1010 Supplemental materials

1011 Antibodies and Reagents

Antibodies: Anti-human CD85K-APC (eBioscience, CA, USA, #17-5139-42); Anti AnnexinV-APC (BD Pharmingen, CA, USA, #550475); anti-STAT3 (CST, CA, USA,
 #30835), anti-phospho-STAT3 (Tyr705) (CST, CA, USA, #9145); anti-IKZF1 (CST, CA,
 USA, #5543); anti-β-actin-HRP (MBL, CA, Japan, PM053-7).

Reagents: XF Cell Mito Stress Test Kit (Agilent, China, #103015-100), XF Glycolysis
Stress Test Kit (Agilent, #103020-100), ATP Bioluminescence Assay Kit HS II (Roche,
China, #11699709001).

1019

1020 Cell lines

1021 The human MM cell lines MM.1S, OPM2, LP-1, ARP1 and RPMI 8226 (ATCC) were 1022 cultured in RPMI-1640 medium supplemented with 20% fetal bovine serum (FBS) and 1% 1023 penicillin streptomycin. HEK293T cells were cultured in DMEM supplemented with 10% 1024 FBS.

1025

1026 Luciferase Reporter Assays

1027 To evaluate the transcriptional regulation of LILRB4 by IKZF1 and PFKFB1 by STAT3, we 1028 performed a luciferase reporter assay in 293T cells. In brief, 293T cells were cotransfected 1029 with PLVX-STAT3-strepII (or empty vector) with the pGL4.27-PFKFB1 promoter or PLVX-1030 IKZF1-strepII with the pGL4.27-LILRB4 promoter for 24 hrs. Luciferase activities were 1031 measured by using a luciferase reporter system (GloMax®Multi Instrument). 1032 Measurements were calculated as firefly luciferase units vs. Renilla luciferase units.

1033

1034 Chromatin immunoprecipitation (ChIP) assay

The ChIP assay was performed using the ChIP Assay Kit (Beyotime). 293T cells were 1035 1036 cotransfected with the PLVX-STAT3-strepII plasmid with the pGL4.27-PFKFB1-promoter or PLVX-IKZF1-HA plasmid pGL4.27-LILRB4-promoter plasmid and crosslinked with 1% 1037 formaldehyde (Sigma–Aldrich) at 37 °C for 10 min, followed by incubation with anti-strepII 1038 1039 or HA antibodies (Sigma) or control rabbit IgG (Santa Cruz) at 4 °C overnight before 1040 immunoprecipitation. For the sample input, 1% of the sonicated precleared DNA was purified at the same time as the precipitated immune complex. The ChIP samples were 1041 1042 purified by the Gel and PCR Clean-up Kit (Nucleospin). The STAT3- or LILRB4-binding sequence was amplified by semiquantitative PCR using primers specific for human 1043 PFKFB1 and LILRB4, as listed in Table S1. 1044

1045

1046 Immunoblot analysis

1047 For immunoblot analysis, whole cell lysates were electrophoresed onto 10% sodium 1048 dodecyl sulfate–polyacrylamide gels and transferred to nitrocellulose membranes 1049 (Millipore). After blocking with a 5% solution of nonfat dried milk, the membranes were 1050 incubated with the following primary antibodies at 4 °C overnight: anti-phospho-STAT3 1051 (Tyr705) (CST, CA, USA, #9145), anti-STAT3 (CST, CA, USA, #30835) and anti-β-actin 1052 (MBL). The membranes were further incubated with the appropriate horseradish 1053 peroxidase-conjugated secondary antibody (Sigma) at room temperature for 1 hr, followed 1054 by the detection of the protein level.

1055

1056 **Quantitative RT–PCR**

1057 LILRB4-knockdown MM cells and scrambled MM cells were FACS-purified for RNA 1058 extraction. First-strand cDNA was reverse transcribed using AMV reverse transcriptase 1059 (TaKaRa). PCRs were performed according to the manufacturer's instructions (Roche). 1060 The experiments were conducted in triplicate with the Applied Biosystems 7900HT, and the 1061 mRNA levels were normalized to the level of β -actin RNA transcripts. The sequences of 1062 primers used are listed in Table S1.

1063

1064Metabolic analyses of the oxygen consumption rate, extracellular acidification rate1065and ATP level

1066 The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were detected in LILRB4-knockdown and scrambled ARP-1 cells with an XF Cell Mito Stress 1067 Test Kit (Seahorse, 103015-100) and an XF Glycolysis Stress Test Kit (Seahorse, 103020-1068 1069 100) using a Seahorse XF96 analyzer according to the manufacturer's instructions. For 1070 the detection of OCR, 1.5 µM oligomycin, 2 µM FCCP and 0.5 µM rotenone/antimycin were 1071 loaded into injection ports A, B and C, respectively. During sensor calibration, the indicated cells were incubated in 175 µL of assay medium (XF Base Medium supplemented with 2 1072 1073 mM glutamine, 1 mM pyruvate, and 10 mM glucose, pH 7.4 at 37 °C) in a 37 °C CO₂-free 1074 incubator. For the ECAR test, injection port A on the sensor cartridge was loaded with 10 mM glucose. Then, 2.5 µM oligomycin was loaded into port B, and 100 mM 2-DG was 1075 loaded into port C. During sensor calibration, the cells were incubated in 175 µL of assay 1076 medium (XF Base Medium supplemented with 1 mM glutamine alone, pH 7.4 at 37 °C) in 1077 1078 a 37 °C CO₂-free incubator.

