Supporting Information

Purification of DNA nanoparticles using photocleavable biotin tethers

Heather R. Everson,^{a†} Kayla Neyra,^{a†} Dylan V. Scarton,^{b,c} Soumya Chandrasekhar,^d Christopher Green,^e Thorsten-Lars Schmidt,^d Igor L. Medintz,^e Remi Veneziano,^{*c,f} and Divita Mathur^{*a}

^{a.} Department of Chemistry, Case Western Reserve University, Cleveland OH 44106.

^{b.} College of Science, Interdisciplinary Program in Neuroscience, George Mason University, Fairfax VA 22030.

^{c.} Institute for Advanced Biomedical Research, Manassas VA 20110.

^{d.} Department of Physics, Kent State University, Kent OH 44240.

e. Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington DC 20375.

^{f.} College of Engineering and Computing, Department of Bioengineering, George Mason University Manassas, VA 20110. *rvenezia@gmu.edu, dxm700@case.edu.

† Equal contribution.

Table of Contents

Title	Page		
Quantification estimate of aPCR scaffold recovery	S2		
DNA origami 48 helix bundle (48hb) design and staples	S2		
UV Photocleavable string of lights setup	S8		
Effect of different bead amounts on 6 helix bundle (hb) and PB purification			
Yield estimate for aPCR-generated scaffold			
Comparison of PC-biotin purification method with existing techniques			
48hb purification using a longer PC-biotin linker	S12		
References	S13		

QUANTIFICATION ESTIMATE OF aPCR SCAFFOLD RECOVERY. We performed 23 individual aPCR reactions of 50 μ L each by using the OneTaq enzyme to produce ssDNA scaffold at a length of 1,644 nucleotides from the M13mp18 phage template as previously described.¹ We purified 20 of these tubes by running them on a 75 mL, 1.2% low-melt agarose gel at 100 volts for 30 minutes and then recovered the ssDNA via the Zymoclean Gel DNA Recovery Kit (#D4008). From the remaining 3 unpurified tubes, a portion was run alongside known amounts of purified sample in a 40 mL, 1.2% high-melt agarose gel at 100 volts for up to 30 minutes. Finally, we measured the individual ssDNA band brightness with the ImageJ Rectangle & Measurements Tools to create a standard curve from the known purified samples and estimate the ssDNA concentration from the unpurified sample.

DNA NANOSTRUCTURES DESIGN AND BIOTIN SITE SELECTION

48hb Design. The 48 helix bundle (48hb) was created using caDNAno2.² Structure file will be made available on nanobase.org and the cross-section helix layout (derived from caDNAno) is shown in **Figure S1**. The .JSON file was converted to a .PDB version using CanDo³ and visualized in UCSF Chimera⁴ to identify staple sites that would be PC-biotin modified. All sequences are available in **Table S2**.

6hb and PB Design. The other two structures were used using published works by Oktay et al.¹ Staples to be modified with PC-Biotin were identified in the same manner.

Choice of PC-Biotin staples were driven mainly by the accessibility of the staples in 3D atomic models. The staples chosen to tag with PC-Biotin were based on whether the 5' end of the staple strand was facing outward in the middle of a face or on the structure edge of 48hb. Five thymine residues were added to the beginning of the staple sequence to provide biotin/streptavidin binding flexibility.

Figure S1: Cross sectional helix layout of the 48hb.

Figure S2: Representative TEM images of crude 48hb.

Photocleavable biotin modified staples for the 48hb.

