift. 

Response: We thank the reviewer for the thoughtful comment and agree that 

“crucial” is not a proper word here. In our revised manuscript, we have revised the 

term “crucial” to “important”. See page18, first paragraph, line 1. 

We are aware that in subtomogram averaging, not only the macromolecule 

orientation but also a spatial shift is estimated. To a certain extent, the center 

coordinates of picked particles are allowed to deviate from the real particle center 

coordinates. Currently, however, when calculating the alignment, the alignment 

algorithm generally needs to set the search range. All orientational searches, or 

integrations in the statistical approach, are performed over the full six dimensions 

(i.e., three Euler angles and three translations). If the picked center is largely 

consistent with the real particle center, it is easy to detect correct orientation. But if 

the localization deviation is large and outside the set search range, it will not be 

possible to search and correct within the limited range. Larger search range can 

handle the case of larger localization errors, but as the search range increases, the 

amount of calculation increases substantially. 

Specifically, we take “Scheres, S. H. (2012). A Bayesian view on cryo-EM structure 

determination. Journal of molecular biology, 415(2), 406-418” as a reference. This 

article proposes a three-dimensional reconstruction method based on the Bayesian 

framework, which can automatically correct the deviation of the coordinate center 

during particle selection, thereby improving the reconstruction resolution. It 

describes in detail how maximum a posteriori (MAP) estimation sets up and 

searches for three Euler angles and coordinate offsets when performing single 

particle analysis. The MAP algorithm in RELION searches iteratively. When the 

localization deviation is large, the initial search may be wrong, and then it will be 

searching in the wrong direction, which cannot be corrected.  

 

 

Comments: [4.7] p.2 l.7: "adoption of automated particle-picking methods remains 

limited because of their limitations in [...] training cost" This is in my opinion an 

odd wording. How can a training cost be "limited"? With respect to what? 

Response: We used the term “training cost” to refer to the large numbers of manual 

annotations often required for training the deep-learning models. Existing deep-

learning models may require up to thousands of manually annotated particles for 

training, which are laborious and time-consuming to generate in practice. In our 

revised manuscript, we have changed the term “training cost” to “manual annotation 

cost” for more clarity. See page 2 line 7 in the abstract.  
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Comments: [4.8] p.4, l.9: when speaking of the DoG picker, you should mention 

that this picker is not class specific, unlike all other methods mentioned. DoG picks 

particles regardless of their class. 

Response: We appreciate the suggestion and have revised the manuscript 

accordingly. See page 4, first paragraph, line 3 from the bottom. 

 

 

Comments: [4.9] p.10, l.14-18: "TP is shorthand for 'true positive', namely a 

positive particle is predicted to be positive ..."  

The authors provide detailed definitions for the terms true positives, false positives 

and false negatives. In my opinion this is not necessary, and it will make you save 

some lines. 

Response: We appreciate the suggestion and have removed the detailed definitions. 

See page 11, first paragraph.  

 

 

Comments: [4.10] p.19, l.3: "Therefore, although the additional particles by 

DeepFinder and TM improves the SNR of the whole dataset [...]"  

This statement is bizarre. How does a particle picking method improve the SNR 

of the "whole dataset"? I assume that by "whole dataset" you mean the tomogram 

set. You are not performing denoising, so what do you mean by "improve the 

SNR"? 

Response: We regret the confusion caused by our writing. The term “whole dataset” 

should be “half maps”, i.e., reconstruction maps of the two independent halves of 

the datasets, for the FSC curves (see page 11 last paragraph of the Methods section). 

As the number of picked particles increases during the averaging process, the noise 

of the half maps will be suppressed, and the signal-to-noise ratio of the half maps 

will improve, but this does not guarantee the authenticity of the signal. In our 

revised manuscript, we have changed the term “whole dataset” to “half maps” for 

more clarity. See page 22, first paragraph, line 9.  

Comments: [4.11] p.19, l.12: "The crowded cellular environment adds additional 

background to make particle picking [...] more difficult".  

This sentence is clumsy. There is no background that is being added (the 

"amount" of background stays the same). With a crowded cellular environment, 

the background becomes rather more complex/challenging. 

Response: We appreciate the suggestion. We have revised the sentence as “The 

crowded cellular environment poses a complex and challenging background for 
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particle localization and identification”. See page 23, first paragraph in the revised 

manuscript.  

 



Reviewer #2 (Remarks to the Author):

The authors have improved the manuscript from the previous submission. They have properly 

addressed the reviewers’ concerns on the difference between Gaussian masks and spherical 

masks, measuring quality with subtomogram averaging, the method’s generalization ability to non-

spherical structures, and applicability to structures smaller than ribosomes. The authors have 

addressed the minor remarks as well and made appropriate changes to the manuscript.

In my opinion, the proposed method, DeepETPicker, will be a very useful tool for the cryo-ET, as 

well as, the structural biology community to perform semi-automated picking of macromolecules in 

situ. Moreover, DeepETPicker can be used not only for picking large macromolecules like ribosome, 

but also for smaller non-spherical macromolecules. Consequently, I vote for accepting the 

manuscript unaltered in its current form.

Reviewer #3 (Remarks to the Author):

I would like to thank the authors for their work and their efforts in answering my questions. With 

these answers, new informations came into light, which confirm concerns I described in my first 

review. As a result, I am sorry to announce that I consider a major revision to be necessary. I 

have two main concerns:

1/ The train, validation and test sets are not clearly separated.

1.1/ During training, the procedure samples 3D patches from the tomogram set. I asked if the 

train and validation patches originate from different tomograms, because if not, there is a risk that 

a patch contains both train and validation particles (see my last review, comments 3.9 and 3.10). 

The authors answered:

"For all the four experimental tomogram datasets, the coordinates of the manually picked particles 

are sorted in the order of z, y, and x from the smallest to the largest before split of the training 

and validation sets. This sorting strategy reduces the risk of overlap between the training and the 

validation sets."

Maybe it reduces the risk, but it does not eliminate it. For a rigorous statistical analysis, no overlap 

between train, validation and test sets should be allowed.

1.2/ But most importantly, the authors added new information about their datasets:

"For EMPIAR-10045, 150 particles were manually labelled [...]. The coordinates of these 150 

particles are sorted in order of z, y, and x from the smallest to the largest. For crYOLO, DeepFinder 

and DeepETPicker, the first 135 sorted particles are used for training, and the remaining 15 

particles are used for validation. In the inference stage, the trained model of each method is used 

particles on all tomograms."

So first, the authors divide the dataset into training and validation sets. Then, for evaluating the 

method, they proceed to join the training and validation sets to form their test set, which should 

not be allowed. They proceed in a similar way for other datasets.

Answering to my previous concerns, the authors write that for some of the datasets:

"to avoid the performance metrics being overestimated, we remove training particles from the 

detected particles for all methods."

So I conclude that for the dataset cited above (EMPIAR-10045), after removing the training 

particles, the test set is constituted of only 15 particles, which is clearly not enough to have a 

strong estimate of performance. And I also conclude that their test set is identical to their 



validation set.

