

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202306294

Prenatal 1-Nitropyrene Exposure Causes Autism-Like Behavior Partially by Altering DNA Hydroxymethylation in Developing Brain

Ting Zhao, Cheng-Qing Huang, Yi-Hao Zhang, Yan-Yan Zhu, Xiao-Xi Chen, Tao Wang, Jing Shao, Xiu-Hong Meng, Yichao Huang, Hua Wang, Hui-Li Wang, Bo Wang* and De-Xiang Xu*

Supplementary data

Method

Measurement of 5hmC

APOBEC-coupled epigenetic sequencing (ACE-Seq) was used to detected 5hmC content in specific genes. Multiplex PCR of *Nrg1*, *Erbb4* and *Sema3F* genes was performed. The primers were listed in supplemental Table S1. PCR products were then performed with T4 Phage β -glucosyltransferase and APOBEC3A (A3A). Following deamination, the products were sequenced using the Accel Methyl-NGS kit (Swift Biosciences, Inc). Bismark (v0.14.3) was used to map the trimmed reads to the reference genomes. For each cytosine within CG dinucleotides, "C" bases from ACE-Seq were considered to be 5hmC. By contrast, "T" bases were considered to be methylated or unmodified cytosines.

Figures

Fig.S1. Influence of gestational 1-NP exposure on PCNA protein in fetal forebrain. PCNA, a maker for cell proliferation, was determined by Western blotting. N=4. *t*=0.317, df=6, *P*=0.762.

Fig.S2. Influence of gestational 1-NP exposure on the expression of differentiation related genes in forebrain interneuron. Differentiation-related genes in forebrain interneuron were detected in RT-PCR on GD14. N=5. (A) Dlx1. t=1.087, df=8, P=0.308. (B) Dlx2. t=0.232, df=8, P=0.822. (C) Dlx5. t=0.999, df=8, P=0.347. (D) NKX2-1. t=1.027, df=8, P=0.334. (E) NKX6-2. t=1.037, df=8, P=0.330. (F) LHX6. t=0.126, df=8, P=0.903.

Fig. 2. Influence of maternal 1-NP exposure on autism-like behavior in offspring.						
	Grou	ps	t value	df	P value	
	1-NP (0 µg/kg)	S1 vs E	2.135	16	0.049	
Figure 2B	1-NP (10 µg/kg)	S1 vs E	0.286	20	0.778	
	1-NP (100 µg/kg)	S1 vs E	2.790	8.947	0.021	
	1-NP (0 µg/kg)	S1 vs E	4.591	16	< 0.01	
Figure 2C	1-NP (10 µg/kg)	S1 vs E	2.395	13.52	0.032	
	1-NP (100 µg/kg)	S1 vs E	0.416	20	0.682	
	1-NP (0 µg/kg)	S1 vs S2	-2.296	16	0.036	
Figure 2E	1-NP (10 µg/kg)	S1 vs S2	-2.017	15.057	0.052	
	1-NP (100 µg/kg)	S1 vs S2	0.100	16	0.921	
	1-NP (0 µg/kg)	S1 vs S2	-4.173	20	< 0.01	
Figure 2F	1-NP (10 µg/kg)	S1 vs S2	2.395	13.52	0.032	
	1-NP (100 µg/kg)	S1 vs S2	-0.877	20	0.391	
	1-NP (0 µg/kg)	S1 vs E	1.979	16	0.065	
Figure 2H	1-NP (10 µg/kg)	S1 vs E	-0.045	20	0.965	
	1-NP (100 µg/kg)	S1 vs E	-1.569	20	0.132	
	1-NP (0 µg/kg)	S1 vs E	2.481	16	0.025	
Figure 2I	1-NP (10 µg/kg)	S1 vs E	0.921	18	0.369	
	1-NP (100 µg/kg)	S1 vs E	3.872	20	< 0.01	
	1-NP (0 µg/kg)	S1 vs S2	-2.275	16	0.037	
Figure 2K	1-NP (10 µg/kg)	S1 vs S2	-0.676	20	0.507	
	1-NP (100 µg/kg)	S1 vs S2	-0.358	20	0.724	
	1-NP (0 μg/kg)	S1 vs S2	-4.221	16	< 0.01	
Figure 2L	1-NP (10 μg/kg)	S1 vs S2	-3.280	18	< 0.01	
2	1-NP (100 µg/kg)	S1 vs S2	0.003	20	0.998	

Statistical analysis in the figure legends

Fig. 3. Influence of maternal 1-NP exposure on mIPSC in offspring.