Structure	Name	Sequence (5' -> 3')
48hb	48hb_128_PCBio	/5PCBio/TTTTTTTGCTCAGTACTGTATCAGCCCAATCCTGTAGTAAACAACGAA
	(corner)	
	48hb_106_PCBio	/5PCBio/TTTTTAATACCGATATACCTTTTCAAGCGCCATTCGAAA
	(face)	
6hb	6hb-1[2]-PCBio	/5PCBio/GTCAAAGGGCGAAAAACCGTCTA
	6hb-5[238]-PCBio	/5PCBio/TTTTTGTCAAAGGGCGAAAAACCGTCTA
PB	PB-17-PCBio	/5PCBio/GATTTTCAACCGCCTGCAACAGTGCCACGCT
	PB-24-PCBio	/5PCBio/AAAACAGAACATTTTGACGCTCAATCGTCTG
48hb-	48hb_128_PCBioTE	/5BiotinTEG/iSp18//iSpPC/TTTTTTTGCTCAGTACTGTATCAGCCCAATCC
long	G (corner)	TGTAGTAAACAACGAA
linker		
	48hb_106_PCBio	/5BiotinTEG/iSp18//iSpPC/TTTTTAATACCGATATACCTTTTCAAGCGCCA
	TEG (face)	TTCGAAA

Table S1: PC-Biotin staple sequences

Table S2: 48hb staple sequences

Name	Start	Sequence	Length
48hb_2	45[102]	CACCCGCCACAGAACCGTTGAGATCCTTATGCGAT	35
48hb_3	5[108]	GGGTCACAATTCAGGTCGACTCTAGCCAGGGTTGGGAAGTAGTTTGTTT	50
48hb_4	15[46]	ATTACGTTATATTTGAGCAGTTGAAAAGCATAGAAGATTAGTCTTGGG	48
48hb_6	0[93]	GGACTCCAACGCAGGCGAAAATCCTATTTAAGTCATTGTTG	
48hb_9	3[129]	TCACGGGAAACCTAACTCTGTGTGACCGGGTACCG	35
48hb_12	17[101]	GTAAGCTATTTCCTGAGAGTCTGGAATTGTATTTTT	
48hb_15	41[94] GTTTATCAGCTCTCCAAAAAAGAGGATTGTGTATCGTCAGGTAATAATAA		50
48hb_19	17[59]	AGTATGAATAAGATGGCAATTCATCCGTATTAAGACTTTTCTGGTCTCAA	
48hb_21	15[88]	CAGATTGTAAACGTTTCGAACGTGGTCAAAGGGCG	35
48hb_23	47[59]	CTGAAACATGACGTCATATCTCTGAAGAGCCGCGCCACCAGCG	43

