Expansion of Auxiliary Activity Family 5 sequence space via biochemical characterization of six new

copper radical oxidases

Jessica K. Fong, Yann Mathieu, Minh Tri Vo, Annie Bellemare, Adrian Tsang, Harry Brumer

Supplementary Information

Supplementary Tables

Table S1. Purified protein yields of expressed AA5_2 enzymes from 400 mL of BMMY shake-flask culture after three days of methanol feeding.

Enzyme	Yield (mg)	Yield (mg/L)
<i>Xpa</i> GalOx	2.4	6
<i>Bsp</i> GalOx	5.5	13.8
EfeGalOx	3.7	9.3
<i>Nex</i> GalOx	10.1	25.3
<i>Nha</i> GalOx	4.7	11.8
AstAAO	5.7	14.3

Table S2. Specific activities of AA5_2 members.*

	Enzymes and Specific Activities (µmol/min/mg enzyme)										
Substrates	<u>Xpa</u> GalOx	<i>Bsp</i> GalOx	<i>Efe</i> GalOx	<i>Nex</i> GalOx	<i>Nha</i> GalOx	AstAAO					
Galactose	74±3	18±0.2	$(4.0 \pm 0.4) \times 10^{-1}$	1.1 ± 0.1	$(8.0 \pm 1.0) \times 10^{-2}$	1.6 ± 0.1					
Lactose	46±2	5.5 ± 0.2	$(5.0 \pm 0.1) \times 10^{-2}$	$(18 \pm 0.2) \times 10^{-2}$	$(0.6 \pm 0.1) \times 10^{-2}$	1.1 ± 0.2					
Melibiose	40 ± 1	1.7 ± 0.3	$(7.0 \pm 0.2) \times 10^{-2}$	$(3.1\pm0.2) \times 10^{-1}$	$(2.0 \pm 0.4) \times 10^{-2}$	0.3 ± 0.1					
Raffinose	36±1	0.8 ± 0.1	n.d.	$(3.5 \pm 0.4) \times 10^{-1}$	n.d.	1.0±0.2					
Glycerol	2.4 ± 0.4	0.4±0.1	n.d.	d. n.d.		2.1±0.3					
Benzyl alcohol	$(4.0\pm0.1) \times 10^{-1}$	$(4.0\pm0.2) \times 10^{-2}$	n.d.	n.d. n.d.		1.3 ± 0.1					
HMF	1.2 ± 0.2	$(3.0 \pm 0.4) \times 10^{-1}$	n.d.	n.d.	$(3.0 \pm 0.5) \times 10^{-3}$	8.7±0.9					
Methylglyoxal	$(4.0\pm0.1) \times 10^{-1}$	$(0.7 \pm 0.1) \times 10^{-2}$	n.d.	n.d.	n.d.	0.8 ± 0.1					
Glyoxal	$(1.4 \pm 0.4) \times 10^{-1}$	$(2.0 \pm 0.4) \times 10^{-2}$	n.d.	n.d.	n.d.	$(1.0 \pm 0.1) \times 10^{-1}$					
Arabinose	2.2±0.9	n.t.	n.t.	n.t.	n.t.	n.t.					
Polygalact-	$(8.0 \pm 0.2) \times 10^{-1}$	n.t.	n.t.	n.t.	n.t.	n.t.					
uronic acid											
Arabinan	5.6 ± 0.2	n.t.	n.t.	n.t.	n.t.	n.t.					
Galactomannan	12±1	n.t.	n.t.	n.t.	n.t.						
Pectic galactan	11±0.3	n.t.	n.t.	n.t.	n.t.	n.t.					
Rhamnogalac-	9.8±0.2	n.t.	n.t.	n.t.	n.t.	n.t.					
turonan I											
Potato galactan	19±4	n.t.	n.t.	n.t.	n.t.	n.t.					
Xyloglucan	0.5 ± 0.1	n.t.	n.t.	n.t.	n.t.	n.t.					