	Groups	t value	df	P value
Figure 3B	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	4.181	22	< 0.01
Figure 3C	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	1.069	22	0.297
Figure 3E	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	0.145	22	0.887
Figure 3F	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	2.481	22	0.0212
Figure 3H	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	8.575	22	< 0.01
Figure 3I	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	2.514	22	0.02
Figure 3K	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	0.815	22	0.424
Figure 3L	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	4.118	22	< 0.01

Fig. 4. Influence of maternal 1-NP exposure on GAD67+ interneurons in weaning offspring.

	Groups	t value	df	P value
Figure 4B	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)	2.558	6	0.043

Figure 4D	1-NP (0 μg/kg)	vs 1-NP (100 µg/kg)	0.075	6	0.943
	Cg1	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	6.985	4.517	< 0.01
Figure 4F	PrL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	4.796	6	< 0.01
	IL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	6.245	3.576	< 0.01
	Cg1	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.872	6	0.417
Figure 4G	PrL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.264	6	0.8
	IL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	0.115	6	0.912
Figure 4I	1-NP (0 µg/kg) vs 1-NP (100 µg/kg)		2.558	6	0.043
Figure 4K	1-NP (0 μg/kg)	vs 1-NP (100 µg/kg)	0.075	6	0.943
	Cg1	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	6.735	3.859	< 0.01
Figure 4M	PrL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	3.202	3.685	0.037
	IL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	2.728	4	0.052
Figure 4N	Cg1	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-1.500	6	0.184
	PrL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-2.477	6	0.048
	IL	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.647	6	0.541

Fig. 5. Influence of gestational 1-NP exposure on migration of interneurons in fetal brain.

	G	t value	df	P value	
Figure 5B	1-NP (0 µg/kg)	vs 1-NP (100 µg/kg)	3.421	4	0.027
	SVZAZ	1-NP (0 µg/kg) vs	2 126	6	0.014
	SVZ/VZ	1-NP (100 µg/kg)	-3.420	0	0.014
	17	1-NP (0 µg/kg) vs	0.110	6	0.016
Figure 5D	12	1-NP (100 µg/kg)	0.110	0	0.910
	СР	1-NP (0 µg/kg) vs	3.279	6	0.017
		1-NP (100 µg/kg)			0.017
	MZ	1-NP (0 µg/kg) vs	3.110	6	0.021
		1-NP (100 µg/kg)			
Figure 5F	1-NP (0 µg/kg)	vs 1-NP (100 µg/kg)	2.820	4	0.048
	SVZ/VZ	1-NP (0 µg/kg) vs	2 2 1 8	6	0.06
Figure 511	SVZ/VZ	1-NP (100 µg/kg)	-2.318	0	0.00
Figure 311	17	1-NP (0 µg/kg) vs	0.460	6	0.662
	IZ	1-NP (100 µg/kg)			

	СР	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	6.401	6	< 0.01
	MZ	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	4.267	6	< 0.01
Figure 5J	1-NP (0 µg/kg)	vs 1-NP (100 µg/kg)	0.287	6	0.784
	Bin 1	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	1.082	6	0.321
Figure 5L	Bin 2	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	2.392	6	0.054
	Bin 3	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	2.591	6	0.041
Figure 5M	Cxcl12	Ctrl vs 1-NP	0.456	8	0.660
Figure 5N	Cxcr4	Ctrl vs 1-NP	0.194	8	0.851
Figure 5O	Cxcr7	Ctrl vs 1-NP	2.090	8	0.07
Figure 5P	Slit1	Ctrl vs 1-NP	0.6086	8	0.547
Figure 5Q	Efna5	Ctrl vs 1-NP	0.036	8	.9718
Figure 5R	Arx	Ctrl vs 1-NP	0.507	8	0.625
Figure 5S	Nrp1	Ctrl vs 1-NP	1.279	8	0.237
Figure 5T	Nrp2	Ctrl vs 1-NP	0.291	8	0.778
Figure 5U	Sema3A	Ctrl vs 1-NP	0.765	8	0.466
Figure 5V	Nrg1	Ctrl vs 1-NP	2.477	8	0.038
Figure 5W	Erbb4	Ctrl vs 1-NP	3.353	8	0.01
Figure 5X	Sema3F	Ctrl vs 1-NP	2.494	8	0.0373

Fig. 6. Influence of gestational 1-NP exposure on hydroxymethylation of interneuron migration-related genes in fetal forebrain.

