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eMethods 
Data collection and preprocessing 

1. Clinical information. Clinical information including personal history, clinical manifestations, medical history, 

laboratory tests, and radiology findings was documented from electronic medical records. For missing values, 

the data entry for that variable was left blank. 

1.1. Personal history: sex, age, BMI, history of smoking, history of alcohol consumption. 

1.2. Clinical symptoms: abdominal pain, weight loss, jaundice, diarrhea, vomiting, back pain, symptoms of 

hypoglycemia, weight gain. 

1.3. Medical history: new-onset diabetes within 2 years, tumor history in other systems, chronic pancreatitis, 

long-term diabetes, hepatitis B virus, and hypertension. As some diabetic medications have been reported 

to be associated with risk for pancreatic cancer,1,2 we also documented the medications being used at the 

time of the EUS procedure, including metformin, sulfonylureas, thiazolidinediones, and insulin. 

1.4. Laboratory tests: direct bilirubin, CA19-9, CEA, amylase, lipase. 

1.5. Radiology findings: appearance of the lesion including CT attenuation in the pancreatic parenchymal 

phase, MRI T1-weighted signal, MRI T2-weighted signal, and diffusion-weighted signal (DWI), presence 

of pancreatic duct dilation, presence of common bile duct dilation, presence of pancreatic enlargement, 

presence of pancreatic parenchymal atrophy.  

2. EUS images.  

2.1. EUS procedures were conducted using EU-ME1 and EU-ME2 (Olympus Corporation, Tokyo, Japan) 

ultrasound systems equipped with either GF-UCT260 or GF-UCT240 curved linear echoendoscopes 

(Olympus Corporation, Tokyo, Japan).  

2.2. All still images captured by endoscopists during the procedure and images extracted from the video clips 

of the recorded video which could clearly present the pancreatic lesion, were extracted and organized into 

corresponding patient folders within each cohort.  

2.3. In cases where the patients underwent multiple EUS examinations, images and videos were stored in 

separate case folders.  

2.4. Every image was labeled as either “1” for carcinoma lesions or “0” for other lesions according to the final 

diagnosis of the corresponding patient.  

3. Image preprocessing procedures.  

3.1. The preprocessing of the EUS images included removing the procedure-identifying information and poor-

quality images that might sabotage the efficacy and reliability of the developed AI models.  

3.2. Details such as patient names, admission numbers, procedure locations or timestamps, and the white-light 

picture located at the lower right corner of the EUS image were removed by cropping.  

3.3. Poor-quality images, potentially resulting from air, blurring, the presence of biopsy needles, elastography, 

or other artifacts not intrinsic to the original EUS images, were eliminated to prevent potential biases in 

the model. 

3.4. Image sizes: We resized all images to a uniform dimension of 224 × 224 pixels. This image size was 

chosen to ensure compatibility with the pre-trained ResNet50 model architecture. 

3.5. Image channel: The EUS images were converted from the RGB color space to the BGR color space to 

match the expected input format of the pre-trained CNN model. 

 

Model training and testing 

1. Datasets distribution. The collected datasets were split according to institutions. The dataset from WHTJH 

was randomly partitioned into training, validation, and internal testing with a ratio of 6:2:2. For the 

development of Model-1, the split was performed at the individual image level, addressing the imbalanced 

quantity of images between patients. Furthermore, to mitigate the potential risk of overestimating the model’s 

performance due to closely correlated images extracted from videos being allocated into both training and 

testing subsets, the video-extracted images were carefully reviewed and similar images were removed. The 

datasets sourced from the other three institutions were exclusively designated as external testing datasets. This 

segregation of the datasets allowed for an objective evaluation of the generalizability of the trained models.  

2. Model-1. This EUS image-based convolution neural network model was developed using a ResNet50 CNN 

implemented in TensorFlow 2.3.0. Transfer learning was employed, incorporating pre-trained weights from 

ImageNet. The final classification layer was removed. The top eight layers from the pre-trained model were 

unfrozen for fine-tuning the parameters using our training and validation dataset. The output of the base model 

was passed through a global average pooling layer to reduce the spatial dimensions of the feature maps. The 

resulting features were then flattened and passed through a dense layer with a sigmoid activation function to 
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produce the probability (a continuous variable from zero to one) of the input image. The final output of the 

Model-1 was binary, being either carcinoma (CA) or non-cancerous (non-CA). To prevent overfitting, three 

methods including data augmentation, dropout, and early stopping were adopted.  

2.1. Firstly, data augmentation was utilized. The augmentation techniques included random horizontal and 

vertical translations (range ratios of 20% and 30%, respectively), shear transformation (stretching images 

along the horizontal or vertical direction to a degree of 20 degrees), rotation (up to 10 degrees), zoom 

(maximum range of 30%), constant filling of empty regions after transformations, and random vertical and 

horizontal flipping. 

