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Implementation details

Unless specifically stated, FS-CAP and all other baselines were trained with the same molecular

representation (2048-bit Morgan fingerprints with a radius of 3). While we tried altering

both the length and radius parameters of the Morgan fingerprint, we found that it did not

change the performance of FS-CAP much. For FS-CAP and all baseline methods, we tuned

hyperparameters once for BindingDB test set performance discussed in the first section of the

Results using 8 context compounds, except without limiting the context activity range. We

used the same hyperparameters for all other datasets and subsequent tasks. For all methods,

the reported model performance in each experiment is measured after 227 query molecules

had been seen in training, or until the performance on the relevant task stopped improving

(i.e. early stopping). For each method, hyperparameter tuning was done via a random search

with 20 trials. The hyperparameters that we searched are shown below for each method. All

models were trained on a server with 8 NVIDIA GTX 3080 GPUs.
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FS-CAP

FS-CAP was implemented in PyTorch. We used an Adam optimizer with a base learning rate

of 10−5 and 128 steps for learning rate warmup, and then cosine annealed the learning rate

to 0 over all training steps. We used dropout (p = 0.1) and batch normalization following

each layer in the predictor network (except in the last 2 layers), while the encoder networks

used neither.

Hyperparameters: learning rate, batch size, encoding dim, n layers, mlp width

Tanimoto similarity

We used 2048-bit Morgan fingerprints with a radius of 2 for the calculation of Tanimoto

similarity, which was chosen by conducting a sweep of different length and radius parameters

and picking the one with the highest performance on the BindingDB test set with 8 context

compounds. When using multiple context compounds, we calculate the Tanimoto similarity

between each context compound and all query compounds, but only use the highest similarity

context compound for each query compound. This is because if a query compound is similar

to one of, but not all, the known actives (the context set), it is still presumed to be active.

MolBERT + ANP

We used the pretrained MolBERT model available from https://github.com/BenevolentAI/

MolBERT to encode SMILES strings into a 768-dimensional vector. We then used this

featurizer (which was not made trainable) in an attentive neural process architecture to

represent the context and query features, xi and x∗, respectively.1 We re-implemented

the attentive neural process architecture in PyTorch, following the original paper1 and

their published code (https://github.com/deepmind/neural-processes/blob/master/

attentive_neural_process.ipynb) as closely as possible. We trained the model using an

Adam optimizer with a base learning rate of 10−5 and 128 steps for learning rate warmup,
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and then cosine annealed the learning rate to 0 over all training steps.

Hyperparameters: learning rate, batch size, num attention heads, encoding dim,

decoder layers, mlp width

NGGP

We used the official PyTorch implementation of NGGP available at https://github.com/

gmum/non-gaussian-gaussian-processes. Using the existing code available for the QMUL

dataset, we modified the datalaoders for our task by outputting 2048-bit Morgan fingerprints.

We trained only one model on BindingDB because the size of the context set is only relevant

at test time. We also expanded the MLP2 model used in the code to more layers, so the

number of parameters was about equivalent to other baselines.

Hyperparameters: all lr, meta batch size, update batch size, noise, cnf dims,

mlp layers, nonlinearity, batch norm, mlp width

MetaNet

We adapted the Chainer code provided in the official MetaNet implementation (https://

bitbucket.org/tsendeemts/metanet/src/master/) to PyTorch. Most of the architectural

choices were kept the same as the original code, although we changed each Block network to

include two 2048-wide linear layers with ReLU nonlinearities so that the entire model used

about the same number of parameters as other baselines. We trained the model using an

Adam optimizer with a base learning rate of 10−5 and 128 steps for learning rate warmup,

and then cosine annealed the learning rate to 0 over all training steps.

Hyperparameters: learning rate, num blocks, mlp width, hidden dim, batch size
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Meta-MGNN

We used the official Meta-MGNN code available at https://github.com/zhichunguo/

Meta-MGNN, and modified it to produce continuous, as opposed to binary, activity predictions.

To do this, we swapped the both the total and self-supervised loss to MSE, and removed the

sigmoid and thresholding operation at the final layer. All other design choices in the model,

such as the graph encoding of the molecules, were kept the same.

Hyperparameters: learning rate, batch size, graph pooling, num layers

MAML

We used the MAML implementation in the learn2learn library.2 The base model was a simple

multilayer perceptron that takes a 2048-bit Morgan fingerprint as input and produces a single

scalar output, which is the activity value prediction. As in the original MAML paper,3 we

used an SGD optimizer with a constant learning rate, as well as applied dropout with p = 0.1

after all layers of the network during training.

Hyperparameters: learning rate, maml learning rate, batch size, n layers, mlp

width

MetaDTA

Since there was no available implementation of MetaDTA, we re-implemented it in PyTorch.

For information on the specifics of the MetaDTA architecture, see Section 3.2 of Lee et al. 4 .

The context and query inputs, xi and xq as described in the paper, were represented with 2048-

bit Morgan fingerprints, and the context target yi used the same scalar activity representation

as FS-CAP. As it does not specify in the original paper, similarly to FS-CAP, we used an Adam

optimizer with a base learning rate of 10−5 and 128 steps for learning rate warmup, and then

cosine annealed the learning rate to 0 over all training steps.