To justify their protocol, the authors wrote:

"We agree with the reviewer and acknowledge that the performance metrics of all methods on 

these two datasets are overestimated. We have compared the results with and without a split of 

the training and test sets in Supplementary Figure A1. The conclusions on comparing performance 

of different methods do not change qualitatively."

While I understand partially that the authors proceed in this way because the sizes of their 

datasets are limited, this is certainly not a standard protocol for evaluating a machine learning 

method.

It is standard to have well separated training, validation and test sets (with a ratios of approx. 

60%, 20% and 20%, resp.). I do understand that your datasets are small. In this case, a well-

known evaluation method in statistical analysis is k-fold cross-validation (which I suggest you 

use).

I am concerned that if this paper gets published, it will serve as a reference for others to repeat 

the authors evaluation protocol. Deviating from standard protocols will inevitably cast doubts on 

the results and conclusions. To my knowledge, I have never seen any works using a similar 

protocol than yours. Are there any good references I might not be aware of that use a similar 

protocol to define train, validation and test sets in statistical analysis?

2/ A significant part of the paper is about defining and comparing different types of "weak labels": 

cubic, ball and Gaussian. I shared my doubts about the relevance of this comparison, given that 

after thresholding, their Gaussian "weak labels" are identical to the ball "weak labels" (see my last 

review, comment 2.1). The authors insist that it is not:

"See equations (1), (2), (3) and (4) on page 7:

The hyperparameter tg determines the shape of Gaussian masks. The Gaussian mask becomes a 

ball mask when tg>=exp(0.5)~=0.607, and it becomes a cubic mask when 

tg<=exp(1.5)~=0.223. To generate a Gaussian mask that is sufficiently different from ball/cubic 

masks, we choose the middle point between 0.5 and 1.5 and set tg=exp(-1)~=0.368 in our 

study."

I am sorry, but equation (4) describes a thresholded (i.e. binarized), isotropic, 3D Gaussian; which 

is a sphere, regardless of parameter value tg. Maybe your implementation generates what you 

describe, but this is not in accordance with equation (4). Also, if the generated "Gaussian" mask 

("Gau-M") is between a sphere and a cube, as shown in Suppl. Fig. 2a, you shouldn't call it 

Gaussian. How is your Gau-M mask any different from a truncated sphere?

I don't understand the rationale behind evaluating arbitrary shapes such as cubes and truncated 

spheres. In this case, why not evaluate polygonal shapes?

The authors insist that the "Gau-M" mask performs better. If so, how do you explain that a 

truncated sphere with sharp edges yields better performance?

In Suppl. Table 3, the authors compare the localisation and classification performances when using 

their different masks. They conclude that the "Gaussian" mask performs better (localisation F1: 

0.94 ; classification mean F1: 0.84) than the cubic mask (localisation F1: 0.92 ; classification 

mean F1: 0.81) and ball mask (localisation F1: 0.93 ; classification mean F1: 0.84). In my opinion, 

the difference in scores is not significative. For SHREC datasets, variations to up to 5% in score 

values are to be expected from one identical training run to another. I believe that the score 

differences are due to the stochasticity of the method.



Here are some secondary, but still important concerns:

3/ In my last review (see comment 3.2), I criticised the authors for their frequent use of the term 

"particle quality", which they do not define clearly. The authors answer is evasive and vague:

"Conceptually, particle “quality” can be assessed by the authenticity of the particles, the accuracy 

of the particle coordinates, and the contribution of the particles to subtomogram averaging."

So the authors define the particle "quality" as being 3 different things at the same time:

- Authenticity of the particles: this is a binary value (true or false) and can determined by 

comparison with a ground truth / expert annotations.

- The accuracy of the particle coordinate: this can be defined as the distance between detected 

and ground truth coordinates.

- The contribution to subtomogram averaging: how do you even measure that?

The problem is that the paper becomes less precise when using the same word for describing three 

different concepts. My suggestion is to stop using the term "particle quality", and use precise and 

quantitative terms instead. Or to give a more precise definition.

Also, I proposed to add a much needed discussion on how the resolution of an obtained 

subtomogram average is correlated to the performance of a particle picker (I thoroughly discussed 

this point in my last review, comment 3.2), but the authors chose to ignore my suggestion.

4/ In my last review (see comment 3.3), I asked how the authors chose the score thresholds for 

template matching and DeepFinder. Choosing these thresholds greatly influences the method 

performances, and hence the comparison. Their answer is rather arbitrary:

"For DeepFinder, ... a cluster size in the range of [0.1V, 2V] are selected ... for EMPIAR-100045. 

[0.2V, 2V] ... for EMPIAR-10499. [0.1V, 2V] ... for EMPIAR-10651. [0.1V, 4V] ... for EMPIAR-

11125."

But *why* did you choose those thresholds?

"For template matching, we ... roughly estimate the cross-correlation threshold".

In order to avoid doubts, I suggest to plot recall, precision and F1-score w.r.t. the method scores. 

And then, for sub-sequent analysis (i.e. subtomogram averaging), to choose the threshold that 

maximizes the F1-score w.r.t. expert annotations.

Note: is this what you display in Figures 3b, 4b and 5b? Because you don't explain w.r.t. what 

parameter the precision-recall curves are being plotted.
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A Point-by-Point Response to Reviewers’ Comments

We thank the reviewers for their thoughtful and constructive comments. To address the

concerns raised in the comments, we have performed new experiments for more

rigorous characterization of DeepETPicker in comparison with competing methods.

We have also revised the manuscript to improve its rigor and clarity as well as to

provide more accurate and comprehensive descriptions of technical details. All changes

to the manuscript have been marked in red. We address specific comments of the

reviewers below.

 

Reviewer #2

Comments: The authors have improved the manuscript from the previous

submission. They have properly addressed the reviewers’ concerns on the

difference between Gaussian masks and spherical masks, measuring quality with

subtomogram averaging, the method’s generalization ability to non-spherical

structures, and applicability to structures smaller than ribosomes. The authors

have addressed the minor remarks as well and made appropriate changes to the

manuscript.

In my opinion, the proposed method, DeepETPicker, will be a very useful tool for

the cryo-ET, as well as, the structural biology community to perform semi-

automated picking of macromolecules in situ. Moreover, DeepETPicker can be

used not only for picking large macromolecules like ribosome, but also for smaller

non-spherical macromolecules. Consequently, I vote for accepting the manuscript

unaltered in its current form.

Response: We thank the reviewer for the positive and constructive comments,

which truly have helped us to improve our manuscript and have encouraged us to

develop deep learning-based computational image analysis tools for high-resolution

cryo-electron tomography in situ.
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Reviewer #3

Comments: I would like to thank the authors for their work and their efforts in

answering my questions. With these answers, new informations came into light,

which confirm concerns I described in my first review. As a result, I am sorry to

announce that I consider a major revision to be necessary. I have two main

concerns:

1/ The train, validation and test sets are not clearly separated.

