
Supplementary Materials of Interpretable Deep

Learning Methods for Multiview Learning

Hengkang Wang1, Han Lu2, Ju Sun1, Sandra E Safo2*

1Department of Computer Science and Engineering, University of
Minnesota, Minneapolis, 55455, USA.

2*Division of Biostatistics, University of Minnesota, Minneapolis, 55455,
USA.

*Corresponding author(s). E-mail(s): ssafo@umn.edu;
Contributing authors: wang9881@umn.edu; lu000054@umn.edu;

jusun@umn.edu;

1 More on Methods

1.1 Optimization and Algorithm

We solve the optimization problems iteratively using ADAM[1] with β1 = 0.9 and
β2 = 0.999. We initialize the weights and biases of the network by using the default
settings in PyTorch and the shared low-dimensional representation matrix with num-
bers drawn from the standard distribution. Our algorithm is divided into three stages.
The first stage is the Feature Selection stage. In this stage, we solve the optimization
problem (3) or (5) [main text] to obtain features that are highly-ranked. In particular,
we feed forward the network with the weights and biases to obtain Gd(Z). We com-
pare Gd(Z) with the training data and measure the error using the loss function. We
perform a backwards pass and propagate the error to each individual node using back-
propagation. We compute gradients of the loss function with respect to the inputs of
iDeepViewLearn (i.e. with respect to the weights and biases), for Z fixed, and adjust
weights using gradient descent. Then, we optimize the loss function with respect to
Z, while keeping the weights and biases fixed. We repeat the process iteratively until
the difference between the current and previous iteration losses is very small or a
maximum number of iterations reached. Please refer to Algorithm 1 for more details.

The second stage is the Reconstruction and Training stage using selected fea-
tures. Here, we solve the optimization problem (6) [main text]. Our input data are

1



the observed data with the selected features (i.e. top r or r% features in each view),
X

′(1) . . .X
′(D). We proceed similarly like the first stage, and we iteratively solve

the optimization problem until convergence or some maximum number of iteration
reached. At convergence, we obtain the reconstructed data Rd(Z

′), and the learned

shared low-dimensional representations, Z̃′ based on only the top r or r% variables in
each view. Downstream analyses such classification, regression, or clustering could be
carried out on this learned shared low-dimensional representations. For instance, for
our simulations and real data analyses, we trained a support vector machine classi-
fier using these shared low-dimensional representations. Additionally, for the real data
analyses, we trained a K-means clustering algorithm on the shared low-dimensional
representation to obtain clusters common to all the views. We note that downstream
analyses such as clustering could be implemented on the reconstructed views for view-
specific clusters, in addition to the joint clusters. Please refer to Algorithm 2 for more
details.

The third stage is the Prediction stage, if an outcome is available. Here, we solve
the optimization problem (8) for the learned shared-low dimensional representation

(Z̃′
test) corresponding to the testing views (X

′(1)
test . . .X

′(D)
test ). We use the learned weights

and biases from the second stage, and we implement a stochastic gradient descent algo-
rithm. Since the network parameters (i.e. weights and biases) are fixed, we only update
the loss function with respect to Z′

test. Please refer to Algorithm 3 for more details.
We use the automatic differentiation function “autograd” in Pytorch to estimate the
gradients of our loss function with respect to the network parameters or latent code.
We use Exponential Linear Unit (ELU) [2] as our nonlinear activation function.

1.2 Hyper-Parameter Selection

There are several crucial hyper-parameters for our proposed model, including λd, λ
′d,

number of latent components K, learning rates of neural networks for various views,
and learning rate of the latent code Z. We also add essential hyper-parameters of
downstream models to our search space. For example, we also tune regularization
parameter C and kernel coefficient γ when adopting Support Vector Machines (SVMs)
with Radial Basis Function (RBF) for classification tasks. Particularly, λd is set to
be 0.1 as default due to its insensitivity; the upper bound of K is r or the minimum
of the numbers of features from all the views times r%; learning rates for different
neural networks are unified for simplicity. Since the hyper-parameter search space is
not small, we obtain all combinations of our hyper-parameters, and we randomly select
[3] some combinations of hyper-parameters to search over.