48hb_24	8[45]	ACATTCTGGCCTACCTACCTTGCTGGTAATATGAGTAAAAGGT	43	
48hb_28	2[80]	AGGAAGGGAAGAGCCGGCGACAACTAATATAATCCTGGGCTAT		
48hb_32	45[60]	CAGCATGGCTAAATAGCCTAACGAGCTATTTTGCA	35	
48hb_36	2[59]	GAGCGGGCGCTGATTTAGTGCCCGAATCAGATTGGAAGGGTTA	43	
48hb_38	0[50]	GGCCCACTAAGCCCCCAGGGCGCACTATGGGGGGATTTGTC	40	
48hb_40	41[115]	GTGAATTTCTTTAATTTTTAAAACACATTTGTAATCCCCCAAAAGAACAAA	50	
48hb_43	43[52]	ACCCTCAGAACCCACCAGCAATGAAGGGAGAAAGCCGTTCAATAGCAAC	49	
48hb_44	0[113]	AGTCCACTATGGTGGTAGCGGTCTGGGCGCGCATTAACTG	40	
48hb_45	22[16]	GCAGGCACAGGTATTAATCAGTGAAATCCTGAGAAGT	37	
48hb_47	31[46]	AAGTCAGATAATCGAGAATTTACGAATGCAGCGAG	35	
48hb_54	32[23]	AAAATAAGAAGGGTAATAGAATTGAAACGCATGATTAAAAATTCACGA	48	
48hb_57	40[24]	TAGCACCATTAAAAAGGGTATGGTTTTCTTACCCGACAAACAT	43	
48hb_59	0[72]	AAAAACCGTCCGGGGAAAAAGCGAACGTATACTAAACATTG	41	
48hb_60	31[88]	TTGATACCACATTCAGAAGAAACAAAATT	29	
48hb_63	23[24]	CAAATATATTATTACTAAAGCCAACAATAGAGAC	35	
48hb_67	42[107]	AATTGCTTTCCTTGCAGGGAGTTAAGCGAAAAATGCCATATCGCGCGGA	49	
48hb_69	5[45]	CATCTATCGGCATTTTGACGCTCAAAATAAAATAATGCGGTTATATGTCA	50	
48hb_71	32[44]	GAGAACGTCAAACACCCATAAGAGGTTACCACAGT	35	
48hb_74	46[44]	AGGAAGCCAGACCAGAGCAGAGCCTCGGTCAGTAATCAAAT	41	
48hb_77	30[94]	AGGATGAATTAGGTTTAATTTCAACATGTAATCTTGACACCTCAGACCT	49	
48hb_79	45[123]	CAACCGTACTAAATCAAAGAACGAGGCTCATTATACCAACATTATAGCA	49	
48hb_80	23[45]	CATCTTCTGACAGAATAAGCTTAATATAAGTTTTAGCAAGGCATTTGCC	49	
48hb_81	40[45]	TAGAGCCAGCATTGAGGGTCACAATCGCTCAAGTAA	36	
48hb_83	2[92]	CCCCAGCGATTGGAGAGGCGGTTTCGGATTAAATTCGTAAATGC	44	
48hb_84	31[109]	TTTTTCATCAGGAATTACAGAGGGTAAATATAGCAAAGTTTTAATGCG	48	
48hb_85	46[23]	TTTCAAACAAGACAGGACACCACCGCGTTTGGAAACCACAG	41	
48hb_89	40[87]	TTGCGGAATTATCACCGTCCTTTAGCGCCTTTAATTGTACTT	42	
48hb_90	42[128]	TAAAAACAGCCGATATATTCGGTCGAGGGTACATTAAATCAAAGCCTAT	49	
48hb_92	41[60]	ATCTTTCATCACGTAGAGATAGCCCTGTTTAAATATCCAATTTCAAATA	49	
48hb_93	39[137]	AGAGCATAACTTGATACCGATAGTAACTAAACAGCGATTA	40	
48hb_94	45[144]	TACTAGCCCGTCATTCAGT	19	
48hb_95	6[80]	AACATCACTTGAATACTTCATTAAATCAAACCTAAATCATACCTTTTGAA	50	
48hb_96	16[44]	GAAGATGAATAAATCGCTAATTACTGCTTCTGAGAAGAAACTATATTT	48	
48hb_98	15[25]	GGATGAGTAAAGAGCCGGGTTATCCCAGCAGGCGG	35	
48hb_99	8[87]	CGACGGGCAGATTCACCATAAAACATTAACCTATCATAGCAAC	43	
48hb_100	6[59]	AGAACTCAAACACGCAAACACCAGCCACCTTGATAACCTATTT	43	
48hb_101	0[30]	ACCCAAATCACTAAATCGTCACGCATGCGCCACGCCAGGGC	41	
48hb_102	9[94]	TTCATTCGCAAATGGTACATGCTGTAGCTCAAGCTTAATCTT	42	
48hb_103	24[129]	TGATAAGAGGTAAGTACGGTAGATTGGCGATCACTCCAGGAGTGAGCTG	49	
48hb_106	23[74]	AATACCGATATACCTTTTCAAGCGCCATTCGAAA	34	
48hb_112	2[38]	CAAGTGTAGCGGGAACCCAAAAGTTATTATCATATCAAAATTA	43	
48hb_121	4[122]	TCGTGCCAGCTCAGGGTGATGTGAGTAAATCATTTTAGAAAAGGGTAGAA	50	
48hb_125	6[101]	CACAACATACGAGCCGGTAGTGCCAAGCTTGCCGTTGTACCA	42	