	Gro	oups	t value	df	P value
	Nrg1_1	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.268	8	0.795
	Nrg1_2	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.679	8	0.516
Figure 6B	Erbb4	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.358	8	0.73
	Sema3F_1 Sema3F_2	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	3.264	8	0.011
		1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	-0.841	8	0.425
Figure 6C	Nrg1_2 (9246 site)	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	2.766	8	0.024
	Erbb4 (7743 site) Erbb4 (7866 site)	1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	2.177	8	0.061
		1-NP (0 μg/kg) vs 1-NP (100 μg/kg)	2.363	8	0.046

	Sema3F_1	1-NP (0 µg/kg) vs	2 567	8	0.033
	(9269 site)	1-NP (100 µg/kg)	2.507	0	0.055
	Sema3F_1	1-NP (0 µg/kg) vs	1 555	0	<0.01
	(9348 site)	1-NP (100 µg/kg)	4.555	0	<0.01
	Sema3F_2	1-NP (0 µg/kg) vs	2 577	0	0.022
	(0238 site)	1-NP (100 µg/kg)	2.377	0	0.035
	Tot 1	1-NP (0 μg/kg) vs	2621	4 220	0.052
	Tett	1-NP (100 µg/kg)	-2.034	4.550	0.055
Figure 6D	Tet2	1-NP (0 µg/kg) vs	0.86	8	0.415
		1-NP (100 µg/kg)			
	T (2)	1-NP (0 µg/kg) vs	2 2 5 0	0	0.055
	Tet3	1-NP (100 µg/kg)	-2.250	8	0.055
	T-41	1-NP (0 µg/kg) vs	1 4 4 0	6	0 1070
	Tetl	1-NP (100 µg/kg)	1.448	0	0.1978
		1-NP (0 µg/kg) vs	0.701	ć	
Figure 6F	Tet2	1-NP (100 µg/kg)	0.791	6	0.459
	T 12	1-NP (0 μg/kg) vs		<i>.</i>	
	Tet3	1-NP (100 µg/kg)	0.245	6	0.814
Figure 6G	1-NP (0 µg/kg)	vs 1-NP (100 µg/kg)	3.400	8	< 0.01

Fig. 7. Influence of gestational 1-NP exposure on mitochondrial function in fetal forebrain.

	Groups	<i>t</i> value	df	P value
Figure 7H	Ctrl vs 1-NP	0.263	6	0.802
Figure 7I	Ctrl vs 1-NP	2.890	6	0.027
Figure 7K	Ctrl vs 1-NP	4.133	6	< 0.01
Figure 7L	Ctrl vs 1-NP	2.733	6	0.034
Figure 7N	Ctrl vs 1-NP	4.175	6	< 0.01
Figure 70	Ctrl vs 1-NP	2.791	6	0.024

Fig. 8. Effects of supplementation with α -KG on 1-NP-evoked hypohydroxymethylation of interneuron migration-related genes and interneuron migration inhibition in fetal forebrain.

	Groups	F value	df	P value
	α-KG main effect	0.587	1	0.455
	1-NP main effect	20.039	1	< 0.01
Figure 8A	α -KG*1-NP interaction	4.355	1	0.053
	Ctrl vs 1-NP	-	-	< 0.01
	1-NP vs 1-NP+a-kG	-	-	0.061
	α-KG main effect	0.075	1	0.787
Figure 8B	1-NP main effect	1.671	1	0.214
	α -KG*1-NP interaction	1.759	1	0.203
	Ctrl vs 1-NP	-	-	0.083
	1-NP vs 1-NP+a-kG	-	-	0.274