2.2. Secondly, a dropout layer was applied to the GAP layer with a rate of 0.50.  

2.3. Thirdly, early stopping was implemented to halt training when validation loss failed to decrease for ten 

consecutive epochs. Model-1 was configured to trained for a maximum of 200 epochs. While the actual 

number of training epochs for Model-1 was 64, due to the early stopping criteria. 

2.4. Grid search was used to find the optimal hyperparameters of the model. Specifically, the learning rate was 

chosen among 0.1, 0.01, and 0.001. The batch size was chosen among 16, 32, and 64. The dropout rate 

was chosen among 0.2, 0.3, 0.4, and 0.5. After conducting the grid search and evaluating the model's 

performance for each combination of hyperparameters, the learning rate was set to 0.001, the batch size 

was set to 16, and the dropout rate was set to 0.5. 

2.5. The model was trained by the Adam optimizer with an initial learning rate of 0.001, a batch size of 16, 

weight decay of 0.000001, and momentum of 0.90.  

3. Model-2 (Selection of significant clinical features). Feature selection was conducted to lower the risk of 

overfitting and reduce computation burden.3  

3.1. The training dataset used for the ML models was the same as Model-1, consisting of the clinical data 

collected from 351 patients at our center (WHTJH). 

3.2. Firstly, a total of 36 clinical features (sex, age, BMI, history of smoking, history of alcohol consumption, 

abdominal pain, weight loss, jaundice, diarrhea, vomiting, back pain, symptoms of hypoglycemia, weight 

gain, new-onset diabetes within 2 years, tumor history in other systems, chronic pancreatitis, long term 

diabetes, hepatitis B virus, hypertension, metformin, sulfonylureas, thiazolidinediones, insulin, direct 

bilirubin, CA19-9, CEA, amylase, lipase, appearance of the lesion including CT attenuation in the 

pancreatic parenchymal phase, MRI T1-weighted signal, MRI T2-weighted signal, DWI, presence of 

pancreatic duct dilation, presence of common bile duct dilation, presence of pancreatic enlargement, 

presence of pancreatic parenchymal atrophy) were categorized into five groups according to their nature: 

personal history, medical history, clinical symptoms, laboratory test and radiology findings.  

3.3. Next, features from the same category were arranged into various combinations to train several machine 

learning (ML) models. Given the differences in data types and characteristics among the five categories of 

clinical features, it was reasonable to expect that the optimal machine learning algorithm for capturing the 

relevant patterns and relationships within each category might differ. Therefore, multiple ML algorithms 

were employed during the training process, including Gaussian naive Bayes (GNB), k-nearest neighbors 

(KNN), logistic regression (LR), random forest (RF), decision tree (DT), support vector machine (SVM), 

and gradient boosting decision tree (GBDT). The probabilities of the patients having CA were produced 

based on the inputted clinical features, and the final output of the ML models was binary (CA or Non-CA).  

3.4. The optimal combinations of ML algorithm and features for each category were determined based on the 

diagnostic accuracy evaluated by clinical data of the 88 patients from the internal test dataset. 

4. Model-3 (the joint-AI model).  

4.1. The inputs to Model-3 included outputs from the linear layers of Model-1 and selected clinical features 

from Model-2. Because of the multilayer nature of the CNN network, the features extracted by layers 

closer to the output are more abstract.4 Therefore, three fusion strategies were used to generate the input 

vector for Model-3. 

4.1.1. Strategy A fused the penultimate layer of Model-1 (including 2048 image features) with clinical 

features selected by Model-2 (including 24 clinical features). 

4.1.2. Strategy B fused the last layer of Model-1 (including 1 feature) with the probabilities calculated by 

Model-2 (including 5 features). 

4.1.3. Strategy C directly fused the outputs from Model-1 (including 1 feature) and Model-2 (including 5 

features). 

4.2. The Model-3 was a multi-layer perceptron model with two fully-connected layers implemented in 

TensorFlow 2.3.0. The model’s input layer had 64 nodes, followed by an additional 32 nodes. Two 

dropout layers, with a rate of 0.5, were applied to mitigate overfitting. The output layer was connected to a 
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sigmoid activation function to produce the probability of the input image. The final output of the Model-3 

was binary (CA or Non-CA).  

4.3. Similarly, grid search was used to find the optimal hyperparameters of the model. The learning rate was 

set to 0.001, the batch size was set to 16, and the dropout rate was set to 0.5. 

4.4. This model was optimized by Adam with a learning rate set to 0.001,5 and binary cross entropy was used 

as the loss function. To prevent overfitting, early stopping was implemented to halt training if the 

validation loss failed to decrease for ten consecutive epochs. Model-3 was configured to trained for a 

maximum of 40 epochs. While the actual number of training epochs for Model-3 was 24, due to the early 

stopping criteria. 