1.1/ During training, the procedure samples 3D patches from the tomogram set. I

asked if the train and validation patches originate from different tomograms,

because if not, there is a risk that a patch contains both train and validation

particles (see my last review, comments 3.9 and 3.10). The authors answered:

"For all the four experimental tomogram datasets, the coordinates of the

manually picked particles are sorted in the order of z, y, and x from the smallest

to the largest before split of the training and validation sets. This sorting strategy

reduces the risk of overlap between the training and the validation sets."

Maybe it reduces the risk, but it does not eliminate it. For a rigorous statistical

analysis, no overlap between train, validation and test sets should be allowed.

Response: We are deeply grateful to the reviewer for all the careful and constructive

comments, which have greatly helped us to improve the rigor and technical quality

of our study and manuscript.

Specifically, we acknowledge that our previous coordinate sorting approach

reduces but does not eliminate the risk of overlap. To completely eliminate the risk

of overlap, for all the four experimental datasets, we performed new experiments in

which we manually picked validation particles from a tomogram that differs from

the tomograms used for picking training particles. Further details are summarized

in Supplementary Table A8 and Supplementary Table A9. We would also like

to note that the new procedure of model validation caused little to no change to the

results of model selection. Consequently, there was essentially no change to the

subsequent results of model testing.

 
Comments: 1.2/ But most importantly, the authors added new information about

their datasets:

"For EMPIAR-10045, 150 particles were manually labelled [...]. The

coordinates of these 150 particles are sorted in order of z, y, and x from the

smallest to the largest. For crYOLO, DeepFinder and DeepETPicker, the first 135

sorted particles are used for training, and the remaining 15 particles are used for
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validation. In the inference stage, the trained model of each method is used

particles on all tomograms."

So first, the authors divide the dataset into training and validation sets. Then,

for evaluating the method, they proceed to join the training and validation sets to

form their test set, which should not be allowed. They proceed in a similar way for

other datasets.

Answering to my previous concerns, the authors write that for some of the

datasets:

"to avoid the performance metrics being overestimated, we remove training

particles from the detected particles for all methods."

So I conclude that for the dataset cited above (EMPIAR-10045), after

removing the training particles, the test set is constituted of only 15 particles,

which is clearly not enough to have a strong estimate of performance. And I also

conclude that their test set is identical to their validation set.

To justify their protocol, the authors wrote:

"We agree with the reviewer and acknowledge that the performance metrics

of all methods on these two datasets are overestimated. We have compared the

results with and without a split of the training and test sets in Supplementary

Figure A1. The conclusions on comparing performance of different methods do

not change qualitatively."

While I understand partially that the authors proceed in this way because the

sizes of their datasets are limited, this is certainly not a standard protocol for

evaluating a machine learning method.

Response: We agree with the reviewer that training, validation and test sets should

be rigorously separated. We have revised the manuscript to ensure the complete

separation of training, validation and test sets. In the following, we summarize the

changes made.

1) For the two simulation datasets from SHREC2020 and SHREC2021

Challenges, the training, validation, and test sets were already rigorously

separated by strictly following the protocols provided by the organizers in the

previous version of the manuscript. Consequently, in this version of the

manuscript, no changes were made.

2) For the experimental datasets of EMPIAR-10045 and EMPIAR-10499, the

training, validation, and test set were already well separated in the previous

version of the manuscript. In this version of the manuscript, except that the

validation particles were picked from different tomograms, no changes were
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made. Please refer to Supplementary Table A8 and Supplementary Table

A9 for further details.

3) For the experimental datasets of EMPIAR-10651 and EMPIAR-11125, the

training and validation set were merged with the test set in the previous version

of the manuscript. In this version of the manuscript, the training, validation and

test sets were rigorously separated in calculating the precision-recall curves

(Fig. 5b and Supplementary Fig. 10b). Please also refer to Supplementary

Table A8 and Supplementary Table A9. And the validation particles were

picked from different tomograms.

It is standard to have well separated training, validation and test sets (with a

ratios of approx. 60%, 20% and 20%, resp.). I do understand that your datasets

are small. In this case, a well-known evaluation method in statistical analysis is k-

fold cross-validation (which I suggest you use).

Response: As described above, the training, validation and test sets were rigorously

separated in this version of the manuscript.

However, we did not follow the 60%-20%-20% ratio because DeepETPicker was

designed to require only a small number of training particles. As shown in

Supplementary Table A8, we generally used a much larger number of particles

for testing. For example, for EMPIAR-10499, we used 106 particles for training,

11 particles for validation, and 11921 particles for testing.

We thank the reviewer for the constructive suggestion of k-fold cross-validation.

However, because the training, validation and test sets were well separated in this

version of the manuscript, we thought that it was no longer essential.

 
I am concerned that if this paper gets published, it will serve as a reference for

others to repeat the authors evaluation protocol. Deviating from standard

protocols will inevitably cast doubts on the results and conclusions. To my

knowledge, I have never seen any works using a similar protocol than yours. Are

there any good references I might not be aware of that use a similar protocol to

define train, validation and test sets in statistical analysis?

 

Response: We understand the concerns and agree with the reviewer. As described

above, we have now fully revised the manuscript by strictly following the standard

protocols. We hope this resolves the concerns of the reviewer.
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Specifically, for the calculation of performance metrics such as precision, recall and

F1-scores, the training, validation and testing sets were rigorously separated for the

two simulation datasets and the four experimental datasets. In this version of the

manuscript, there is no deviation from standard protocols of machine learning or

deep learning.

The only exception in this version of the manuscript is when we calculated the B-

factor, global resolution, local resolution, maximum value probability, and log-

likelihood distribution for two of the experimental datasets, EMPIAR-100651 and

EMPIAR-11125, we combined the training and validation particles with the testing

particles for reconstruction. This was mainly because the numbers of particles were

very limited. However, we thought this was acceptable for two reasons. First, this

was performed in the same way for all the methods compared to ensure a fair

comparison. Second, this is consistent with the practice of users in real-world

applications when the goal is to use the maximal number of real particles for

reconstruction.

 
Comments: 2/ A significant part of the paper is about defining and comparing

different types of "weak labels": cubic, ball and Gaussian. I shared my doubts

about the relevance of this comparison, given that after thresholding, their

Gaussian "weak labels" are identical to the ball "weak labels" (see my last review,

comment 2.1). The authors insist that it is not:

"See equations (1), (2), (3) and (4) on page 7:

The hyperparameter tg determines the shape of Gaussian masks. The

Gaussian mask becomes a ball mask when tg>=exp(0.5)~=0.607, and it becomes a

cubic mask when tg<=exp(1.5)~=0.223. To generate a Gaussian mask that is

sufficiently different from ball/cubic masks, we choose the middle point between

0.5 and 1.5 and set tg=exp(-1)~=0.368 in our study."

I am sorry, but equation (4) describes a thresholded (i.e. binarized), isotropic,

3D Gaussian; which is a sphere, regardless of parameter value tg. Maybe your

implementation generates what you describe, but this is not in accordance with

equation (4). Also, if the generated "Gaussian" mask ("Gau-M") is between a

sphere and a cube, as shown in Suppl. Fig. 2a, you shouldn't call it Gaussian. How

is your Gau-M mask any different from a truncated sphere?