Hyerparameters: learning rate, batch size, encoding dim, n layers, mlp width,
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attention heads. We used the same number of layers, n_layers, for the query and context

set embedding networks, and the decoder network. We also used the same number of atten-

tion heads, attention_heads, for the multi-head cross and self-attention components of the

model.

Dataset details

BindingDB

BindingDB data was downloaded from the TSV file available at (https://www.bindingdb.

org/rwd/bind/chemsearch/marvin/SDFdownload.jsp?download_file=/bind/downloads/

BindingDB_All_202403_tsv.zip). We extracted the Kd, Ki, IC50, or EC50 values, whichever

was present, for each compound in the dataset. We used such a broad range of different

activity types because all values are similarly determined by an underlying binding mechanism,

it increased the amount of data we can train on, and allowed the trained models to generalize

to both target-based and phenotypic data types. When activity was expressed as an upper

or lower bound, we took the bound itself as the known activity. To reduce outlier activity

values, we also clipped activity values with pActivity > 11.5 or < 2.5, as values surpassing

those limits were rare. Then, we excluded all targets that include less than 10 measured

compounds. We also excluded very small or very large molecules, defined as fewer than 10

atoms or more than 70.

To cluster the target sequences, we used the mmseqs25 library’s easy-cluster mode with

the following parameters: –min-seq-id 0.2 -c 0.8 –cov-mode 0. To form our dataset,

we simply took all targets in BindingDB that were present in the outputted “representative

sequences” from mmseqs2 and excluded all others.
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PubChemHTS

To construct this dataset, we started with a list of Assay IDs (AIDs) obtained from the search

function at https://pubchem.ncbi.nlm.nih.gov/, and then downloaded the top 100 AIDs

with the highest number of tested substances with “BioAssay Type” equal to “Screening” and

a linked “Protein Target” section in the “BioAssay Record.” The quantitative data we used for

the context compounds was obtained via the protein’s “Chemicals and Bioactivities” section

in PubChem, which combines results from assays (including quantitative assays) that have

the same protein target. We excluded all proteins, and therefore assays, with less than 10

tested compounds with continuous activity values. After obtaining the context compounds,

we downloaded the datatable for each assay, which contained Compound IDs (which were

linked to SMILES strings, to be used as query compounds in our tests, via the PubChem

API) and binary compound activity classifications (“Active” or “Inactive” in the datatable

file, to be used for computing ROC-AUC and enrichment scores). We also excluded very

small or very large molecules, defined as fewer than 10 atoms or more than 70.

Cancer Cell Line Encyclopedia

As previously mentioned, we used the dataset reported in Table S11 of Barretina et al. 6 , and

extracted IC50 measurements for each drug measured against each cell line. We excluded

compounds with less than 10 or more than 70 atoms, and cell lines with less than 10 drugs with

measured activity. We also excluded all compound-activity pairs if there was no continuous

activity value reported.
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Table 1: Model performance around activity cliffs. The left column shows the average
RMSEcliff

7 across all BindingDB test set targets. The right column shows the same, except
RMSE is computed across all test set compounds (not just cliff compounds). 8 context
compounds were used.

Method Mean per-target RMSEcliff Mean per-target RMSE

Meta-MGNN 1.82 1.23
MetaDTA 1.57 1.01
MAML 1.32 0.84
FS-CAP 1.29 0.82

Additional results

Activity cliff performance

Activity cliffs occur in cases where chemically similar compounds have very different activities,

and are a well-known failure case of many machine learning-based chemical property predic-

tors.8 To evaluate the predictive power of FS-CAP and baseline methods around activity

cliffs, we used the RMSEcliff proposed by van Tilborg et al. 7 . RMSEcliff measures the root

mean square error (RMSE) between experimental and predicted activity on a subset of the

test set deemed to be “cliff molecules.” A pair of test set molecules are deemed cliff molecules

if they have similarity above some threshold and a difference in activity above some threshold.

While the thresholds used by van Tilborg et al. 7 were 0.9 for similarity and 10x for activity

difference, none of our test set molecules were deemed cliff compounds under these thresholds.

Instead, we used 0.4 for the similarity and 3x for the activity difference thresholds to ensure

enough compounds were deemed cliff compounds. 275 of 9419 (3%) of all test compounds

were found to belong to a pair of cliff compounds using these new thresholds.

Table 1 reports the results for FS-CAP and baseline methods on the activity cliff test.

Using the already trained models, we measured the RMSEcliff (in pActivity) separately for

each target in the BindingDB test set, and then averaged the RMSEs across the targets (left

column). 8 context compounds were used, and they were chosen randomly. For reference,

we also measured the RMSE across all test set compounds, not just the cliff compounds
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(right column). As shown, our method achieves the lowest RMSEcliff among the chosen

baselines, suggesting that it is most capable at distinguishing between two chemically similar

compounds with a large activity difference.
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