4.5. The diagnostic efficacy of models built using the three fusion strategies was evaluated. The model with the 

best performance was further evaluated in a prospective dataset. 

5. Interpretability analysis. Firstly, gradient-weighted class activation mapping (Grad-CAM) was applied to 

Model-1.6 The heatmap generated by Grad-CAM indicated the regions within the EUS images that significantly 

influenced the predictions. On the other hand, shapley additive explanations (SHAP) was implemented to 

analyze the output of the Model-3.7 This approach provided both localized explanations, tailored to specific 

patients, and global explanations considering all instances of the model. Through SHAP, the contributions of 

individual elements in the prediction process were quantitatively indicated.8,9 
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eTable 1. Patient Demographics and Baseline Characteristics  

Characteristic 

Datasets 

P 
value 

b 

Training & 
Validation 

dataset, N = 
351 a 

Internal 
test 

dataset, N 
= 88 a 

External test 
datasets, N = 

189 a 

Prospective 
test dataset, N 

= 130 a 

Diseases     .01 

CA 213 (61%) 57 (65%) 93 (49%) 84 (65%)  

AIP 40 (11%) 12 (14%) 26 (14%) 14 (11%)  

CP 48 (14%) 7 (8%) 21 (11%) 24 (18%)  

NET (G1-G3) 27 (8%) 9 (10%) 27 (14%) 7 (5%)  

SPT 12 (3%) 2 (2%) 18 (10%) 0 (0%)  

TB 4 (1%) 0 (0%) 4 (2%) 1 (1%)  

Others c 7 (2%) 1 (1%) 0 (0%) 0 (0%)  

Gender     .82 

Male 229 (65%) 54 (61%) 117 (62%) 81 (62%)  

Female 122 (35%) 34 (39%) 72 (38%) 49 (38%)  

Age     .19 

Median (IQR) 58 (50, 65) 60 (54, 65) 59 (50, 68) 60 (52, 67)  

BMI     .58 

Median (IQR) 21.0 (19.0, 23.0) 22.0 (19.0, 
23.0) 

23.0 (19.0, 
24.0) 

21.0 (19.0, 24.0)  

Smoking history     .004 

Yes 75 (22%) 19 (22%) 33 (38%) 23 (18%)  

No 271 (78%) 68 (78%) 54 (62%) 106 (82%)  

Alcohol consumption 
history 

    <.001 

Yes 64 (18%) 14 (16%) 31 (36%) 14 (11%)  

No 282 (82%) 73 (84%) 56 (64%) 114 (89%)  

Abdominal pain     .002 

Yes 254 (72%) 56 (64%) 45 (52%) 90 (69%)  

No 97 (28%) 32 (36%) 42 (48%) 40 (31%)  

Weight loss     <.001 

Yes 137 (39%) 34 (39%) 50 (57%) 33 (25%)  

No 214 (61%) 54 (61%) 37 (43%) 97 (75%)  

Jaundice     .008 

Yes 77 (22%) 16 (18%) 33 (38%) 30 (23%)  

No 274 (78%) 72 (82%) 54 (62%) 100 (77%)  

Diarrhea     .007 

Yes 14 (4%) 6 (7%) 10 (11%) 2 (2%)  

No 337 (96%) 82 (93%) 77 (89%) 128 (98%)  

Vomit     <.001 

Yes 25 (7%) 5 (6%) 21 (24%) 16 (12%)  

No 326 (93%) 83 (94%) 66 (76%) 114 (88%)  

Back pain     .03 

Yes 42 (12%) 11 (13%) 21 (24%) 20 (15%)  

No 309 (88%) 77 (88%) 66 (76%) 110 (85%)  

Hypoglycemia     .12 

Yes 6 (2%) 4 (5%) 0 (0%) 1 (1%)  

No 345 (98%) 84 (95%) 87 (100%) 129 (99%)  

Weight gain     .76 

Yes 2 (1%) 1 (1%) 1 (1%) 1 (1%)  

No 349 (99%) 87 (99%) 86 (99%) 129 (99%)  
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eTable 1. Patient Demographics and Baseline Characteristics  

Characteristic 

Datasets 

P 
value 

b 

Training & 
Validation 

dataset, N = 
351 a 

Internal 
test 

dataset, N 
= 88 a 

External test 
datasets, N = 

189 a 

Prospective 
test dataset, N 

= 130 a 

New onset diabetes     .03 

Yes 51 (15%) 9 (10%) 17 (20%) 9 (7%)  

No 300 (85%) 79 (90%) 70 (80%) 121 (93%)  

Other system tumor 
history 

    .06 

Yes 13 (4%) 2 (2%) 9 (10%) 5 (4%)  

No 338 (96%) 86 (98%) 78 (90%) 125 (96%)  

Chronic pancreatitis     .52 

Yes 25 (7%) 3 (3%) 4 (5%) 10 (8%)  

No 326 (93%) 85 (97%) 83 (95%) 120 (92%)  