Response: We regret the confusion caused by our previous inaccurate term of

Gaussian mask (Gau-M). Equations (1-4) on page 7 define three simplified masks,

where (1) sets the domain of the masks. As pointed out by the reviewer, the

Gaussian mask in our study is indeed a truncated sphere. To improve its clarity, we
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have replaced the term and abbreviation “Gaussian mask (Gau-M)” with

“Truncated Ball mask (TBall-M)”, “Cubic mask (Cub-M)” with “Cubic mask

(Cubic-M)”, “Ball mask (Bal-M)” with “Ball mask (Ball-M)”.

I don't understand the rationale behind evaluating arbitrary shapes such as

cubes and truncated spheres. In this case, why not evaluate polygonal shapes? The

authors insist that the "Gau-M" mask performs better. If so, how do you explain

that a truncated sphere with sharp edges yields better performance?

Response: We initially used Ball masks (Ball-M) as our weak labels and tested

different radius settings. However, the experimental results showed that Ball-M

with a diameter of for example 7 usually could not pick all types of particles. Often

one or more types of particles were missed. This motivated us to examine weak

labels with different shapes, which should be easy to implement and should have

good approximations in voxels for actual particle masks. The first type of weak

labels we considered were cubic masks (Cubic-M). However, because the surfaces

of macromolecular particles are usually smooth, we found the regions near the

edges of Cubic-M were noisy. To reduce the number of noisy voxels, we tried a

new type of weak labels, Truncated Ball masks (TBall-M), which do not have the

same sharp edges as cubic masks. Overall, we examined these three different types

of weak labels under different radius settings. Compared to Cubic-M and Ball-M

masks, TBall-M masks provided more stable and better localization and

classification performance, regardless of what radius was chosen (Fig. 2d and

Supplementary Table 3). Another more important conclusion based on our

experiments was that utilizing simplified masks with constant diameters as training

labels achieved comparable, if not better, performance as real segmentation masks.

Furthermore, simplified masks with constant diameters avoided the issue of class

imbalance and simplified the selection of loss functions (Supplementary Methods

A.5). Because TBall-M masks consistently achieved good performance in particle

picking, we did not investigate other more complex shapes such as polygons. We

have added a brief summary of the rationale described above to Supplementary

Methods A.3.

In Suppl. Table 3, the authors compare the localisation and classification

performances when using their different masks. They conclude that the

"Gaussian" mask performs better (localisation F1: 0.94 ; classification mean F1:

0.84) than the cubic mask (localisation F1: 0.92 ; classification mean F1: 0.81) and

ball mask (localisation F1: 0.93 ; classification mean F1: 0.84). In my opinion, the

difference in scores is not significative. For SHREC datasets, variations to up to
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5% in score values are to be expected from one identical training run to another.

I believe that the score differences are due to the stochasticity of the method.

Response: We discussed part of the rationale of choosing Truncated Ball mask

above. On the SHREC simulation datasets, variations indeed exist from one

identical training run to another. We found in our experiments that the variations in

F1-score were generally lower than 2% for DeepETPicker. When we examined the

results under different radius settings, we observed a small but consistent advantage

of Truncated Ball masks in localization and classification. More importantly,

compared with Cubic-M and Ball-M masks, we found that TBall-M masks

consistently provided more stable and better localization and classification

performance regardless of the radius settings. Taking into account all these factors,

we chose Truncated Ball masks for our study.

Comments: Here are some secondary, but still important concerns:

3/ In my last review (see comment 3.2), I criticised the authors for their frequent

use of the term "particle quality", which they do not define clearly. The authors

answer is evasive and vague:

"Conceptually, particle “quality” can be assessed by the authenticity of the

particles, the accuracy of the particle coordinates, and the contribution of the

particles to subtomogram averaging."

So the authors define the particle "quality" as being 3 different things at the

same time:

- Authenticity of the particles: this is a binary value (true or false) and can

determined by comparison with a ground truth / expert annotations.

- The accuracy of the particle coordinate: this can be defined as the distance

between detected and ground truth coordinates.

- The contribution to subtomogram averaging: how do you even measure that?

The problem is that the paper becomes less precise when using the same word

for describing three different concepts. My suggestion is to stop using the term

"particle quality", and use precise and quantitative terms instead. Or to give a

more precise definition.

Also, I proposed to add a much needed discussion on how the resolution of an

obtained subtomogram average is correlated to the performance of a particle

picker (I thoroughly discussed this point in my last review, comment 3.2), but the

authors chose to ignore my suggestion.
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Response: We thank the reviewer for the constructive comments. The contribution

to subtomogram averaging can be defined by the value of log-likelihood of the

particle based on the mathematics principle behind RELION (see Journal of

Molecular Biology, 415(2): 406-18, 2012), which has been used to measure the

quality of particles picked by different particle pickers. For the particle that is false

positive or has a large deviation of its true center, a lower log-likelihood and a lower

maximum value probability would be calculated to down-weight its contribution to

the final subtomogram averaging. Following the suggestion of the reviewer, to

make a more rigorous statement, we have revised the manuscript and used precise

and quantitative terms to replace the term “particle quality”. Specifically, we used

the following specific metrics: B-factor, global resolution, local resolution, log-

likelihood distribution, and maximum value probability. We have also added a

discussion of the relationship between the resolution of an obtained subtomogram

and the performance of a particle picker.

Specifically, following the suggestions of the reviewer, we have added the

following discussion to the main text on page 12, starting from line 22.

“If the authenticity of the picked particles is worse, i.e., more false positive junk

particles are picked, the SNR of the set of picked particles becomes worse. Then

worse subtomogram averaging with reduced local and global resolutions is

expected. Furthermore, a larger number of particles would be needed to reach the

same reconstruction resolution. Thus a higher B-factor would be expected in case

the local and global reconstruction resolutions may not be sensitive enough. It

should be noted that if there is conformational heterogeneity in the specimen, the

reconstruction resolutions, either local or global, may not be a good indicator to

evaluate different pickers. More rigorous investigations using e.g., map inspection

and 3D classification are needed.

More importantly, the authenticity and the coordinates accuracy of the picked

particles can be assessed by the distributions of particle log-likelihood and

maximum value probability. For a picked particle that is false positive or has a large

deviation from its true centre, a lower log-likelihood and a lower maximum value

probability would be calculated to down-weight its contribution to the final

subtomogram averaging. Therefore, larger number of particles with higher log-

likelihood and maximum value probability indicate better coordinates accuracy of

the picked particles and better authenticity of the picked particle set.”
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Following the suggestion of the reviewer, we have also included the following

revised discussion to the main text on page 27, starting from line 1.