2 More on Simulations

2.1 Linear simulations when prior information is not available

We simulate data with D = 2 views, and K = 3 classes following the simula-
tion setup in [4]. For each view, we concatenate data from the three classes i.e.,

X(d) = [X
(d)
1 ,X

(d)
2 ,X

(d)
3 ], d = 1, 2. The combined data

(
X

(1)
k ,X

(2)
k

)
for each class are

2



Algorithm 1 First stage: Feature Selection

Input: Training data from different views X(1),X(2), ...,X(D). Each variable in a
view is standardized to have mean zero and variance one, but no standard-
ization is allowed when facing images because variables, i.e., pixels are not
independent; neural networks G1, G2, ..., GD for each view; Laplacian (L(d)) for
network-based approach; learning rate l1, l2, ..., lD for neural networks G1, G2, ...,
GD respectively; latent code (or shared low-dimensional representation) Z with K
components; learning rate lZ for the latent code Z; number of iterations I

Output: Optimized weights and biases for neural networks G1, G2, ..., GD; optimized
latent code Z; indices I1, I2, ...,ID for important features of each view

1: Initialization Initialize neural networks G1, G2, ..., GD by the default settings of
PyTorch; Assign random numbers from the standard normal distribution for the
latent code Z

2: while i = 1, 2, ..., I do
3: Feed forward the network of latest weights and biases to obtain the reconstruc-

tions of each view (i.e. Gd(Z))
4: Apply equation (3) or (5) to calculate losses with X(1), . . . ,X(D)

5: Compute the gradient of weights and biases for each network and the latend
code Z by the PyTorch Autograd function

6: Update the weights and biases with specified learning rate α
7: end while
8: Feature Selection Feed the learned latent code Z into neural networks G1, G2,

..., GD to obtain reconstructed data Gd(Z) for the observed data X(d). Calcu-
late column-wise norm of Gd(Z). Choose the columns with large column norm
as important features for that view. Save the indices of important features as
I1, I2, ...,ID. Denote the observed datasets with only the selected features as
X′(1),X′(2), ...,X′(D).

simulated from N(µk,Σ), where µk = (µ
(1)
k ,µ

(2)
k )T ∈ Rp(1)+p(2)

, k = 1, 2, 3 is the com-

bined mean vector for class k; µ
(1)
k ∈ Rp(1)

,µ
(2)
k ∈ Rp(2)

are the mean vectors for X
(1)
k

and X
(2)
k respectively. The true covariance matrix Σ is partitioned as

Σ =

(
Σ1 Σ12

Σ21 Σ2

)
,Σ1 =

(
Σ̃

1
0

0 Ip−20

)
,Σ2 =

(
Σ̃

2
0

0 Iq−20

)

where Σ1, Σ2 are, respectively, the covariance of X(1) and X(2), and Σ12 is the cross-

covariance between the two views. Σ̃
1
and Σ̃

2
are each block diagonal with 2 blocks of

size 10, between block correlation 0, and each block is a compound symmetric matrix
with correlation 0.8. We generate Σ12 as follows. Let V1 = [V1

1, 0(p(1)−20)×2]
T ∈

Rp(1)×2 where the entries of V 1
1 ∈ R20×2 are i.i.d samples from U(0.5,1). We sim-

ilarly define V2 for the second view, and normalize such that V1TΣ1V1 = I and
V2TΣ2V2 = I. We then set Σ12 = Σ1V1DV2TΣ2, D = diag(ρ1, ρ2) to represent a
moderate association between the views. For the separation between classes, we take

3



Algorithm 2 Second stage: Reconstruction and Training

Input: Training data from different view X(1),X(2), ...,X(D), optional class labels or
outcome y; neural networks R1, R2, ..., RD for each view; number of components
K for latent code Z′; learning rate l′1, l

′
2, ..., l

′
D for neural networks R1, R2, ...,

RD respectively; learning rate l′Z for the latent code Z′; number of iterations I;
indices I1, I2, ...,ID for selected features for views 1, . . . , D, respectively.

Output: Optimized weights and biases for neural networks R1, R2, ..., RD; Optimized
latent code Z′ (denoted as Z̃′); a trained classifier C or prediction model
Initialization Initialize neural networks R1, R2, ..., RD by the default settings of
PyTorch; Assign random numbers from the standard normal distribution for the
latent code Z′; Obtain X′(1),X′(2), ...,X′(D) by applying feature indices I1, I2,
...,ID to training data

2: while i = 1, 2, ..., I do
Feed forward the network of latest weights and biases to obtain the reconstruc-

tions of each view (i.e. Rd(Z
′))

4: Apply equation (7) to calculate losses with X′(1),X′(2), ...,X′(D)

Compute the gradient of weights and biases for each network and the latent
code Z by the PyTorch Autograd function

6: Update the weights and biases with specified learning rate α
end while

8: Training Train a classifier C by using the trained latent code Z̃′ and outcome y

Algorithm 3 Last stage: Testing

Input: Testing data from different view X
(1)
test,X

(2)
test, ...,X

(D)
test; learned neural net-

works R1, R2, ..., RD (i.e. weights and biases) for each view; number of components
K for latent code Z′

test; learning rate ltest for the latent code Z
′
test; number of iter-

ations I; indexes I1, I2, ...,ID for selected features for views 1, . . . , D, respectively;
(optional) trained classifier (C).