Long term diabetes     .04 

Yes 21 (6%) 9 (10%) 13 (15%) 14 (11%)  

No 330 (94%) 79 (90%) 74 (85%) 116 (89%)  

HBV     .38 

Yes 11 (3%) 3 (3%) 0 (0%) 4 (3%)  

No 340 (97%) 85 (97%) 87 (100%) 126 (97%)  

Metformin     <.001 

Yes 7 (2%) 2 (2%) 9 (10%) 0 (0%)  

No 344 (98%) 86 (98%) 78 (90%) 130 (100%)  

Sulfonylureas     .47 

Yes 9 (3%) 1 (1%) 4 (5%) 5 (4%)  

No 342 (97%) 87 (99%) 83 (95%) 125 (96%)  

Thiazolidinediones     .009 

Yes 17 (5%) 8 (9%) 13 (15%) 8 (6%)  

No 334 (95%) 80 (91%) 74 (85%) 122 (94%)  

Insulin     <.001 

Yes 28 (8%) 3 (3%) 17 (20%) 4 (3%)  

No 323 (92%) 85 (97%) 70 (80%) 126 (97%)  

Direct bilirubin     .12 

Median (IQR) 4 (3, 10) 5 (3, 8) 4 (2, 18) 5 (3, 17)  

CA19-9     .06 

Median (IQR) 59 (13, 491) 67 (16, 479) 32 (8, 330) 74 (16, 616)  

CEA     .002 

Median (IQR) 3 (2, 5) 3 (2, 5) 2 (1, 4) 3 (2, 8)  

Blood sugar     <.001 

Median (IQR) 6.02 (5.19, 7.75) 6.09 (5.35, 
7.71) 

5.50 (4.86, 
6.77) 

6.20 (5.47, 7.78)  

Amylase     <.001 

Median (IQR) 28 (18, 69) 33 (21, 93) 61 (43, 95) 44 (25, 86)  

Lipase     .07 

Median (IQR) 56 (32, 150) 70 (27, 132) 89 (46, 220) 75 (36, 238)  

Location     .12 

Head 226 (64%) 62 (70%) 118 (62%) 71 (55%)  

Body 71 (20%) 15 (17%) 49 (26%) 28 (22%)  

Tail 32 (9%) 8 (9%) 14 (7%) 19 (15%)  

Body, tail 0 (0%) 0 (0%) 0 (0%) 1 (1%)  

Diffuse 22 (6%) 3 (3%) 8 (4%) 11 (8%)  
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eTable 1. Patient Demographics and Baseline Characteristics  

Characteristic 

Datasets 

P 
value 

b 

Training & 
Validation 

dataset, N = 
351 a 

Internal 
test 

dataset, N 
= 88 a 

External test 
datasets, N = 

189 a 

Prospective 
test dataset, N 

= 130 a 

Size (mm)     .03 

Median (IQR) 33 (25, 41) 32 (22, 38) 30 (23, 37) 32 (27, 40)  

CT attenuation     <.001 

Hypoattenuating 173 (74%) 39 (67%) 96 (79%) 71 (81%)  

Isoattenuating 42 (18%) 17 (29%) 7 (6%) 11 (13%)  

Hyperattenuating 18 (8%) 2 (3%) 19 (16%) 6 (7%)  

Pancreatic 
parenchyma 
enlargement 

    .005 

Yes 53 (16%) 11 (13%) 23 (14%) 28 (29%)  

No 285 (84%) 72 (87%) 145 (86%) 68 (71%)  

Pancreatic 
parenchyma atrophy 

    <.001 

Yes 43 (12%) 14 (16%) 50 (30%) 18 (19%)  

No 308 (88%) 74 (84%) 118 (70%) 75 (81%)  

MRI T1-weighted     .30 

Hypointensity 125 (87%) 30 (83%) 63 (90%) 34 (92%)  

Isointensity 12 (8%) 6 (17%) 3 (4%) 2 (5%)  

Hyperintensity 4 (3%) 0 (0%) 4 (6%) 0 (0%)  

Mixed Intensity 2 (1%) 0 (0%) 0 (0%) 1 (3%)  

MRI T2-weighted     .46 

Hypointensity 6 (3%) 5 (10%) 5 (6%) 3 (5%)  

Isointensity 11 (6%) 4 (8%) 2 (2%) 3 (5%)  

Hyperintensity 154 (86%) 39 (80%) 74 (90%) 48 (87%)  

Mixed Intensity 8 (4%) 1 (2%) 1 (1%) 1 (2%)  

DWI signal intensity     .01 

Hyperintensity 145 (88%) 41 (100%) 71 (97%) 43 (93%)  

Normal 20 (12%) 0 (0%) 2 (3%) 3 (7%)  

Common bile duct 
dilation 

    .26 

Yes 102 (38%) 29 (42%) 74 (48%) 52 (42%)  