		α-KG main effect	0.063	1	0.804
		1-NP main effect	12.403	1	< 0.01
Figure 8C		α-KG*1-NP interaction	1.593	1	0.225
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.300
		α-KG main effect	0.588	1	0.454
		1-NP main effect	5.353	1	0.034
Figure 8D		α-KG*1-NP interaction	9.544	1	< 0.01
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+α-kG	-	-	0.120
		α-KG main effect	0.014	1	0.909
		1-NP main effect	1.785	1	0.200
Figure 8E		α-KG*1-NP interaction	1.512	1	0.237
		Ctrl vs 1-NP	-	-	0.088
		1-NP vs 1-NP+α-kG	-	-	0.443
		α-KG main effect	5.145	1	0.038
		1-NP main effect	3.712	1	0.072
Figure 8F	α -KG*1-NP interaction		10.504	1	< 0.01
	Ctrl vs 1-NP		-	-	< 0.01
		1-NP vs 1-NP+α-kG	-	-	< 0.01
		α-KG main effect	0.199	1	0.662
		1-NP main effect	3.036	1	0.101
Figure 8G	α -KG*1-NP interaction		6.155	1	0.025
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+α-kG	-	-	< 0.01
		α-KG main effect	0.040	1	0.843
		1-NP main effect	14.699	1	< 0.01
Figure 8H	α -KG*1-NP interaction		5.187	1	0.037
	Ctrl vs 1-NP		-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.090
		α-KG main effect	0.634	1	0.438
		1-NP main effect	7.255	1	0.016
Figure 8I		α-KG*1-NP interaction	1.981	1	0.178
		Ctrl vs 1-NP	-	-	0.010
		1-NP vs 1-NP+a-kG	-	-	0.069
		α-KG main effect	1.473	1	0.248
		1-NP main effect	0.829	1	0.381
	Bin 1	α-KG*1-NP interaction	0.655	1	0.434
Figure 9V		Ctrl vs 1-NP	-	-	0.247
rigure on		1-NP vs 1-NP+α-kG	-	-	0.178
		α-KG main effect	13.963	1	< 0.01
	Bin 2	1-NP main effect	2.509	1	0.139
		α-KG*1-NP interaction	2.258	1	0.159

	Ctrl vs 1-NP	-	-	0.050
	1-NP vs 1-NP+a-kG	-	-	< 0.01
	α-KG main effect	25.004	1	< 0.01
	1-NP main effect	25.814	1	< 0.01
Bin 3	α -KG*1-NP interaction	2.033	1	0.179
	Ctrl vs 1-NP	-	-	< 0.01
	1-NP vs 1-NP+a-kG	-	-	< 0.01

g. 9. Effects of	gestationa	l α-KG supplementation on int	erneurons in v	veaning	offspring.
		Groups	F value	df	P value
		α-KG main effect	3.062	1	0.118
		1-NP main effect		1	< 0.01
Figure 9B		α -KG*1-NP interaction		1	0.052
		Ctrl vs 1-NP		-	< 0.01
		1-NP vs 1-NP+a-kG		-	0.022
		α-KG main effect	13.905	1	< 0.01
		1-NP main effect	20.137	1	< 0.01
	Cg1	α-KG*1-NP interaction	12.084	1	< 0.01
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	< 0.01
		α-KG main effect	4.842	1	0.048
		1-NP main effect	16.70	1	< 0.01
Figure 9D	PrL	α -KG*1-NP interaction	3.798	1	0.075
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.013
		α-KG main effect	2.803	1	0.120
		1-NP main effect	11.212	1	< 0.01
	IL	α-KG*1-NP interaction	2.803	1	0.120
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.036
Figure 9E		α-KG main effect	0.004	1	0.953
		1-NP main effect	0.613	1	0.449
	Cg1	α-KG*1-NP interaction	0.033	1	0.860
		Ctrl vs 1-NP	-	-	0.509
		1-NP vs 1-NP+a-kG	-	-	0.934
		α-KG main effect	1.738	1	0.212
		1-NP main effect	0.679	1	0.426
	PrL	α-KG*1-NP interaction	0.033	1	0.860
		Ctrl vs 1-NP	-	-	0.431
		1-NP vs 1-NP+a-kG	-	-	0.498