Output: Optimized latent code Z′
test of testing data (denoted as Z̃′

test); predicted
outcome ŷtest

Initialization Fix neural networks R1, R2, ..., RD trained in the second stage;

Assign random numbers to latent code Ztest; Obtain X
′(1)
test,X

′(2)
test, ...,X

′(D)
test by

applying important features I1, I2, ...,ID to testing data
while i = 1, 2, ..., I do

3: Feed forward the network by the latest Ztest to obtain the reconstructions of
each view (i.e Rd(Z

′
test))

Apply equation (8) to calculate losses with X
′(1)
test,X

′(2)
test, ...,X

′(D)
test

Update Z′
test with specified learning rate ltest

6: end while
Testing Put learned Z̃′

test into the trained classifier C and obtain the predicted
outcome ŷtest

4



µk as the columns of [ΣA,0p(1)+p(2) ], and A = [A1,A2]T ∈ Re(p
(1)+p(2))×2. Here, the

first column of A1 ∈ Rp(1)×2 is set to (c1110,0p(1)−10) and the second column is set

to (010,−c110,0p(1)−20). We set A2 ∈ Rp(2)×2 similarly. We consider different combi-
nations of (ρ1, ρ2, c). For each combination, we consider the equal class size nk = 180
and dimensions (p(1)/p(2) = 1000/1000). The true number of signal variables is 20.

The proposed method was implemented in the training data, and we identified the
top 20 variables. We learned a new model with only the top 20 variables and used the
learned model and the testing data to obtain the test error. We report the results of
our method and the competitors in Table S1. Compared to the nonlinear association-
based method, Deep CCA, the proposed method achieved lower misclassification rates
across all settings. The proposed method had comparable error rates in Settings 1
and 3, and lower error rate in Setting 2 compared to the linear association-based
method. Compared to SVM in stacked data, the proposed method had lower average
error rates across all settings. Since Deep CCA is not capable of variable selection, we
coupled Deep CCA with the TS network. The performance of the proposed method
in identifying the 20 signal variables was comparable with Sparse CCA and better
than Deep CCA + TS. Furthermore, the proposed method had zero false positives,
suggesting that the method was capable of not falsely ranking the noise variables in
the top 20. The TS framework for ranking variables was suboptimal, as is evident
from the TPR, FPR, and F measures for Deep CCA + TS. Random forest has very
comparable classification and feature selection performance with our method in the
simple linear simulations. The detailed network structures of linear and nonlinear
settings are shown in Table S4, respectively.

3 More on Experiment Settings

In this section, we present detailed hyper-parameter settings for our method and all
competing methods to enhance reproducibility. The hyper-paramaters of our proposed
method, MOMA (+ SVM), Deep CCA + SVM, Sparse CCA + SVM, SVM and
random forest are shown in Tables S2 to S7, respectively. The hyper-parameters of
the methods that are trained with default parameters are listed in Table S8.

5



Tab. S1 Linear Settings: randomly select combinations of hyper-parameters to search over.
TPR-1; true positive rate for X(1). Similar for TPR-2. FPR; false positive rate for X(2). Similar for
FPR-2; F-1 is the F measure for X(1). Similar for F-2. The highest F-1/2 is in red. (The mean error
of two views is reported for MOMA; MOMA + SVM means combining the feature selection part of
MOMA and SVM.)