18hh 126	15[130]		35		
48hb 127	6[114]	GCTGCCTAATCCAGCTTGTTGGTGGGCAAGGGTTGTACGTT			
48hb 128	47[122]		43		
48hb 132	31[67]		35		
48hb 135	16[107]	GTAAGATTCAACCCTCATAAATCGCAAAGAAATTT	35		
48hb 136	16[23]	TTTAGATTTTTTCATTTCAAACATTTAATTAGATAGCTCAAATCCTTT	48		
48hb 138	45[82]	ACCGCCACCTCTAAAGTTTTGACCTTA	27		
	24[108]	GATGGCTTAGACATGTTTGATACATGGCTGCGCCGCTTCGTAAAGCTGA	49		
48hb 150	5[66]	TAGCCCTGAGTAAATGGATTATTTACATTGCCAAT	35		
48hb 151	16[94]	AGAGATCTACAATCTGAGTAATGTGTTT	28		
48hb 156	5[24]	CACCCCAGAACAACGCTCATGGAAAAACAGAGTTTTGAAGCTGATGTAGA	50		
48hb_158	47[81]	GGCTGAGACTACCGCCACCCTCTCGAATAACTTATCCTGAA	41		
48hb_161	33[17]	CCAATAAACAGCCGACTTGCGGGAGGGTATTCATTAAACAATC	43		
48hb_163	42[65]	CGTAAGTTTGCACCGACTTGAGCCTTGACGGCCACGGATGAGAATGGCA	49		
48hb_164	4[101]	ATCGGCCAACGCGCGGAGTAGAAGCATAAAGTTGGTGCCGACC	43		
48hb_166	42[86]	AAAAGGAGTCAGGTGGCCCTTTTTGTTAGCGTCCAATAAAGATT	44		
48hb_168	45[31]	AATCCTCATTAAGTGTACTTTGTTTCCTAATTAGCCTTAAATC	43		
48hb_170	32[73]	TCTTACCAACGAGCCTTTATTAGACATAGCAAGTAAGCAAAAT	43		
48hb_171	43[102]	TGAAGTTAGCTACTTAGTGGCTGAGCCAAAAGTTGAGATAG	41		
48hb_173	16[136]	TTCTAGCTGATGCCGGAGGCAAGGAATTATGACAATAAATGAA	43		
48hb_176	2[122]	GAGTTGCAGCATCCGAAACAGGAAGGCAAACATGCCGGAGAGG	43		
48hb_1	35[39]	ATATGAACAACGCACTCTAGAAGGAACGTCACCTACCATCATATTCCTG	49		
48hb_5	10[128]	CGCGGTGCGGTAAGTTGGGTAACGAGGATCCAATTGTTATCC	42		
48hb_7	6[148]	GGTCATAGCTGTTTCCACATTAACTCAGGAGTAA	34		
48hb_8	8[155]	AGGGGGATGTGCTGCACGAATTCGT	25		
48hb_10	26[44]	CCACAGTAGGACACCGGAATCATATAGTTAATGTAAATTGGCTATAAAA	49		
48hb_11	26[37]	TAAAGACGCTGTAAATCAAAATCTAAGGAATGGCGCGTTGG	41		
48hb_13	19[53]	AACCATCCTAACAAGCATTAACTGAAAATGATTTGATGACCTATTATT	48		
48hb_14	18[90]	AATGCAAGAAAGCCTCAGAGCGTAAAATACATAACCCTTCATC	43		
48hb_16	27[95]	GGACGAAATCCGCGAGCAACAACCTAAAACGAAAAAGGACGTTAGTAAA	49		
48hb_17	35[81]	CCGAAACAGGAGACTAATGCAGATGTTTAGACTGGACCTTTA	42		
48hb_18	35[109]	AACCTGATAACAAAAGAAATACGTGACAGCATCGGAACGCTGAGGGAG	48		
48hb_20	3[8]	CCCGCCTCTTTAGACAACTACTGAGC	26		
48hb_22	30[114]	AGAAAGAACTGTAGTAAATTGGGCGATATTCCATAGGCCCGG	42		
48hb_25	10[58]	AACTTAACCGGGAGGCCGATTAAATTGCTTTAAATCAAGATT	42		
48hb_26	19[8]	GAAGATTGTCTTTTTCCAAGTAATAT	26		
48hb_27	35[8]	GAGATAGCAGGTCGGCCTTGATATTCAAACGGGGAAT	37		
48hb_29	18[58]	CCAAAGTATTAATCCTTAGCTTGATATCAGGGCGAT	36		
48hb_30	21[116]	GGGAGTCAGATCATTGATCATCGCGAGGCGCCAGACAGTTCAGGGATAG	49		
48hb_31	38[148]	AGACTTTTTGCAAACTAAAATCACAATTCTAC	32		
48hb_33	46[155]	ATATAAGTACGTAACACT	18		
48hb_34	10[37]] CAGAGAGTCTTAGACAGGAACGGTGCTACAGTGAGGAATCAA			
48hb_35	26[58]	GAGGTGAATTTGAGTGACTGAACCAGTTGGCGACGAGCAAG	41		