“We also examined the performance of DeepETPicker on four experimental

datasets (EMPIAR-10045, EMPIAR-10651, EMPIAR-10499, and EMPIAR-

11125). We developed multiple particle metrics to compare the performance of

DeepETPicker with that of other methods. We found that the particles picked by

DeepETPicker consistently showed the best authenticity and coordinates accuracy

with the highest log-likelihood contributions and the highest cumulative ratio of

particles versus the maximum value probability, which was consistent with the

observation that the particles picked by DeepETPicker produced reconstruction

maps with the best global resolution, the best local resolution and the smallest B-

factors. Although the assessment of reconstruction resolutions may be affected by

the potential existence of specimen conformational heterogeneity, we found when

comparing DeepETPicker with other methods such as crYOLO, DeepFinder and

TM, the particles not picked by DeepETPicker but selected by other methods

generally failed to produce correct reconstructions. Therefore, the extensive

analyses suggested that the accuracy and precision of the particles picked by

DeepETPicker were substantially better than those of the other methods.”

 
Comments: 4/ In my last review (see comment 3.3), I asked how the authors chose

the score thresholds for template matching and DeepFinder. Choosing these

thresholds greatly influences the method performances, and hence the comparison.

Their answer is rather arbitrary:

"For DeepFinder, ... a cluster size in the range of [0.1V, 2V] are selected ... for

EMPIAR-100045. [0.2V, 2V] ... for EMPIAR-10499. [0.1V, 2V] ... for EMPIAR-

10651. [0.1V, 4V] ... for EMPIAR-11125."

But *why* did you choose those thresholds?

"For template matching, we ... roughly estimate the cross-correlation threshold".

In order to avoid doubts, I suggest to plot recall, precision and F1-score w.r.t. the

method scores. And then, for sub-sequent analysis (i.e. subtomogram averaging),

to choose the threshold that maximizes the F1-score w.r.t. expert annotations.

Note: is this what you display in Figures 3b, 4b and 5b? Because you don't explain

w.r.t. what parameter the precision-recall curves are being plotted.
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Response: We regret that our previous writing caused confusion. Overall, the

purpose of setting these thresholds is to filter out false-positive particles for fair

performance comparison. They were chosen interactively by following well-

defined procedures described below.

We thank the reviewer for the constructive suggestion of choosing the threshold

that maximizes the F1-score. However, we respectfully disagree here. Because

expert annotations are generally not available for real-world applications, it would

not be practical to set the threshold in this way. Although the way we used to

determine the thresholds was empirical, it followed well-defined and principled

procedures. In the following, we provide a detailed description of the rationale and

procedures for setting these thresholds. We have now added this description as

Supplementary Methods A.7.

" For DeepFinder, we performed model training, segmentation and clustering by

following the tutorial (https://deepfinder.readthedocs.io/en/latest/) provided

by its developers. When we examined the initial results provided by

DeepFinder, we found that the number of particles it detected was much higher

than the number of manually labeled particles. When we plotted the picked

particles back to the tomogram, we found that there were many false positives.

If we used the particles as detected by DeepFinder for sub-sequent analysis,

its performance would be unfairly underestimated. For DeepFinder, the voxels

of the cryo-ET tomogram were first classified into N classes. Then the multi-

class voxel-wise classification map was spatially clustered into 3D connected

components, with each cluster corresponding to a unique particle. In the

original paper of DeepFinder, it was written that “Clusters that are significantly

smaller than the size of target particles are considered as false positives and

are discarded”. Thus, for a fair comparison with DeepFinder, we interactively

adjusted the volume threshold as 0-20% the size of target particles based on

visual inspection. Indeed, when we compared the F1-scores of DeepFinder

with and without setting the volume thresholds on the testing set, we found

that for the three experimental datasets the F1-score consistently improved

after setting the thresholds (Supplementary Table A6 and Supplementary

Figure A1).

 

" For template matching, we used mainly the template matching function

“dynamo_match”. There are two parameters that may affect particle selection.

The parameter 'cr' (cone range) defines orientations that will be searched for
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inside a cone. In our experiment, we used the most typical value of 360 (sample

the full sphere). The parameter 'cs '(cone sampling) determines the scanning

density inside the sphere. In our experiment, we used the most typical value of

30 (sample the full sphere). The function generates tbl-format table files,

where the tenth column shows the cross-correlation coefficient. For each

tomogram, we obtained a plot of the cross-correlation values found on the local

maxima of the cc volume with the order. Given that the cross-correlation

values of the peaks appeared in an ascending order, we interactively checked

the quality of the peaks by clicking on the curve to select one particle and then

selecting related visualization option. We clicked on a few particles within the

kink region to interactively estimate the cross-correlation threshold

(Supplementary Table A7). Finally, the coordinates TM picked were plotted

back to tomogram for further verification.

 

Each of the four methods (DeepETPicker, crYOLO, DeepFinder, and TM) have a

confidence metric for its picked particles. For DeepETPicker and DeepFinder, the

voxels of the cryo-ET tomogram are classified into N classes. The confidence of a

particle is measured by the volume of voxel-wise classification map belonging to

this particle. For crYOLO, each detected particle has a confidence metric provided

in the result file directly. This confidence metric denotes the probability that the

detected particle is an authentic particle. For TM, the confidence of a particle is

measured by the cross-correlation coefficient. For a fair comparison between

different methods, we sorted the particles of each method based on its confidence

metric from the highest to the lowest. Using the manual annotation as the reference,

the precision and recall of particles with confidence larger than different threshold

were calculated. The precision-recall curves of different methods were then plotted

together for performance comparison (Figures 3b, 4b, 5b and Supplementary Fig.

10b). This would eliminate the influence of manual setting of confidence threshold

on the performance comparison of different methods. In the Supplementary

Methods A.9, we have provided a detailed explanation of the parameters with

respect to the precision-recall curves in Figures 3b, 4b, 5b and Supplementary

Fig. 10b. 



Reviewer #4 (Remarks to the Author):

Summary:

DeepETPicker is a CNN-based particle picker that is claimed to outperform existing Deep Learning 

approaches in terms of F1-score, speed, label-efficiency, and accuracy. Key building blocks of the 

method are a 3D ResU-Net architecture with adjustments like pyramid inputs and coordinated 

convolution, and a mean-pooling non-maximum-suppression module for post-processing. The 

authors validate their method using various synthetic and experimental datasets. Hereby, they 

compute F1-scores for the comparison with ground truth positions, as well as metrics captured 

from protein reconstructions using subtomogram averaging.

Originality and significance: The idea of training a 3D U-Net to segment protein locations (or 

spheres around them) has already been implemented in previous work (e.g. DeepFinder, VP-

Detector). However, DeepETPicker seems to have made some effective adjustments to the 

architecture and post-processing, leading to more accurate predictions and a faster and much 

smaller model.

Since DeepETPicker is packaged with a GUI, its access is facilitated to the Cryo-ET community and 

may be used in experimental projects.

Data & methodology: The approach has been validated exhaustively on multiple datasets showing 

different proteins.

Appropriate use of statistics and treatment of uncertainties: Provided comparison values (e.g. F1-

scores) seem to be based only on a single training run. The differences in some design choices 

(e.g. “cubic” masks vs “truncated sphere” masks only differ by few %) may not be significant. 

Results should, therefore, better be reported as means and standard deviations as common for 

computer vision papers (see Main suggested improvements for detailed suggestions).

Conclusions: The authors conclude that their approach is more accurate, faster and more label-

efficient than other approaches like DeepFinder, which is corroborated by their consistently better 

statistics in all experiments.