Method Error (%) TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2

Setting 1
(ρ1 = 0.9, ρ2 = 0.7, c = 0.5)
iDeepViewLearn 0.09 (0.07) 100.00 100.00 0.00 0.00 100.00 100.00
iDeepViewLearn on stacked data 0.09 (0.09) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 0.10 (0.06) 100.00 100.00 0.42 0.25 91.67 94.95
Deep CCA + TS + SVM 6.53 (1.77) 3.50 2.25 1.97 1.99 3.50 2.25
MOMA 25.18 (5.61) 86.50 86.25 0.28 0.28 86.50 86.25
MOMA + SVM 0.04 (0.07) 86.50 86.25 0.28 0.28 86.50 86.25
Random Forest on stacked data 0.02 (0.04) 100.00 100.00 0.00 0.00 100.00 100.00
SVM on stacked data 0.16 (0.15) - - - - - -
Setting 2
(ρ1 = 0.15, ρ2 = 0.05, c = 0.12)
iDeepViewLearn 31.61 (1.21) 100.00 100.00 0.00 0.00 100.00 100.00
iDeepViewLearn on stacked data 32.04 (1.40) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 38.60 (3.48) 89.50 90.25 0.01 0.01 91.51 93.40
Deep CCA + TS + SVM 45.09 (2.02) 2.50 2.25 1.99 1.99 2.50 2.25
MOMA 43.15 (2.49) 67.25 67.75 0.67 0.66 67.25 67.75
MOMA + SVM 31.25 (2.30) 67.25 67.75 0.67 0.66 67.25 67.75
Random Forest on stacked data 31.20 (1.85) 99.75 100.00 0.01 0.00 99.75 100.00
SVM on stacked data 32.57 (1.89) - - - - - -
Setting 3
(ρ1 = 0.9, ρ2 = 0.7, c = 0.5)
iDeepViewLearn 0.01 (0.03) 100.00 100.00 0.00 0.00 100.00 100.00
iDeepViewLearn on stacked data 0.04 (0.10) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 0.00 (0.00) 100.00 100.00 0.31 0.24 93.71 94.83
Deep CCA + TS + SVM 5.63 (1.96) 3.00 2.50 1.89 1.90 3.00 2.50
MOMA 19.26 (5.90) 94.25 89.00 0.12 0.22 94.25 89.00
MOMA + SVM 0.00 (0.00) 94.25 89.00 0.12 0.22 94.25 89.00
Random Forest on stacked data 0.00 (0.00) 100.00 100.00 0.00 0.00 100.00 100.00
SVM on stacked data 0.03 (0.07) - - - - - -

6



Tab. S2 iDeepViewLearn.

Data K lr lrz C Gamma

Linear Setting 1 16 0.0001 1 1 scale
Linear Setting 2 12 0.0001 1 0.1 scale
Linear Setting 3 12 0.0001 1 100 scale
Nonlinear Setting 1 10 0.0001 1 1 scale
Nonlinear Setting 2 10 0.0001 1 0.1 scale
Nonlinear Setting 3 40 0.0001 1 10 scale
Scale-free Setting 1 12 0.0001 10 1 scale
Scale-free Setting 2 16 0.1 1 1 scale
Lattice Setting 1 9 0.0001 1 10 scale
Lattice Setting 2 9 0.0001 1 10 scale
Cluster Setting 1 6 0.0001 10 1 scale
Cluster Setting 2 6 0.1 1 10 scale
Holm Breast Cancer Study (top 10%) 30 0.1 1 0.1 scale
Holm Breast Cancer Study (top 20%) 30 0 0.1 1 scale
LGG (top 50) 30 0.1 1 1 scale
LGG (top 100) 40 0.001 10 1 scale

Tab. S3 MOMA and MOMA + SVM.

Data Number of modules Weight decay Patience number C Gamma

Linear Setting 1 64 0.001 50 10 scale
Linear Setting 2 128 0.001 100 0.1 scale
Linear Setting 3 128 0.001 100 0.1 scale
Nonlinear Setting 1 32 0.00 100 10 scale
Nonlinear Setting 2 128 0.001 50 1 scale
Nonlinear Setting 3 32 0.00 50 1 scale
Scale-free Setting 1 128 0.00 100 1 scale
Scale-free Setting 2 64 0.001 50 1 scale
Lattice Setting 1 128 0.00 100 1 scale
Lattice Setting 2 32 0.00 50 1 scale
Cluster Setting 1 64 0.001 100 1 scale
Cluster Setting 2 128 0.00 50 10 scale
Holm Breast Cancer Study 64 0.001 100 1 scale

7



Tab. S4 Deep CCA+SVM, all with full batch for DCCA and rbf kernel for SVM.