48hb_37	21[18]	AGCATTTTCCCTGAGAGTAAAATAGCGCTTATGCGCGTAACCAC	44	
48hb_39	18[37]	AGGATAATACTAATTTTTAAAGGGCGTGAACCATC		
48hb_41	13[109]	TGTCGAGTAAAGGTCACTCCGGCACAAC	28	
48hb_42	34[30]	AGAACGATTTTGGTAATATGCCCCCTGCCTATTTCGGAATAC	42	
48hb_46	29[130]	ACACTTTTGCTCAAATGACCCTGAGAACCAGTTT	34	
48hb_48	13[32]	TAGCGAATTACAGGTTTCTTATCCGTTTTGATGCCAGTTACA	42	
48hb_49	21[130]	AAGCGAACGAGTGTCTGGAAGTTTTTGCTCCACCGGAACATGAGGTGAC	49	
48hb_50	26[121]	TATCGCGAGCTCATACATAGATGGACATTAAGTTTTTCAGA	41	
48hb_51	37[46]	ATGTATTTTGAGGGAAGGTAAATAATTTGGGGTAGCGACAGA	42	
48hb_52	32[148]	GGCTTGCCCCGTTGGGAAGAAAAT	25	
48hb_53	11[67]	ATAAATACCGATAGCCCGTCACACGACCAGTTCGTCTGAGA	41	
48hb_55	13[53]	TAGAGTTACAATACAGTAAGCAAAATTAGTTGCGTCTTTCCA	42	
48hb_56	24[155]	TAGAGAGTACCTTTAACATTCCATA	25	
48hb_58	13[74]	ACAGCCTGATCATCGGGATCATTAAGCTACAATTTTTAATCA	42	
48hb_61	21[53]	ATAGCATTTTAACGCGCGAACAAACAAGAAAAACCACCAATGGAAAGCG	49	
48hb_62	40[155]	AACAACCATCGCCCACGGCTTTGAG	25	
48hb_64	18[135]	AACACAGTCACGGAACAGTCAGGATGACGAGAAACACCCGTAACAGAAC	49	
48hb_65	34[148]	TTGAAAGAGAACCCTCGAACTAAAATCACCAT	32	
48hb_66	23[7]	ACGCGAGAGTATCAATACCAG	27	
48hb_68	42[155]	GAAAGGAACTGCGCCGAC	18	
48hb_70	33[8]	TATCCCTCAGTGCCAGTGCCCGTATAAACAGTTAAAGT	38	
48hb_72	4[148]	TGCCCGCTTTCCAGTCCAGTGAGGCCAGCTCAATAGGTTTC	41	
48hb_73	18[16]	TACATAGATTCATTATCTAAAGCAAGTTTTTTGGGGGT	37	
48hb_75	11[95]	GTAAATTAAGCAATAAAGCAATAACCTGTTCATCAAACTGC	42	
48hb_76	26[100]	TTGTAGCTATTTAGCAAATGGGATCAACCCGTGCGTATCACGCTGGTTTG	50	
48hb_78	37[67]	ACAAAAGACAAAATTATTCATTAAAGGTGGATATAAAAACAAGCC	45	
48hb_82	26[65]	TTACGCCATATAAGGCGTTAAATACTAAATTAGGTTGGCGAACTGAACG	49	
48hb_86	10[30]	GAGCAAATGAGTCGCTACAAGAAAAGAAACCCAAGTACAGTC	42	
48hb_87	9[109]	TGTTTTCCCAGTCACGAATGCCTGCCA	27	
48hb_88	27[137]	AAAAAAGTACAAGGGAATACAACGAGGAACCCATG	35	
48hb_91	5[8]	TTATAACACCGCCTGCCACGCTTAGA	26	
48hb_97	34[122]	CAGATAGTAAGTACAGGTGAGAAAGAAATTAAAGAGAATCGAT	43	
48hb_104	0[148]	AGATAGGGTTGAGTGTTGTTCCAAATCCCTGGCCCTGTTT	40	
48hb_105	22[148]	TTGATTCCCCGCTATTTATCGGCTTGCGTTGC	32	
48hb_107	47[94]	CAAGAGAAGGATTAGGATTTTAGTACCTCATTCCCTCATATTTTCTTGAA	50	
48hb_108	34[128]	GGTCAATCATAACGGAGTCATCTTAAGTTTCGCAACGGCTAC	42	
48hb_109	25[94]	CAAACTACGAAGGCACCATCGTCACCCTCAGCAAGGCCGTCG	42	
48hb_110	21[109]	TCAACCATTATAAATATGCAACTACATTTTTTCGAGCTCGGGTAAATA	48	
48hb_111	34[89]	AAGAAAAACCTGCTCCATGTGTAACGACTCAGAGCCAC	38	
48hb_113	28[115]	TTGCCGAGGCACCAGGCGATTACCCCAGGAGGTAGCGGGGTT	42	
48hb_114	36[16]	TAAACGACGAAATCGGCGATGAAACAAT	28	
48hb_115	37[74]	TAAAGACTGTCTCAGAGCCTCGTCTTTCCAGCTCC		
48hb_116	21[8]	TTGAAAAAGGTAATGTCCAGCGGAAT	26	

