Supplementary Information

A snake venom peptide and its derivatives prevent A β_{42} aggregation and eliminate toxic A β_{42} aggregates *in vitro*

Luana Cristina Camargo^{1,2}, Ian Gering¹, Mohammadamin Mastalipour², Victoria Kraemer-Schulien¹, Tuyen Bujnicki¹, Dieter Willbold^{1,2}, Mônika A. Coronado^{1,2*}, Raphael J. Eberle^{1,2*}

¹Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany.

²Heinrich Heine University Düsseldorf. Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, 40225 Düsseldorf, Germany.

Correspondence: <u>monikacoronado@gmail.com</u> (M.A.C.); <u>r.eberle@fz-juelich.de</u> (R.J.E.)

Table of contents

Figure S1. HPLC chromatograms of CDP-1 to -4.

- Figure S2. HPLC chromatograms of CDP-5 to -8 and CDP-1D.
- Figure S3. Effect of CDP-3, -4, -5 and -7 on $A\beta_{42}$ aggregation using ThioflavinT assays.
- Figure S4. Dose dependency of CDP-1 and CDP-2 against the $A\beta_{42}$ aggregation.
- Figure S5. sFIDA A β aggregate control.
- Figure S6. Biacore SPR kinetic analyses of peptides to $A\beta_{42}$.
- Figure S7 MTT assay of CDPs on SH-SY5Y cells.
- Figure S8. MTT assay of CDPs on HEK293 cells.
- Figure S9. CD spectra of CDPs.
- Figure S10. Negatively charged residues in the A β structure and surface.
- Table S1. Secondary structure content of CDPs, based on CD-experiments

Figure S1. HPLC chromatograms of CDP-1 to CDP-4.

Figure S2. HPLC chromatograms of CDP-5 to CDP-8 and CDP-1D.

Figure S3. Effect of CDP-3, **-4**, **-5 and -7 on A** β **42 aggregation using ThioflavinT assays.** The ThT fluorescence signal with only A β ⁴² is shown in blue. In orange, the action of CDP-3, -4, -5 and -7 in the signal of ThioflavinT. **A:** Effect of CDP-3 against A β ⁴² aggregation. **B:** Effect of CDP-4 against A β ⁴² aggregation. **C:** Effect of CDP-5 against A β ⁴² aggregation and **D:** Effect of CDP-7 against A β ⁴² aggregation. Data shown are the mean ± SEM from three independent measurements (n = 3).

Figure S4. Dose dependency of CDP-1 and CDP-2 against the $A\beta_{42}$ **aggregation.** The ThT fluorescence signal with only $A\beta_{42}$ is shown in blue. In orange, the action of CDP-1 and -2 at different concentrations in the signal of ThioflavinT. Effect CDP-1 (**A**) and CDP-2 (**B**) doses (0.5, 1, 3, 6, 13 and 28 µM) on $A\beta_{42}$ aggregation. Data shown are the mean ± SEM from three independent measurements (n = 3).

Figure S5. sFIDA with A β **aggregates in different concentrations. A:** TIRM images and **B:** Pixel count of the A β aggregate standard curve. Data shown are the mean ± SEM from three independent measurements (n = 3). Asterisks mean that the data differ from the control significantly at *: p<0.05, **: p<0.01 and ***: p<0.001 levels according to analyses by a two sample t-test.

Figure S6. Biacore SPR kinetic analyses of peptides to $A\beta_{42}$. The sensorgram and saturation curve of the titration are shown. Sensorgrams were obtained by using a different concentration of peptides (Coloured sensorgrams represent different concentrations in μ M). Binding curves were fitted to a steady-state affinity model to get K_D values. CDP-1 (**A**, **B**), CDP-2 (**C**, **D**), CDP-6 (**E**, **F**) and CDP-8 (**G**, **H**).

Figure S7. MTT assay of CDPs on SH-SY5Y cells. MTT assay evaluated the cytotoxicity of four L-peptides and one D-peptide, each at a concentration range between 0 to 100 μ M. The control shows the cell viability without peptide, and 0.1% Triton x-100 was used as a negative control. A: CDP-1, B: CDP-2, C: CDP-6, D: CDP-8 and E: CDP-1D. Data shown are the means ± SD from three independent measurements (n = 3). Asterisks mean that the data differ from the control significantly at *: p<0.05 and ***: p<0.001 levels according to analyses by two-way ANOVA.

Figure S8. MTT assay of CDPs on HEK293 cells. MTT assay evaluated the cytotoxicity of four L-peptides and one D-peptide, each at a concentration range between 0 to 100 μ M. The control shows the cell viability without peptide, and 0.1% Triton x-100 was used as a negative control. A: CDP-1, B: CDP-2, C: CDP-6, D: CDP-8 and E: CDP-1D. Data shown are the means ± SD from three independent measurements (n = 3). Asterisks mean that the data differ from the control significantly at *: p<0.05, **: p<0.01 and ***: p<0.001 levels according to analyses by two-way ANOVA.

Figure S9. CD-spectra of CDPs. The CD spectra of the peptides are shown in reference to the spectrum of CDP-1. All peptides were solved in ddH₂O, and the peptide concentration was 30 μM. **A:** CDP-1, **B:** CDP-2, **C:** CDP-3, **D:** CDP-4, E: CDP-5, **F:** CDP-6, **G:** CDP-7, **H:** CDP-8 and **I:** CDP-1D.

Figure S10. Negatively charged residues in the A β **structure and surface**. Ribbon view and coloumbic surface representation of the A β monomer structure (PDB: 2LFM). Residues with negative charges are highlighted as sticks. **A:** Ribbon and surface view of the A β monomer and **B:** bent forward 45°. **C:** Sequence of A β 42, the negatively charged residues are highlighted.

	Secondary structure		
Peptides	α-helix [%]	β-strand [%]	Others [%]
CDP-1	25	-	75
CDP-2	3	-	97
CDP-3	4	-	96
CDP-4	7	-	93
CDP-5	4	-	96
CDP-6	6	-	94
CDP-7	8	-	92
CDP-8	6	-	94

Table S1. Secondary structure content of CDPs, based on CD-experiments¹.

¹Secondary structure determination was performed using the online tool BeStSel (<u>https://bestsel.elte.hu/index.php</u>).