1079

1080 Lactate measurement

Lactate levels in the supernatant were measured according to the manufacturer's protocol (Sigma–Aldrich, MAK064). Briefly, 6 X10⁵ LILRB4-knockdown and scrambled ARP-1 cells were plated in RPMI-1640 medium and supplemented with 20% fetal bovine serum (FBS), followed by incubation at 37 °C for 4 hr. The supernatant was centrifuged at 12,000 g at 4 °C for 5 min to remove cell debris before the analysis of lactate levels. Lactate levels were determined by a spectrophotometer according to the manufacturer's protocol.

1087

Figure S1

922	Figure S1, related to Figure 1. LILRB4 is highly expressed on multiple myeloma cells.
923	(A-C) LILRB4 expression levels were quantified by flow cytometric analysis in ARP-1 (A),
924	OPM2 (B), MM1.S (C) and normal B cells.
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	
936	
937	
938	
939	
940	
941	
942	
943	
944	
945	
946	
947	
948	
949	
950	
951	
952	
953	
954	
955	
956	
957	
958	
959	
90U 061	
060 90T	
90Z	
903	
504	

Figure S2

Figure S2, related to Figure 2. LILRB4 supports MM cell proliferation in vitro. (A-B) Representative flow cytometric analyses of percentages of early and late apoptotic cells in scrambled or LILRB4-knockdown (shLILRB4#1 and #3) ARP-1 cells. (C-D) Representative flow cytometric analyses of percentages of early and late apoptotic cells in scrambled or LILRB4-knockdown (shLILRB4#1 and #3) MM1.S cells. (E-F) Representative flow cytometric analyses of percentages of early and late apoptotic cells in scrambled or LILRB4-knockdown (shLILRB4#1 and #3) LP-1 cells. Two-way ANOVA with Sidak's multiple comparison test (B, D and F) was used for the comparison of statistical significance. *, p<0.05; **, p<0.01; ***, p<0.001.

Table S1. Primer sequences

Human primers for qRT-PCR	Sequences
STAB1-F	AACCACGTTTGTCACTCATGT
STAB1-R	CGGCAGTCCTGGGTTATCTG
PTGS-F	CTGGCGCTCAGCCATACAG
PTGS -R	CGCACTTATACTGGTCAAATCCC
EGR1-F	GGTCAGTGGCCTAGTGAGC
EGR1-R	GTGCCGCTGAGTAAATGGGA
CDKN1A-F	TGTCCGTCAGAACCCATGC
CDKN1A -R	AAAGTCGAAGTTCCATCGCTC
ALDH7A1-F	CCAGTATGCGTGGCTGAAAGA
ALDH7A1-R	CAGGGCAATAGGTCGTAATAACC
PSPH-F	GAGGACGCGGTGTCAGAAAT
PSPH -R	GGTTGCTCTGCTATGAGTCTCT
GADD45A-F	GAGAGCAGAAGACCGAAAGGA
GADD45A -R	CACAACACCACGTTATCGGG
BCL2A1-F	TACAGGCTGGCTCAGGACTAT
BCL2A1-R	CGCAACATTTTGTAGCACTCTG
FLT1-F	TTTGCCTGAAATGGTGAGTAAGG
FLT1-R	TGGTTTGCTTGAGCTGTGTTC
SAGE1-F	TACCAGGGATCTGCATTCTACC
SAGE1-R	CTGTGGGACCAGTTGACAAGA
IKZF1-F	CATCAGCCCGATGTACCAGC
IKZF1-R	CCTCGTTGTTGCTCTCGGT
IKZF3-F	GCTCATACAGACCCGCATGAT
IKZF3-R	AACTGGAACCATCTCCGAGGT
PFKFB1-F	TACCAGAGAACGACGGTCACT
PFKFB1-R	CTGCAATTATGCCAGGGTCATTA
β-ACTIN-F	AGAGCTACGAGCTGCCTGAC
β-ACTIN-R	AGCACTGTGTTGGCGTACAG
Primers for shRNAs	Target sequences
Human shLILRB4#1	GCTCATAGTCTCAGGATCCTT
Human shLILRB4#3	CTCGGGAGTACCGTCTGGATA
Primers for vector	Sequences
Human PFKFB1-F	TCTATTTCCGGTGAATTCCTCGAGATGTCTCCAG
	AGATGGGAGA
Human PFKFB1-R	GCACCTCCAGGGATCCGCGGCCGCaGTAGTGGG
	CTGGGACAGTAT
Human IKZF1-F	TCTATTTCCGGTGAATTCCTCGAGATGGAAGATA
	TACAAACAAA
Human IKZF1-R	GCACCTCCAGGGATCCGCGGGCCGCaCTTCAGCA
	GGGCTCTGTGTT
Human ALDH7A1-F	TCTATTTCCGGTGAATTCCTCGAGATGTGGCGCC

Human ALDH7A1-R	TTCCTCGCGC	
	GCACCTCCAGGGATCCGCGGCCGCaCTGAAAC	
	TGATTCCTTGGG	
Primers for ChIP	Sequences	
PFKFB1-promoter-ChIP-3-F	CTTGGCATGAGGAACTTTAG	
PFKFB1-promoter-ChIP-3-R	TGGGCCCAAGTAGAATGTCA	
PFKFB1-promoter-ChIP-4-F	TGACATTCTACTTGGGCCCA	
PFKFB1-promoter-ChIP-4-R	CTTAGGAGTCGCACCGAATG	
LILRB4-promoter-ChIP-4-F	AGGAGGACACGGCTCTGATA	
LILRB4-promoter-ChIP-4-R	GGCGTCTCCTCCCAGGGGGCC	