48hb_117	25[84]	CGAAAGATGCTGAATACCGTGTGATAAATTTAACAGAAACGCTACA	46
48hb_118	7[8]	TTGCAAACCTGAAAATACGTAGACAAA	27
48hb_119	16[148]	GATATTCAACGTAAAACTAGCATGT	25
48hb_120	37[31]	TCCTCTTATTAGGAACCGCCTCCCTCCGCCGCCCCA	36
48hb_122	19[102]	AGCTATATTTCATTAAAAAGCAAATGTTTGATTAAAGAACGT	42
48hb_123	30[155]	TAATAAAACGTTTACCAG	18
48hb_124	37[115]	CACTTTCACGTGTATGGGATTTTGCCATTCCAAGACGGTGTA	42
48hb_129	16[78]	GTTTGGATTATACTTCCCTTTTATGCT	27
48hb_130	26[84]	AAGAGGGCGTCTGAGCAGTACACTAAACGGCGGATTGGAAAC	42
48hb_131	26[72]	ATGTAGATAAAAGAAAATAGCTATCACCCTCATTTACCGTAGA	43
48hb_133	28[155]	ATAAAAACCGAAAACGAG	18
48hb_134	10[84]	CAGGCAGCCTTTGATAATCAGAGCGGGAGACGTGCTATCAATAACAA	47
48hb_137	10[23]	TCAACAATATATAGAACCCTTCTGCAGGAAAAATATTACCGCCA	44
48hb_139	14[155]	ТАТСТАСССТСАААААТА	18
48hb_140	12[155]	GTCTGGCCTGCCAGTTTG	18
48hb_141	39[8]	AAAGACCCATTAGGAAACGTCACCAATCCATCTTACTGGCAATAA	45
48hb_143	19[123]	AACTAAAAATGCTCATTCCAAAAATCGGCAAGTTTGGAACAAG	43
48hb_144	34[16]	CGCAACGGGTTAAGAACATTGCGTGCACGTACCAGAAGGAGC	42
48hb_145	26[155]	CATAAATCACCAACAGGT	18
48hb_146	37[137]	CCCGGAATTGCTTTCAACAGTTTCTACAAACCCGAACTGA	40
48hb_147	18[148]	AAGCCTTTAAACGCCACGGTTGACAAAAGAAT	32
48hb_148	28[23]	ААТСААТАААТАААGTACAGTATAGAAAAAGCCTGTTTAAAAACTTAATC	49
48hb_149	39[24]	CATTCAACCGAAAATCACTCGATAGCAGCACCTAGCCCCTATT	43
48hb_152	2[148]	TTGCCCTTCACCGCCTTATAAATTAATCAGCGGTAATCCG	40
48hb_153	10[155]	CGACGACAGACGCCAGCT	18
48hb_154	17[8]	AAAGAAGCGAGGCGAACCTCCCATAT	26
48hb_155	20[148]	TAGTAGCATTGCATCTTCCTGTAACGGGCAAC	32
48hb_157	36[148]	GCGCGAAACCAGTTCAAAAATAGATACTTTTG	32
48hb_159	1[8]	GTGCCGATTTTGCGAAACCAAAACAG	26
48hb_160	7[136]	AGCTAGGCGATGCCTCTTAATTCTGGTGGCATGGTCTTTCTT	43
48hb_162	18[65]	TTGTTTGAATATATATGTATCAAACCGGCTTTAATGGTTTGA	42
48hb_165	37[39]	ACGGAAGGAATTCAGCTAGCATGTACAAAATGCAG	35
48hb_167	44[155]	CGTCACCAGAGCGGAGTG	18
48hb_169	21[32]	TTAGAGAATACAACATGACCGAGGAGTTAAGCAGCATTATA	41
48hb_172	34[135]	GATAAGCTGCGAATAGGCAGGCGGATAAGTGCCGTCGAGA	40
48hb_174	11[137]	CCGTAACATCCCCTGTACGAGAGGCTATCATGACA	35
48hb_175	19[81]	ATGCGGATTCATAATATTTTGTTACTCCGTGGGAACCATTCCTCGGAA	48
48hb_177	37[8]	AAAAGATTCATAAACCGGAACCAGAGCGGTTGAGACCCACATGAG	45
48hb_178	28[72]	CAATCATCGTGAAGCGCACAGAGACAGTAAGAAGTATTAAGA	42