		α-KG main effect	0.123	1	0.732
		1-NP main effect	0.123	1	0.732
	IL	α-KG*1-NP interaction	0.204	1	0.660
		Ctrl vs 1-NP	-	-	0.945
		1-NP vs 1-NP+a-kG	-	-	0.581
		α-KG main effect	1.171	1	0.311
		1-NP main effect	6.809	1	0.031
Figure 9G		α -KG*1-NP interaction	3.973	1	0.081
		Ctrl vs 1-NP	-	-	0.012
		1-NP vs 1-NP+α-kG	-	-	0.061
		α-KG main effect	4.757	1	0.050
		1-NP main effect	42.971	1	< 0.01
	Cg1	α-KG*1-NP interaction	1.255	1	0.285
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.038
		α-KG main effect	0.062	1	0.807
		1-NP main effect	17.266	1	< 0.01
Figure 9I	PrL	α-KG*1-NP interaction	1.813	1	0.203
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.281
		α-KG main effect	3.286	1	0.095
		1-NP main effect	17.217	1	< 0.01
	IL	α -KG*1-NP interaction	2.199	1	0.164
		Ctrl vs 1-NP	-	-	< 0.01
		1-NP vs 1-NP+a-kG	-	-	0.038
		α-KG main effect	0.778	1	0.395
		1-NP main effect	1.130	1	0.309
	Cg1	α-KG*1-NP interaction	0.001	1	0.982
		Ctrl vs 1-NP	-	-	0.476
		1-NP vs 1-NP+a-kG	-	-	0.534
		α-KG main effect	0.046	1	0.834
		1-NP main effect	7.292	1	0.019
Figure 9J	PrL	α -KG*1-NP interaction	1.546	1	0.237
		Ctrl vs 1-NP	-	-	0.481
		1-NP vs 1-NP+a-kG	-	-	0.323
		α-KG main effect	0.601	1	0.453
		1-NP main effect	0.082	1	0.779
	IL	α -KG*1-NP interaction	0.082	1	0.779
		Ctrl vs 1-NP	-	-	0.692
		1-NP vs 1-NP+α-kG	-	-	0.467

	Gro	ups	F value	df	P value
	α-KG main effect		5.135	1	0.028
	1-NP main effect		35.559	1	< 0.01
Figure 10B	α-KG*1-NP	3.084	1	0.085	
	Ctrl vs	-	-	< 0.01	
	1-NP vs 1-	-NP+α-kG	-	-	< 0.01
	α-KG ma	ain effect	1.611	1	0.210
	1-NP ma	8.726	1	< 0.01	
Figure 10C	α-KG*1-NP	0.012	1	0.913	
	Ctrl vs	-	-	0.050	
	1-NP vs 1-	-	-	0.335	
	α-KG ma	0.140	1	0.710	
	1-NP ma	0.002	1	0.968	
Figure 10E	α-KG*1-NP	0.002	1	0.962	
	Ctrl vs	-	-	0.951	
	1-NP vs 1-	-NP+α-kG	-	-	0.767
	α-KG ma	0.033	1	0.858	
	1-NP ma	9.319	1	< 0.01	
Figure 10F	α-KG*1-NP	6.794	1	0.012	
	Ctrl vs	-	-	< 0.01	
	1-NP vs 1-	-	-	0.093	
	Ctrl	S1 vs E	2.893	18	0.01
Elaura 10C	α-kG	S1 vs E	0.147	20	0.044
rigure IvG	1-NP	S1 vs E	1.566	18	0.135
	1-NP+a-kG	S1 vs E	2.356	16	0.032
	Ctrl	S1 vs S2	-3.900	18	< 0.01
Figure 10H	α-kG	S1 vs S2	-3.787	20	< 0.01
Figure 1011	1-NP	S1 vs S2	0.833	18	0.416
	1-NP+a-kG	S1 vs S2	-6.918	16	< 0.01
	Ctrl	S1 vs E	3.858	18	< 0.01
Figure 101	α-kG	S1 vs E	2.371	18	0.029
Figure 101	1-NP	S1 vs E	1.292	16	0.215
	1-NP+a-kG	S1 vs E	2.704	18	0.015
	Ctrl	S1 vs S2	-3.782	13.	<0.01
	eur			042	NO.01
Figure 10.I	a-kG	S1 vs S2	-2.256	11.	0.044
				934	
	1-NP	S1 vs S2	-1.280	16	0.219
	1-NP+a-kG	S1 vs S2	-3.705	18	< 0.01

Fig. 10. Effects of gestational α-KG supplementation on 1-NP-induced mIPSC transmission disorder and autism-like behaviors.