No 164 (62%) 40 (58%) 79 (52%) 71 (58%)  

Pancreatic duct 
dilation 

    .76 

Yes 173 (57%) 47 (62%) 89 (60%) 69 (63%)  

No 128 (43%) 29 (38%) 59 (40%) 41 (37%)  
a. n (%) 
b. Pearson's Chi-squared test; Kruskal-Wallis rank sum test; Fisher's exact test 
c. Others: lymphoma (n=4), perivascular epithelioid cell tumor (n=1), Spindle cell tumor (n=1), accessory spleen (n=1), High-
grade sarcoma (n=1) 
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eTable 2. Performance of Model-1 in Internal and External Datasets 

Datasets 
Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
PPV (95%CI) NPV (95%CI) Accuracy (95%CI) 

Image phase: 
     

Internal testing 0.92 (0.90-0.94) 0.92 (0.90-0.94) 0.91 (0.88-0.93) 0.93 (0.91-0.94) 0.92 (0.90-0.93) 

NJDTH 0.93 (0.90-0.95) 0.67 (0.63-0.71) 0.63 (0.59-0.67) 0.94 (0.91-0.96) 0.77 (0.74-0.80) 

PUMCH 0.81 (0.72-0.88) 0.65 (0.58-0.72) 0.55 (0.47-0.63) 0.87 (0.80-0.91) 0.70 (0.65-0.76) 

BJFH 0.80 (0.66-0.90) 0.76 (0.58-0.88) 0.82 (0.68-0.91) 0.73 (0.56-0.86) 0.78 (0.67-0.86) 

Patient phase:      

Internal testing 0.88 (0.83-0.91) 0.75 (0.69-0.81) 0.85 (0.80-0.89) 0.79 (0.72-0.85) 0.83 (0.79-0.86) 

NJDTH 0.84 (0.72-0.92) 0.76 (0.63-0.86) 0.78 (0.66-0.87) 0.83 (0.70-0.91) 0.80 (0.72-0.87) 

PUMCH 0.63 (0.44-0.78) 0.76 (0.60-0.87) 0.65 (0.46-0.80) 0.74 (0.58-0.85) 0.70 (0.58-0.80) 

BJFH 0.80 (0.55-0.93) 0.75 (0.41-0.93) 0.85 (0.60-0.96) 0.67 (0.35-0.88) 0.78 (0.58-0.90) 

WHTJH, Wuhan Tongji Hospital; NJDTH, Nanjing Drum Tower Hospital; PUMCH, Peking Union Medical College Hospital; BJFH, Beijing Friendship Hospital 
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eTable 3. Selection of Significant Clinical Features From Individual Categories 

Categories Selected features a ML algorithms Accuracy b 

Personal history sex, age, BMI, smoking history, alcohol consumption history RF 80.81% 

Medical history new onset diabetes, HBV, sulfonylureas DT 66.00% 

Clinical symptoms abdominal pain, weight loss, jaundice, diarrhea, vomit SVM 67.43% 

Laboratory tests direct bilirubin, CA19-9, CEA, blood sugar GBDT 88.07% 

Radiology findings  
CT attenuation, MRI T1-weighted signal, pancreatic enlargement, 

pancreatic parenchymal atrophy, DWI signal intensity, common bile 
duct dilation, pancreatic duct dilation 

RF 85.21% 

RF: random forest, DT: decision tree, SVM: support vector machine, GBDT: gradient boosted decision tree. 

a. A total of 24 features selected by the respective ML algorithms from the original 36 features.  

b. The set of the selected features demonstrated the highest accuracy within each category. 
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eTable 4. Performance of Different Fusion Strategies in the Image Phase and Patient Phase 

Strategies 
Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
PPV (95%CI) NPV (95%CI) 

Accuracy 
(95%CI) 

Image phase      

Strategy A 0.96 (0.95-0.97) 0.92 (0.90-0.94) 0.94 (0.92-0.95) 0.95 (0.93-0.96) 0.94 (0.93-0.95) 

Strategy B 0.99 (0.98-0.99) 0.98 (0.96-0.98) 0.98 (0.97-0.99) 0.99 (0.98-0.99) 0.98 (0.98-0.99) 

Patient phase      

Strategy A 0.96 (0.92-0.97) 0.94 (0.89-0.97) 0.96 (0.93-0.98) 0.92 (0.88-0.96) 0.95 (0.92-0.97) 

Strategy B 0.99 (0.97-1.00) 0.98 (0.94-0.99) 0.98 (0.96-0.99) 0.98 (0.95-0.99) 0.98 (0.97-0.99) 

Strategy C 0.98 (0.95-0.99) 0.92 (0.87-0.95) 0.95 (0.92-0.97) 0.96 (0.92-0.98) 0.96 (0.93-0.97) 
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eTable 5. Performance of Individual Endoscopists on the Prospective Dataset 