UV PHOTOCLEAVAGE SETUP USING STRING OF LIGHTS

Figure S3: String of Lights for UV-photocleavage of the DNA NPs from the beads.

EFFECT OF DIFFERENT BEAD AMOUNTS ON 6HB AND PB PURIFICATION

Figure S4: Agarose gel electropherogram testing different bead dosage on 6hb and PB purification. Color triangles represent: dsDNA byproduct (orange), ssDNA scaffold (yellow), and the formed PB NP (blue).

Figure S5: Yield of purification for 6hb and PB assembled using crude scaffold. Error bars represent standard deviation from the mean (n = 3).

YIELD OF aPCR-PURIFIED SCAFFOLD STRAND

Figure S6: Estimation of scaffold concentration in crude aPCR mix using standardized pure scaffold series. Yellow triangle indicates scaffold and orange triangle indicates dsDNA by-product of the aPCR.

COMPARISON OF PC-BIOTIN PURIFICATION METHOD WITH EXISTING TECHNIQUES

Figure S7: Yield and quality of PB purification via commonly used techniques. 2% agarose gel electropherogram showing PB purification using current method (PC biotin tag), PEG precipitation, two filter types of ultrafiltration, and gel extraction Freeze 'N Squeeze column. Color triangles represent: dsDNA byproduct (orange), ssDNA scaffold (yellow), and the formed PB NP (blue).

Table S3: Broad differences between the PC-biotin based purification technique and other leading techniques.