Genes	Sequences
Nrg1_1	Forward: AGATTTAGAGGATTYGGGAGGA
	Reverse: ACCCRAACCCAAATAAATACCA
Nrg1_2	Forward: GYGATAAGTTTGGTTTAAGGGTTTGTAG
	Reverse: CCCRAAACACCCCCAAAC
Erbb4	Forward: GGGTTTAYGGGTTTTGGAAGT
	Reverse: ACTCCCCCAAAACCCAAAA
Sema3F_1	Forward: TTGYGGGGGGTGGAAAAAG
	Reverse: CCTCCCRACCCCACTAAAA
Sema3F_2	Forward: GGGTAGGGTTTAGGGTTTTTAGG
	Reverse: CCAACCCTTCTCACCAAAAA

Table S1 Primers for Multiplex PCR in measurement of 5hmC

Table S2 Primers for real-time RT-PCR

	Table S2 Primers for real-time RT-PCR		
Genes	Sequences		
185	Forward: GTAACCCGTTGAACCCCATT		
	Reverse: CCATCCAATCGGTAGTAGCG		
Tetl	Forward: ACACAGTGGTGCTAATGCAG		
	Reverse: AGCATGAACGGGAGAATCGG		
Tet2	Forward: AGAGAAGACAATCGAGAAGTCGG		
	Reverse: CCTTCCGTACTCCCAAACTCAT		
Tot?	Forward: GTAACCCGTTGAACCCCATT		
Iet3	Reverse: CCATCCAATCGGTAGTAGCG		
Eucht 4	Forward: GGAACAGCAGTACCGAGCCTTG		
Er004	Reverse: GGATAGACCGCAGGAAGGAGAGG		
Nue 1	Forward: GCTCATCACTCCACGACTGTCAC		
nrg1	Reverse: CTGCTGTGCCTGCTGTTCTCTAC		
Cuella	Forward: ACCAGTCAGCCTGAGCTACCG		
CxCI12	Reverse: AAGGGCACAGTTTGGAGTGTTGAG		
Crant	Forward: GTCAACCTCTACAGCAGCGTTCTC		
CXC/4	Reverse: CTGACTGTTGGTGGCGTGGAC		
Soma 3 1	Forward: TGGGACGGGACTTCGCTATCTTC		
SemuSA	Reverse: GGGATGAGATGGGCACTGATGAATC		
Som a 2 E	Forward: GACCTGCATGACATCAACCGAGAG		
Sema3F	Reverse: CTCCATTGCCATCCTTGCCTGAC		
Nrp1	Forward: ACAGCATCCAATCAAGCCGACAG		
	Reverse: TCTTCTCATCTCCCAGGTCCACTTG		
Num 2	Forward: ATCAGTGCCTCCTCCACCTTCTC		
wrp2	Reverse: TGTCCAGCCATTGTCATCACCATG		
Slit1	Forward: GCTACGCCTGCCTCTGTGTTG		
	Reverse: GGTCTACGCAGTTGGCTCCATTC		
Efna5	Forward: ATGAGTCAGCCGAGCCATCCC		

	Reverse: AGCATCGCCAGGAGGAACAGTAG
Arx	Forward: AGGGCAAGGATGGTGAGGACAG
	Reverse: GCTGGTAACTGGTGAACGTGGTG
Dlx1	Forward: ACCACCATGCCAGAAAGTCTCAAC
	Reverse: GCCCGCCGAGTGTAAACAGTG
Dlx2	Forward: CAACGAGCCGGACAAGGAAGAC
	Reverse: CTGGAGTAGATGGTGCGTGGTTTC
Dlx5	Forward: GCGACTTCCAAGCTCCGTTCC
	Reverse: AAGCAGAGGTAGGAGAGCAGTAGC
NKX2-1	Forward: CTCAGCCGACGCCGAATCATG
	Reverse: GCCCTCCATGCCCACTTTCTTG
NKX6-2	Forward: AAGTGAAGGTGTGGGTTCCAGAATCG
	Reverse: CCGGTTGTATTCGTCATCGTCCTC
LHX6	Forward: TCTGGACAAGGACGAAGGTAGAGC
	Reverse: CAGACCGCAACTGGAGCAGATATTC