Endoscopists 
Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
PPV (95%CI) NPV (95%CI) 

Accuracy 
(95%CI) 

Without clinical information: 

Expert 1 0.75 (0.53-0.89) 0.69 (0.43-0.87) 0.79 (0.57-0.91) 0.64 (0.39-0.84) 0.73 (0.56-0.85) 

Expert 2 0.73 (0.52-0.87) 0.82 (0.52-0.95) 0.89 (0.67-0.97) 0.6 (0.36-0.80) 0.76 (0.59-0.87) 

Senior 1 0.56 (0.34-0.75) 0.67 (0.39-0.86) 0.71 (0.45-0.88) 0.50 (0.28-0.72) 0.60 (0.42-0.75) 

Senior 2 0.59 (0.36-0.78) 1.00 (0.74-1.00) 1.00 (0.72-1.00) 0.61 (0.39-0.80) 0.75 (0.57-0.87) 

Senior 3 0.78 (0.52-0.92) 0.56 (0.27-0.81) 0.73 (0.48-0.89) 0.62 (0.30-0.86) 0.70 (0.49-0.84) 

Senior 4 0.60 (0.39-0.78) 0.67 (0.39-0.86) 0.75 (0.50-0.90) 0.50 (0.28-0.72) 0.62 (0.45-0.77) 

Novice 1 0.84 (0.62-0.94) 0.46 (0.23-0.71) 0.70 (0.49-0.84) 0.67 (0.35-0.88) 0.69 (0.51-0.82) 

Novice 2 0.54 (0.29-0.77) 0.38 (0.14-0.69) 0.58 (0.32-0.81) 0.33 (0.12-0.64) 0.48 (0.28-0.68) 

Novice 3 0.47 (0.26-0.69) 0.91 (0.62-0.98) 0.89 (0.56-0.98) 0.53 (0.32-0.73) 0.64 (0.46-0.79) 

Novice 4 0.70 (0.47-0.87) 0.73 (0.43-0.90) 0.80 (0.55-0.93) 0.62 (0.36-0.82) 0.71 (0.53-0.85) 

Novice 5 0.40 (0.20-0.64) 0.75 (0.41-0.93) 0.75 (0.41-0.93) 0.4 (0.20-0.64) 0.52 (0.33-0.71) 

Novice 6 0.33 (0.15-0.58) 0.75 (0.41-0.93) 0.71 (0.36-0.92) 0.38 (0.18-0.61) 0.48 (0.29-0.67) 

With clinical information: 

Expert 1 0.85 (0.64-0.95) 0.85 (0.58-0.96) 0.89 (0.69-0.97) 0.78 (0.52-0.92) 0.85 (0.69-0.93) 

Expert 2 0.91 (0.72-0.97) 0.91 (0.62-0.98) 0.95 (0.77-0.99) 0.83 (0.55-0.95) 0.91 (0.76-0.97) 

Senior 1 0.67 (0.44-0.84) 0.83 (0.55-0.95) 0.86 (0.60-0.96) 0.62 (0.39-0.82) 0.73 (0.56-0.86) 

Senior 2 0.59 (0.36-0.78) 1.00 (0.74-1.00) 1.00 (0.72-1.00) 0.61 (0.39-0.80) 0.75 (0.57-0.87) 

Senior 3 0.86 (0.60-0.96) 0.56 (0.27-0.81) 0.75 (0.50-0.90) 0.71 (0.36-0.92) 0.74 (0.53-0.87) 

Senior 4 0.80 (0.58-0.92) 0.92 (0.65-0.98) 0.94 (0.73-0.99) 0.73 (0.48-0.89) 0.84 (0.68-0.93) 

Novice 1 0.63 (0.41-0.81) 0.85 (0.58-0.96) 0.86 (0.60-0.96) 0.61 (0.39-0.80) 0.72 (0.55-0.84) 

Novice 2 0.77 (0.50-0.92) 0.75 (0.41-0.93) 0.83 (0.55-0.95) 0.67 (0.35-0.88) 0.76 (0.55-0.89) 

Novice 3 0.35 (0.17-0.59) 0.91 (0.62-0.98) 0.86 (0.49-0.97) 0.48 (0.28-0.68) 0.57 (0.39-0.73) 

Novice 4 0.76 (0.53-0.90) 0.73 (0.43-0.90) 0.81 (0.57-0.93) 0.67 (0.39-0.86) 0.75 (0.57-0.87) 
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Endoscopists 
Sensitivity 

(95%CI) 
Specificity 

(95%CI) 
PPV (95%CI) NPV (95%CI) 

Accuracy 
(95%CI) 

Novice 5 0.80 (0.55-0.93) 0.75 (0.41-0.93) 0.86 (0.60-0.96) 0.67 (0.35-0.88) 0.78 (0.58-0.90) 