Data Network Structure Epochs per run C Gamma

Linear Setting 1 Input-256*10-64-20 50 0.1 scale
Linear Setting 2 Input-256*10-64-20 50 1 scale
Linear Setting 3 Input-256*10-64-20 50 0.1 scale
Nonlinear Setting 1 Input-256*10-64-20 50 1 scale
Nonlinear Setting 2 Input-256*10-64-20 50 10 scale
Nonlinear Setting 3 Input-256*10-64-20 50 1 0.1
Scale-free Setting 1 Input-256*10-64-20 50 1 scale
Scale-free Setting 2 Input-256*10-64-20 50 1 scale
Lattice Setting 1 Input-256*10-64-20 50 1 scale
Lattice Setting 2 Input-256*10-64-20 50 1 scale
Cluster Setting 1 Input-256*10-64-20 50 1 scale
Cluster Setting 2 Input-256*10-64-20 50 1 scale
Holm Breast Cancer Study Input-256*10-64-20 50 1 scale
MNIST Input-256*10-64-20 50 10 scale

Tab. S5 Sparce CCA+SVM, all with ncancorr = 1, CovStructure = ‘Iden’, nfolds = 5, ngrid = 10,
standardize = TRUE, thresh = 0.0001, and maxiteration = 20 for SCCA and all with rbf kernel for
SVM.

Data C Gamma

Linear Setting 1 0.1 scale
Linear Setting 2 0.1 scale
Linear Setting 3 1 scale
Nonlinear Setting 1 10 0.1
Nonlinear Setting 2 1 1
Nonlinear Setting 3 10 0.1
Scale-free Setting 1 1 scale
Scale-free Setting 2 1 scale
Lattice Setting 1 1 scale
Lattice Setting 2 1 scale
Cluster Setting 1 1 scale
Cluster Setting 2 1 scale
Holm Breast Cancer Study 1 scale

8



Tab. S6 SVM on stacked data, all with rbf kernel.

Data C Gamma

Linear Setting 1 10 scale
Linear Setting 2 1 scale
Linear Setting 3 0.1 scale
Nonlinear Setting 1 1 scale
Nonlinear Setting 2 10 scale
Nonlinear Setting 3 1 scale
Scale-free Setting 1 1 scale
Scale-free Setting 2 1 scale
Lattice Setting 1 1 scale
Lattice Setting 2 1 scale
Cluster Setting 1 1 scale
Cluster Setting 2 1 scale
Holm Breast Cancer Study 1 scale
MNIST 1 scale
LGG 1 scale

Tab. S7 Random forest.

Data n estimators max depth min samples split min samples leaf

Linear Setting 1 200 20 5 2
Linear Setting 2 200 None 5 4
Linear Setting 3 200 None 5 1
Nonlinear Setting 1 100 None 5 1
Nonlinear Setting 2 200 30 2 1
Nonlinear Setting 3 200 None 10 1
Scale-free Setting 1 200 30 2 1
Scale-free Setting 2 200 20 5 2
Lattice Setting 1 200 None 5 1
Lattice Setting 2 200 None 10 2
Cluster Setting 1 50 20 10 4
Cluster Setting 2 200 30 2 1
Holm Breast Cancer Study 50 30 5 1
LGG 100 20 5 4

Tab. S8 Other methods that are trained with their default hyper-parameters.

Method Analysis Default hyper-parameters

Fused CCA Simulation with method=‘Fused’,constopt=‘OptB’, mygamma=2,
variable-variable connections myeta=0.5, nfolds=5, ngrid=10, thresh=1e-04,

asnormalize=TRUE, maxiteration=20
and SVM with rbf kernel, C=1, gamma=‘scale’

SIDA LGG gridMethod=‘RandomSearch’, AssignClassMethod=‘Joint’,
nfolds=5, ngrid=8, standardize=TRUE, maxiteration=20,
weight=0.5, thresh=1e-03

Deep IDA LGG network structure=input-256*10-64-20,
learning rate=0.01, epoch=30

DGCCA + SVM LGG network structure=input-128-128-20,
epochs=400, C=1, gamma=‘scale’, weight decay=0.0001

9



References

[1] Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. arXiv. Num-
ber: arXiv:1412.6980 arXiv:1412.6980 [cs] (2017). http://arxiv.org/abs/1412.6980
Accessed 2022-06-02

[2] Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and Accurate Deep Network
Learning by Exponential Linear Units (ELUs). arXiv. Number: arXiv:1511.07289
arXiv:1511.07289 [cs] (2016). http://arxiv.org/abs/1511.07289 Accessed 2022-05-
26

[3] Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

[4] Safo, S.E., Min, E.J., Haine, L.: Sparse linear discriminant analysis for multiview
structured data. Biometrics n/a(n/a) (2021) https://doi.org/10.1111/biom.13458
https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1511.07289
https://doi.org/10.1111/biom.13458
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/biom.13458

	More on Methods
	Optimization and Algorithm 
	Hyper-Parameter Selection

	More on Simulations
	Linear simulations when prior information is not available

	More on Experiment Settings