	Time	Quality	Requires concentration	Yield	Refs
PC-Biotin	4 hours	1 step custom scaffolded DNA NP purification	No	<90%*	This work
Precipitation	overnight	Cannot remove dsDNA aPCR byproduct; May be challenging to purify wireframe DNA NPs	No	>90%**	5-6
Ultrafiltration	2 hours	Cannot remove dsDNA aPCR byproduct	No	20-80%	1, 7-9
Gel-extraction	2-3 hours	Residual agarose particulates, variable yield	Yes	< 20%	Figure S7
Biotin-strand displacement	overnight	Theoretically 1 step, requires DSD staple extensions	Yes	> 90%	9-10

*Longer PC-biotin linker with 50-fold beads. **PEG precipitation on wireframe PB was 0% efficient but sufficient literature points to >90% efficacy of the technique to purify helix bundle DNA NPs. DSD = DNA strand displacement.

48HB PURIFICATION USING A LONGER PC-BIOTIN LINKER

Figure S8: Purification of 48hb using BiotinTEG-sp18-PCspacer linker. 1% agarose gel electropherograms representing the yield of 48hb purification using a longer PC-biotin (referred to as PC-biotin-L) tether staples. (A) Gel separation and purification yield of 48hb when using either face or corner or both PC-biotin-L staples simultaneously and 200X BBC. Surprisingly, the face PC-biotin-L tether (staple 106 in Table S1) resulted in highest yield ~80%, even higher than when using both staples together. (B) Gel separation and purification of 48 hb (corner PC-biotin-L only) with 200-, 100-, 50-fold excess magnetic beads per PC-biotin-L staple. In this case, fewer beads lead to the highest yield of 91%. Sample abbreviations M13: scaffold only, C: Crude 48hb, S: supernatant, P: Photocleaved/purified 48hb. (C) Chemical formula of the PC-biotin-L tether. IDT formula: 5'-/BiotinTEG//sp18//PCspacer/. Standard deviation about the average yields were calculated from n = 3 samples.

References:

1. Oktay, E.; Bush, J.; Vargas, M.; Scarton, D. V.; O'Shea, B.; Hartman, A.; Green, C. M.; Neyra, K.; Gomes, C. M.; Medintz, I. L.; Mathur, D.; Veneziano, R., Customized Scaffolds for Direct Assembly of Functionalized DNA Origami. *ACS Appl Mater Interfaces* **2023**, *15* (23), 27759-27773.

2. Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M., Rapid prototyping of 3D DNA-origami shapes with caDNAno. *Nucleic Acids Res* **2009**, *37* (15), 5001-6.

3. Castro, C. E.; Kilchherr, F.; Kim, D. N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H., A primer to scaffolded DNA origami. *Nat Methods* **2011**, *8* (3), 221-9.

4. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E., UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* **2004**, *25* (13), 1605-12.

5. Stahl, E.; Martin, T. G.; Praetorius, F.; Dietz, H., Facile and scalable preparation of pure and dense DNA origami solutions. *Angew Chem Int Ed Engl* **2014**, *53* (47), 12735-40.

6. Lei, Y.; Mei, Z.; Chen, Y.; Deng, N.; Li, Y., Facile Purification and Concentration of DNA Origami Structures by Ethanol Precipitation. *ChemNanoMat* **2022**, *8* (7), e202200161.

7. Mathur, D.; Medintz, I. L., Analyzing DNA Nanotechnology: A Call to Arms For The Analytical Chemistry Community. *Anal Chem* **2017**, *89* (5), 2646-2663.

8. Neyra, K.; Everson, H. R.; Mathur, D., Dominant Analytical Techniques in DNA Nanotechnology for Various Applications. *Analytical Chemistry* **2024**, *96* (9), 3687-3697.

9. Shaw, A.; Benson, E.; Hogberg, B., Purification of functionalized DNA origami nanostructures. *ACS Nano* **2015**, *9* (5), 4968-75.

10. Ye, J.; Teske, J.; Kemper, U.; Seidel, R., Sequential Pull-Down Purification of DNA Origami Superstructures. *Small* **2021**, *17* (17), e2007218.