Novice 6 0.40 (0.20-0.64) 0.88 (0.53-0.98) 0.86 (0.49-0.97) 0.44 (0.23-0.67) 0.56 (0.37-0.74) 

With AI-assistance: 

Expert 1 0.80 (0.58-0.92) 0.85 (0.58-0.96) 0.89 (0.67-0.97) 0.73 (0.48-0.89) 0.82 (0.66-0.91) 

Senior 1 0.72 (0.49-0.88) 0.83 (0.55-0.95) 0.87 (0.62-0.96) 0.67 (0.42-0.85) 0.77 (0.59-0.88) 

Senior 2 0.53 (0.31-0.74) 1.00 (0.74-1.00) 1.00 (0.70-1.00) 0.58 (0.36-0.77) 0.71 (0.53-0.85) 

Senior 3 1.00 (0.78-1.00) 0.56 (0.27-0.81) 0.78 (0.55-0.91) 1.00 (0.56-1.00) 0.83 (0.63-0.93) 

Senior 4 0.90 (0.70-0.97) 0.92 (0.65-0.98) 0.95 (0.75-0.99) 0.85 (0.58-0.96) 0.91 (0.76-0.97) 

Novice 1 0.89 (0.69-0.97) 0.92 (0.67-0.99) 0.94 (0.74-0.99) 0.86 (0.60-0.96) 0.91 (0.76-0.97) 

Novice 2 0.92 (0.67-0.99) 0.75 (0.41-0.93) 0.86 (0.60-0.96) 0.86 (0.49-0.97) 0.86 (0.65-0.95) 

Novice 3 0.94 (0.73-0.99) 0.91 (0.62-0.98) 0.94 (0.73-0.99) 0.91 (0.62-0.98) 0.93 (0.77-0.98) 

Novice 4 0.94 (0.73-0.99) 0.91 (0.62-0.98) 0.94 (0.73-0.99) 0.91 (0.62-0.98) 0.93 (0.77-0.98) 

Novice 5 0.87 (0.62-0.96) 0.88 (0.53-0.98) 0.93 (0.68-0.99) 0.78 (0.45-0.94) 0.87 (0.68-0.95) 

Novice 6 0.87 (0.62-0.96) 0.88 (0.53-0.98) 0.93 (0.68-0.99) 0.78 (0.45-0.94) 0.87 (0.68-0.95) 
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eTable 6. Performance of Model-1 and Endoscopists Without AI-Assistance on the Prospective Dataset 

Metrics Model-1 
Experts (n=2) Seniors (n=4) Novices (n=6) 

Metrics P value Metrics P value Metrics P value 

Sensitivity 
(95%CI) 

0.93 (0.85-0.97) 0.74 (0.59-0.85) .02 0.62 (0.50-0.73) < .001 0.56 (0.46-0.66) < .001 

Specificity 
(95%CI) 

0.74 (0.60-0.84) 0.75 (0.55-0.88) 1.00 0.73 (0.58-0.84) 1.00 0.66 (0.53-0.77) .40 

PPV 
(95%CI) 

0.87 (0.78-0.92) 0.84 (0.69-0.92) .87 0.78 (0.66-0.87) .44 0.73 (0.62-0.82) .04 

NPV 
(95%CI) 

0.85 (0.71-0.93) 0.62 (0.44-0.77) .03 0.55 (0.42-0.67) < .001 0.48 (0.38-0.59) < .001 

Accuracy 
(95%CI) 

0.86 (0.79-0.91) 0.74 (0.62-0.83) .13 0.66 (0.57-0.74) < .001 0.60 (0.52-0.67) < .001 
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eTable 7. Performance of Model-3 and Endoscopists Without AI-Assistance on the Prospective Dataset 

Metrics Model-3 
Experts (n=2) Seniors (n=4) Novices (n=6) 

Metrics P value Metrics P value Metrics P value 

Sensitivity 
(95%CI) 

0.92 (0.84-0.96) 0.88 (0.75-0.95) 1.00 0.72 (0.61-0.82) .002 0.61 (0.51-0.70) < .001 

Specificity 
(95%CI) 

0.93 (0.82-0.98) 0.88 (0.69-0.96) 1.00 0.84 (0.71-0.92) .34 0.81 (0.70-0.89) .06 

PPV 
(95%CI) 

0.96 (0.90-0.99) 0.92 (0.80-0.97) .62 0.88 (0.77-0.94) .12 0.84 (0.74-0.91) .004 

NPV 
(95%CI) 

0.86 (0.74-0.93) 0.80 (0.62-0.91) .48 0.66 (0.53-0.77) .01 0.56 (0.46-0.66) < .001 

Accuracy 
(95%CI) 

0.92 (0.86-0.96) 0.88 (0.78-0.94) .55 0.77 (0.68-0.84) .001 0.69 (0.61-0.76) < .001 
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eTable 8. The Rate of Endoscopists Rejecting the AI-Assistance 