Main critique and suggested improvements:

Experiments should be performed multiple times to receive significant results.

For SHERC challenge, one can indeed use cross-validation as suggested by Reviewer #3 last round 

of comments.

For experimental data where authors use a relatively small training data and a large testing data, 

there might be a batch-effect related to the training data (it becomes more severe when the 

training data is small). So one can fix a testing set and do e.g. five randomly-sampled training set 

and therefore obtain five testing results to obtain a realistic estimation of the robustness of the 

model performance.

Minor critique:

It’s not clear to me how classification F1-score and detection F1-score are calculated in this 

setting: Is the detection F1-score simply throwing all protein positions together?

Is the classification F1-score the mean over all F1 scores for all classes?

Figure 2: Why are some experiments performed with Shrec2021 data and some with Shrec 2020? 

I don’t see a reason why one experiment makes more sense for one of them

Figure 3c: Is comparing the shapes of the log-likelihood contributions really an objective measure? 

It depends very much on the resulting subtomogram average. (probably constantly high values 

indicate that detected subvolumes align very well)

Equation 3) and 4): Why describe a sphere once with the L2-norm and once with an exponential 

kernel? In my opinion, that makes equation 4 look more complicated than it is, and requires the 

non-intuitive calculation of t_g=0.368. Equation 4) can also be simply described like equation 3), 

but with another radius to achieve the truncation.

What loss function was used to train the multi-class experiments (i.e. Shrec challenges)? Only 

Dice-Loss was introduced, which, by default, is a binary classification loss.

Was a multi-class extension of Dice, like Tversky loss, used?



Overall, the authors incorporated the criticized points in their manuscript very well:

Firstly, they performed the training/validation/test splits more cleanly and clearly. The only 

debatable thing hereby is the merging of training, validation and test particles for subtomogram 

averaging and computing statistics from these averages. While the authors mention that this is 

also the case for compared methods, this can still distort the statistics, e.g. depending on the 

number of detected particles in the test set.

Second, the discussion about equation 4) seems to be displayed correct in the manuscript now, 

but, as mentioned above, equation 4) is still confusing and should be facilitated.

Lastly, Reviewer #3 mentioned that the “better” results of the truncated sphere vs. other weak 

labels may not be significant. I agree with this opinion and think that the significance could be 

shown by multiple model training, and showing that the means do differ with a low standard 

deviation, as is common practice in deep learning benchmarks.
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A Point-by-Point Response to Comments of Reviewer #4

We thank the reviewer for the thoughtful and constructive comments. To address the

concerns raised in the comments, we have performed new experiments with multiple

training runs for more rigorous statistical characterization of DeepETPicker. We have

also revised the manuscript to improve its rigor and clarity as well as to provide more

accurate and comprehensive descriptions of technical details. All changes to the

manuscript have been marked in red. We address specific comments of the reviewer

below.

 

Reviewer #4

Comments:

Summary: DeepETPicker is a CNN-based particle picker that is claimed to

outperform existing Deep Learning approaches in terms of F1-score, speed, label-

efficiency, and accuracy. Key building blocks of the method are a 3D ResU-Net

architecture with adjustments like pyramid inputs and coordinated convolution,

and a mean-pooling non-maximum-suppression module for post-processing. The

authors validate their method using various synthetic and experimental datasets.

Hereby, they compute F1-scores for the comparison with ground truth positions,

as well as metrics captured from protein reconstructions using subtomogram

averaging.

Originality and significance: The idea of training a 3D U-Net to segment protein

locations (or spheres around them) has already been implemented in previous

work (e.g. DeepFinder, VP-Detector). However, DeepETPicker seems to have

made some effective adjustments to the architecture and post-processing, leading

to more accurate predictions and a faster and much smaller model.

Since DeepETPicker is packaged with a GUI, its access is facilitated to the

Cryo-ET community and may be used in experimental projects.

Data & methodology: The approach has been validated exhaustively on multiple

datasets showing different proteins.

Appropriate use of statistics and treatment of uncertainties: Provided comparison

values (e.g. F1-scores) seem to be based only on a single training run. The

differences in some design choices (e.g. “cubic” masks vs “truncated sphere”

masks only differ by few %) may not be significant. Results should, therefore,

better be reported as means and standard deviations as common for computer

vision papers (see Main suggested improvements for detailed suggestions).
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Conclusions: The authors conclude that their approach is more accurate, faster

and more label-efficient than other approaches like DeepFinder, which is

corroborated by their consistently better statistics in all experiments.

Response) We thank the reviewer for the thoughtful summary and constructive

comments.

Specifically, regarding the concerns raised on “Appropriate use of statistics and

treatment of uncertainties”, we have conducted new experiments with multiple

training runs for more rigorous statistical characterization of DeepETPicker. The

results are reported below in responses to specific questions.

Comments:

Main critique and suggested improvements:

Experiments should be performed multiple times to receive significant results.

For SHERC challenge, one can indeed use cross-validation as suggested by

Reviewer #3 last round of comments.

Response: We thank the reviewer for the constructive comments and suggestions.

Following the suggestions, we have conducted two new groups of experiments with

multiple training runs to check whether the performance differences observed in

our study between different particle picking models are statistically significant.

1) In the first group of experiments, we followed suggestions of both Reviewer #3

and Reviewer #4 and performed 10-fold cross-validation experiments to

characterize performance of DeepETPicker on the SHREC2021 dataset, which

consists of 10 tomograms. For each experiment, we randomly selected 8

tomograms for training, 1 tomogram for validation, and 1 tomogram for testing.

Overall, performance of DeepETPicker varies in the experiments

(Supplementary Figure A2), presumably because of the different settings of

simulation parameters such as defocus levels, electron doses, and particle type

compositions in generating these tomograms, as reported by the organizers of

the challenge (Gubins -2 +., SHREC 2021: Classification in cryo-electron

tomograms, Eurographics Proceedings, 2021). For example, we observed that

DeepETPicker generally achieves lower classification and localization F1-

scores on tomograms with lower signal-to-noise ratios.

2) Although the experiments in the first group provide insights into the

performance of DeepETPicker, the results cannot be compared directly with
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results of those methods from the SHREC2021 Challenge. This is because the

training, validation, and test sets were partitioned following the protocol

provided by the organizers. To generate results that can be used to compare

DeepETPicker with the methods from SHREC2021, we performed a second

group of experiments in which we followed the same protocol of partitioning

training/validation/test sets and conducted the experiments 10 times using 10

different random seeds. Overall, we found that the variations of both

localization F1-scores and classification F1-scores of DeepETPicker in the

experiments are small, with a standard deviation of approximately 0.003~0.005

(Supplementary Figure A2 and Supplementary Table A10). Because only a

single F1-score is provided by SHREC2021 for each method without its

statistical distribution, it is not feasible to perform direct statistical performance

comparison of DeepETPicker versus theses methods, However, given the

observed low level of variations in F1-scores, the observed performance

difference in e.g. Supplementary Table 4, Supplementary Table 5,

Supplementary Figure A3 and Figure 2e are generally much higher than

0.003~0.005 and therefore are likely significant. We note that it is common in

deep learning studies to compare performance of competing methods without

using explicit statistical tests.