Endoscopists Total rejection rate a False rejection rate b Odds ratio (95% CI) c P value 

Without interpretability analysis 

Expert & senior endoscopists 19.86% 75.86% 

2.15 (1.12-4.16) .02 

Novices 10.32% 68.75% 

With interpretability analysis 

Expert & senior endoscopists 9.32% 45.45% 0.71 (0.32-1.58) .40 

a. Total rejection rate: (number of cases endoscopists disagree with prediction of the joint-AI) / (total number of cases) 
b. False rejection rate: (number of cases endoscopists falsely reject the prediction of the joint-AI) / (total number of cases endoscopists disagree with the prediction of 
the joint-AI) 
c. Odds ratio was calculated by the total rejection rate between novices and expert & senior endoscopists with or without the interpretability analysis 



© 2024 Cui H et al. JAMA Network Open. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

  

eTable 9. Comparison of the Impact Between EUS-CNN and Joint-AI on the Decision-Making of 
Endoscopists a 

Questionnaire EUS-CNN Joint-AI P value 

The impact of the AI model on the diagnoses 
made by endoscopists b 2.54 (0.93) 3.46 (0.69) .06 

Number of endoscopists who preferred to use 
this model 

2 9 .009 

a. During the crossover study, to help endoscopists better understand the nature of each AI model, Model-1 was named as “EUS-CNN” and Model-3 was 
named as “joint-AI” 
b. Data denoted by mean (SD)  
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eFigure 1. Flow Diagram for Retrospective Data Collection 
 

 
The datasets for training and validation were retrospectively collected. PSL, pancreatic solid lesions. NJDTH, Nanjing Drum Tower 
Hospital; PUMCH, Peking Union Medical College Hospital; BJFH, Beijing Friendship Hospital. 

  

789 Patients with EUS procedure and definite diagnosis of PSL

at four centers in China

161 Did not meet inclusion criteria:

65 Poor quality images

96 Other instruments

628 Patients included

439 Patients from WHTJH 189 Patients from NJDTH, PUMCH, BJFH

A Joint-AI model for clinical diagnosis of PSL

189 in External testing dataset

1205 Images

351 in Development dataset

6181 Images 
88 in Internal testing dataset

1545 Images
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eFigure 2. Questionnaire for Endoscopists on the Usage of the AI Models 

 
Endoscopists were required to finish the questionnaire at the end of the study. The “joint-CNN” was the previous name of the “joint-
AI” model. To avoid potential confusion, we changed to name to the “joint-AI” model when drafting this paper. The sample is the 
translated version, as the original one is written in Chinese.  
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eFigure 3. ROC Analyses of Different Feature Fusion Strategies 
 

 
The models developed by strategy A, B and C were compared on the internal testing dataset in image and patient phase. Strategy 
C, due to its direct fusion of predictions according to entire images and clinical features of patients, could only be evaluated in the 
patient phase. The strategy with the best performance (strategy B) was selected to develop the final joint-AI model. ROC, receiver 
operating characteristic; AUC, area under the curve. 

 

 

  



© 2024 Cui H et al. JAMA Network Open. 

eFigure 4. AI Models’ Performance in Differentiating Carcinoma and Noncancerous 
Lesions in the Patient Phase 
 

 
 
The performance of the AI models in the patient phase. Model-3 was developed based on both clinical information and EUS images, 
whereas Model-1 was trained on EUS images only. The internal testing dataset was collected from WHTJH, Wuhan Tongji Hospital. 
Three external testing datasets were involved: NJDTH, Nanjing Drum Tower Hospital; PUMCH, Peking Union Medical College 
Hospital; BJFH, Beijing Friendship Hospital. ROC, receiver operating characteristic; AUC, area under the curve. 
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eFigure 5. The Grad-CAM Analysis 

 
 
Representative EUS images and their corresponding Grad-CAM heatmaps. The heatmaps display the model’s focused area within 
the EUS images. The upper pair presents a carcinoma lesion (A), while the lower pair exhibits a benign lesion resulting from chronic 
pancreatitis (B). The presence of a heated area in the Grad-CAM heatmap for the chronic pancreatitis can be attributed to its shared 
image features with the pancreatic cancer. However, despite the presence of these shared features, the model's predicted probability 
for the image of chronic pancreatitis does not exceed the diagnostic threshold for carcinoma, leading to a negative prediction. Grad-
CAM, gradient-weighted class activation mapping. 
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eFigure 6. The SHAP Analysis 
 
 

 
The upper one depicts the global explanation provided by the SHAP analysis, illustrating the impact of features from different 
categories on the output of the joint-AI model. This analysis encompasses all cases in the joint-AI model, with each dot representing 
a specific case (A). The lower one is a representative local explanation generated by the SHAP algorithm for a specific patient (B). 
SHAP, Shapley additive explanations. 
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