For experimental data where authors use a relatively small training data and a

large testing data, there might be a batch-effect related to the training data (it

becomes more severe when the training data is small). So one can fix a testing set

and do e.g. five randomly-sampled training set and therefore obtain five testing

results to obtain a realistic estimation of the robustness of the model performance.

Response: For EMPIAR-10045 and EMPIAR-10499, we used a relatively

small training set and a large testing set. We agree with the reviewer that when

a relatively small training dataset and a large testing dataset are used, there can

be a risk of batch-effect related to the training data.

To obtain a realistic estimation of the robustness of the model performance, we

followed suggestions of the reviewer and fixed the validation set and the test

set. We then randomly sampled five training sets to obtain five testing results

on EMPIAR-10045 and EMPIAR-10499. Details on partitioning the

training/validation/testing sets are summarized in Supplementary Table A11.

Specifically, EMPIAR-10045 consists of 7 tomograms. Five training sets and

one validation set are randomly sampled from tomograms labeled 20/0# to

20/0$. And tomograms labeled 20/0% to 20/0' are used for testing. EMPIAR-
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10499 consists of 10 tomograms. Five training sets and one validation set are

randomly sampled from tomograms labeled 20/0# to 20/0&. And tomograms

labeled 20/0' to 20/0( are used for testing. In this way, five testing results are

obtained for both EMPIAR-10045 and EMPIAR-10499.

" For the EMPIAR-10045 dataset, three methods, i.e., DeepETPicker,

DeepFinder and crYOLO, were trained by the five training sets and tested

on the same test set. In terms of picking performance, compared with

DeepFinder and crYOLO, DeepETPicker provides more consistent

localization F1-score with the highest mean and the lowest standard

deviation (Supplementary Figure A4.a). In terms of inference time, the

mean for DeepETPicker is 62 seconds, which is 25 times faster than

DeepFinder and 2.5 times faster than crYOLO (Supplementary Figure

A4.b).

" For the EMPIAR-10499 dataset, two methods, i.e., DeepETPicker and

crYOLO were trained by five training sets and tested on the same test set.

Training of DeepFinder failed to converge in multiple cases, as it generally

requires substantially more particles for training. Consequently,

performance metrics could not be reported for DeepFinder. In terms of

picking performance, DeepETPicker provides much more consistent

localization F1-score with higher mean and lower standard deviation than

crYOLO (Supplementary Figure A4.c). In terms of inference time, the

mean for DeepETPicker is 108 seconds, which is comparable to 103

seconds for crYOLO (Supplementary Figure A4.d).

Overall, these new experiments and statistical analyses confirmed the robustness of

DeepETPicker performance. We have added detailed descriptions of these results

to Supplementary Methods A.11.

Comments: Minor critique:

It’s not clear to me how classification F1-score and detection F1-score are

calculated in this setting: Is the detection F1-score simply throwing all protein

positions together?

Is the classification F1-score the mean over all F1 scores for all classes?

Response: Localization F1-score and classification F1-score are two main

performance metrics used in the SHREC challenges. Detection F1-score is the same

as “Localization F1-score” in the SHREC challenges. Each protein in a given
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tomogram occupies certain voxels. If the coordinate of a predicted particle is within

the voxels of a protein, this protein is considered to be detected according to the

rules and code provided by the organizers of the challenge. See the official code of

SHREC challenges (https://www.shrec.net/cryo-et/) for further details. The number

of all detected proteins in a tomogram is counted as the number of true positives

(TPs). Then the detection F1-score can be calculated.

For each class of proteins, a classification F1-score can be obtained. Specifically,

each protein in the tomogram belongs to a unique category. If the coordinate of a

predicted particle is within the voxels of a protein, then the class of predicted

particle is used as the predicted label of the protein. If multiple predicted particles

are within the voxels of a protein, the class of the first predicted particle is used as

the predicted label of the protein according to the rules and code provided by the

organizers of the challenge. Based on the ground truth of all proteins and their

predicted labels, a confusion matrix is obtained. Then the classification F1-score

for each class of protein can be calculated. The mean over all F1-scores for all

classes is used as the mean classification F1-score in this study.

Comments: Figure 2: Why are some experiments performed with Shrec2021 data

and some with Shrec 2020? I don’t see a reason why one experiment makes more

sense for one of them

Response: SHREC 2021 and SHREC 2020 are the two most commonly used

simulated datasets, aiming to benchmark different particle picking methods for

localization and classification of biological macromolecules in cryo-ET tomograms.

Compared to SHREC 2020, SHREC 2021 substantially improved the data

generation process by incorporating e.g. multi-slice methods, variated defocusing

and electron doses, as well as Fourier scaling to experimental images and by

introducing membranes as an additional semantic class. Therefore, we generally

choose to perform our experiments on the SHREC2021 dataset.

The only exception is in Figure 2g, where the influence of different numbers

of training tomograms on the classification performance is examined with SHREC

2020 data. This is because DeepFinder only provides corresponding results on the

SHREC2020 dataset. For a fair comparison with DeepFinder, we chose to use the

results provided by DeepFinder directly. Therefore, a comparison between

DeepETPicker and DeepFinder was performed using the SHREC 2020 dataset.

Comments: Figure 3c: Is comparing the shapes of the log-likelihood contributions

really an objective measure? It depends very much on the resulting subtomogram
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average. (probably constantly high values indicate that detected subvolumes align

very well)

Response: We agree with the reviewer that the log-likelihood contributions depend

on the accuracy of sub-volumes alignment, and that constantly high values indicate

that detected sub-volumes align well. However, the accuracy of sub-volume

alignment is actually highly correlated with the authenticity and accuracy of particle

picking. Therefore, we propose to use this evaluation criterion because it can

measure the accuracy of our particle picking by characterizing whether the

coordinates of the picked particle centers are sufficiently accurate.

Comments: Equation 3) and 4): Why describe a sphere once with the L2-norm and

once with an exponential kernel? In my opinion, that makes equation 4 look more

complicated than it is, and requires the non-intuitive calculation of t_g=0.368.

Equation 4) can also be simply described like equation 3), but with another radius

to achieve the truncation.

Response: We thank the reviewer for the constructive comment. We have now

rewritten equation 4 in a form similar to equation 3 with a different radius to indicate

the truncation. We agree that this makes the formulation clearer and more intuitive

to follow. Please see line 27 on page 7.

Comments: What loss function was used to train the multi-class experiments (i.e.

Shrec challenges)? Only Dice-Loss was introduced, which, by default, is a binary

classification loss.

Was a multi-class extension of Dice, like Tversky loss, used?

Response: The Dice-Loss used in our manuscript is indeed a multi-class extension

of the two-class Dice, similar to the Tversky loss. We used the formulation first

reported in Reference 24 (cited on line 7, page 9) but added a small value 3 to the

numerator and the denominator for numerical stability. We have revised the text to

highlight the multi-class aspect of this loss explicitly. Please see line 6 on page 9.

Comments: Overall, the authors incorporated the criticized points in their

manuscript very well:

Firstly, they performed the training/validation/test splits more cleanly and clearly.

The only debatable thing hereby is the merging of training, validation and test

particles for subtomogram averaging and computing statistics from these

averages. While the authors mention that this is also the case for compared

methods, this can still distort the statistics, e.g. depending on the number of

detected particles in the test set.

Response: We agree with the reviewer and acknowledge that the merging of

training, validation, and test particles for subtomogram averaging and computing
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statistics such as B-factor, global resolution, local resolution, and log-likelihood

distribution from these averages is not the optimal solution. When sufficient

numbers of particles are available, we partitioned the training/validation/test sets

strictly. For the two experimental datasets EMPIAR-10045 and EMPIAR10499, we

only used the test set for subtomogram averaging and statistics computing.

However, when the numbers of particles are very limited, using only the test

set for subtomogram averaging and statistics computing may generate unstable and

inaccurate results. For EMPIAR-10651 and EMPIAR-11125, because the total

numbers of particles are small, we used all the particles for subtomogram averaging

and statistics computing. We note that in practice, after picking particles,

researchers often use the entire set of particles to maximize the number of particles

used for subtomogram averaging and statistics computing. Still, we acknowledge

the limitation of our study in Supplementary Methods A.8 line 6 from the bottom

of the last paragraph.

Comments: Second, the discussion about equation 4) seems to be displayed correct

in the manuscript now, but, as mentioned above, equation 4) is still confusing and

should be facilitated.

Response: We thank the reviewer for the constructive comment. We have now

rewritten equation 4 similarly as equation 3 to make the formulation clearer and

more intuitive to follow. Please see line 27 on page 7.

Comments: Lastly, Reviewer #3 mentioned that the “better” results of the

truncated sphere vs. other weak labels may not be significant. I agree with this

opinion and think that the significance could be shown by multiple model training,

and showing that the means do differ with a low standard deviation, as is common

practice in deep learning benchmarks.

Response:

a) Comparison of performance of different types of weak labels via cross-

validation experiments

Following suggestions by both Reviewer #3 and Reviewer #4, we performed 10-

fold cross-validation experiments on the SHREC2021 dataset, which consists of 10

tomograms, to compare the performance of the three types of simplified (weak)

labels: TBall-M, Ball-M and Cubic-M. We randomly selected 8 tomograms for

training, 1 tomogram for validation, and 1 tomogram for testing. Overall, we found

no statistically significant differences between the three types of weak labels in

terms of their mean classification and localization F1-scores (Supplementary



8 | P a g e

 

Figure A3.a). However, compared to Ball-M and Cubic-M labels, TBall-M masks

provide more stable performance (Supplementary data.xlsx). Specifically, in all

experiments, TBall-M picked all types of particles. In 4 out of 10 experiments, the

Ball-M mask failed to pick all types of particles, missing either one or more types

of particles. In 1 out of 10 experiments, the Cubic-M mask failed to pick all types

of particles.

b) Comparison of performance of different types of weak labels on the same

training/validation/test datasets with different randomization seeds

The results of 10-fold cross-validation cannot be compared with the reported results

of the SHREC2021 Challenge because the training, validation, and test sets were

partitioned following the protocol provided by the organizers. To generate results

that can be compared with the methods of SHREC2021, we followed the same

protocol of partitioning training/validation/test sets and performed multiple times

of experiments by using 10 different random seeds. Compared to Ball-M and Cubic-

M masks, TBall-M mask provides more consistent localization and classification

performances with the highest mean and the lowest standard deviation

(Supplementary Figure A3 and Supplementary Table A10). Specifically, for the

classification F1-score, the standard deviation of TBall-M is 0.005, while the

standard deviation for Ball-M and Cubic-M masks are 0.021 and 0.032, respectively.

For the localization F1-score, the standard deviation of TBall-M is 0.003, while the

standard deviation for Ball-M and Cubic-M masks are 0.014 and 0.013, respectively.

Furthermore, using randomized two-sample t-test (rndttest2) and ranksum test, we

found significant difference between TBall-M and Ball-M in term of classification

F1-score, with a p-value of 0.027 for rndttest2 and 0.023 for ranksum

(Supplementary Figure A3.b). There is also significant difference between TBall-

M and Ball-M in term of localization F1-score, with a p-value of 0.043

(Supplementary Figure A3.c). Besides, similar to the conclusion on 10-fold cross-

validation experiments, TBall-M masks provide more stable classification

performance than Ball-M and Cubic-M masks (Supplementary data.xlsx).

Specifically, TBall-M picked all types of particles in all experiments. In 1 out of 10

experiments, Ball-M mask failed pick all types of particles. In 2 out of 10

experiments, Cubic-M mask failed pick all types of particles.

Description of the cross-validation experiments has been added to Supplementary

Methods A.10. See also SupplementaryData.xlsx for further details.
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In the previous version of the manuscript, we wrote “Compared to Cubic-M and Ball-

M masks, TBall-M masks provide more stable and better localization and classification

performance regardless of which diameter setting method is chosen”. We have now

revised the text as “Compared to Cubic-M and Ball-M masks, TBall-M masks provide

more stable and consistent localization and classification performance” on page 18 line

1. 



Reviewer #4 (Remarks to the Author):

The authors followed our recommendations to include a variance analysis of their results using 

multiple training runs. Particularly, they have added standard deviations to their results on both 

ablation study and comparison with competing methods.

Their results now show a clearer picture and more clearly highlight the training robustness of the 

truncated sphere as design choice, as well as the difference to other methods.

While the batch effect of sampling training data does seem to play a role in the model’s 

performance on the test set, DeepETPicker seems to still consistently perform better than 

DeepFinder and Cryolo.

The authors also incorporated our minor points of potential improvements.

Reviewer #4 (Remarks on code availability):

I only check the code availability (it is indeed in the github) and instructions seems to be clear to 

run the code. But I did not run the code myself.
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A Point-by-Point Response to Comments of Reviewer #4

Reviewer #4

Comments: The authors followed our recommendations to include a variance

analysis of their results using multiple training runs. Particularly, they have added

standard deviations to their results on both ablation study and comparison with

competing methods.

Their results now show a clearer picture and more clearly highlight the training

robustness of the truncated sphere as design choice, as well as the difference to

other methods.

While the batch effect of sampling training data does seem to play a role in the

model’s performance on the test set, DeepETPicker seems to still consistently

perform better than DeepFinder and Cryolo.

The authors also incorporated our minor points of potential improvements.

Response: We thank the reviewer for the positive and constructive comments. The

results presented in the paper come from years of careful work in the hope of

providing a fast and accurate tool for automated picking of 3D particles for high-

resolution cryo-electron tomography in situ.

!

Comments (Remarks on code availability):

I only check the code availability (it is indeed in the github) and instructions seems

to be clear to run the code. But I did not run the code myself.

Response: We thank the reviewer for the careful comments. We provide two

methods for deployment of DeepETPicker: Docker and Conda. We have tested the

code carefully and fully expect the code to run normally by following the

instructions provided.!