Butanol	$(1.9\pm0.7) \times 10^{-1}$	n.t.	n.t.	n.t.	n.t.	$(3.0 \pm 0.2) \times 10^{-2}$
Hexanol	$(1.7 \pm 0.3) \times 10^{-1}$	n.t.	n.t.	n.t.	n.t.	(7.7 ± 0.4) x 10 ⁻¹
Octanol	$(13 \pm 0.2) \times 10^{-2}$	n.t.	n.t.	n.t.	n.t.	$(1.0 \pm 0.2) \times 10^{-2}$
Decanol	$(13 \pm 0.3) \times 10^{-2}$	n.t.	n.t.	n.t.	n.t.	n.d.
Furfuryl alcohol	$(20 \pm 0.2) \times 10^{-1}$	n.t.	n.t.	n.t.	n.t.	$(9.0 \pm 0.4) \times 10^{-1}$
Coniferyl	n.t.	n.t.	n.t.	n.t.	n.t.	n.d.
alcohol						
Sinapyl alcohol	n.t.	n.t.	n.t.	n.t.	n.t.	n.d.
Cinnamyl	n.t.	n.t.	n.t.	n.t.	n.t.	5.0±0.2
alcohol						
Veratryl alcohol	n.t.	n.t.	n.t.	n.t.	n.t.	5.4 ± 0.2
Vanillyl alcohol	n.t.	n.t.	n.t.	n.t.	n.t.	n.d.

*ABTS coupled assay in 50 mM sodium phosphate buffer, pH 7.0, at room temperature with 300 mM carbohydrate or polyol, or 10 mM aryl alcohol or aldehyde and. 2mg/mL

polysaccharide substrates, except for NexGalOx that was assayed in 50mM sodium acetate buffer, pH 5.0. n.d. = Activity not detected at [E] up to 2 mg/mL (27µM). n.t. = Not tested.

	Xpa GalOx	Bsp GalOx	Efe GalOx	Nex GalOx	Nha GalOx	Ast	Fgr GalOx	Mre GalOx	Fve GalOx	Fsu GalOx	Fox	Fgr AAO	Fox AlcOx	Cgr
	Galox	Galox	Galox	Galox	Galox	AAO	GalOx	GalOx	Galox	Galox	AAU	AAU	AICOX	740
<i>Xpa</i> GalOx		57	55	53	54	53	57	59	53	54	53	54	53	46
(jgi Xanpa2 15/864/)														
<i>Bsp</i> GalOx	71		55	52	52	51	55	56	51	51	51	52	52	46
(jgi Bissp1 110239)														
<i>Efe</i> GalOx	69	68		60	60	58	64	52	57	58	57	58	57	43
(ACN30267)														
<i>Nex</i> GalOx	69	67	73		62	59	65	53	61	61	61	61	60	47
(jgi Nieex1 192818)														
<i>Nha</i> GalOx	66	64	69	72		69	71	53	69	69	69	69	70	45
(XP_003039318)														
AstAAO	67	65	68	72	77		65	51	71	71	71	71	71	45
(jgi Acrst 1377707)														
<i>Fgr</i> GalOx	69	69	73	77	80	77		55	65	65	64	65	64	47
(AAO95371)														
<i>Mre</i> GalOx	72	69	64	66	64	65	66		53	54	53	54	54	46
(XP_033570565)														
<i>Fve</i> GalOx	67	66	70	74	80	81	77	65		97	98	92	82	45
(ADG08188)														
<i>Fsu</i> GalOx	68	66	70	73	79	80	77	65	98		96	90	81	46
(ADG08187)														
FoxAAO	68	65	70	73	79	80	76	65	99	98		91	81	46
(XP_018246910)														
FgrAAO	68	66	70	73	79	80	77	65	95	95	95		79	46
(XP_011322138)														
<i>Fox</i> AlcOx	67	65	68	71	80	80	76	64	88	88	88	87		46
(FOPG_18201)														
<i>Cgr</i> AAO (EFQ27661)	63	62	59	62	61	61	62	64	62	62	62	63	62	

Table S3. Sequence identity and similarity of AA5_2 catalytic modules characterized in this work versus previously characterized members.*

*Sequence identity and similarity values are highlighted in green and blue, respectively. Previously characterised AA5_2s are in bold font; see main text for literature references. Percentage coverage of the catalytic module sequences was between 98 – 100%.

Supplementary Figures

Figure S1. Maximum likelihood phylogeny of AA5_2 members. A maximum likelihood phylogeny was generated with a curated set of 623 AA5_2 catalytic modules omitting any accessory modules, using AA5_1 sequences as an outgroup (1). Each subgroup is distinguished by different branch colors and. numbers. Subgroups containing characterized members are indicated in green. AA5_2 members with previously available biochemical data are labeled in black and. those from this work are in red. Bootstrap values indicated at each node/branch support the 38 subgroups identified.

Figure S2. SDS-PAGE of purified AA5_2 members recombinantly produced in *P.pastoris* and N-deglycosylation.

Aliquots of enzymes were N-deglycosylated with PNGaseF and 3 µg of protein was loaded. MW = molecular weight markers, kDa. (A) Lane 2: PNGaseF, 3: *Ast*AAO, 4: *Ast*AAO + PNGaseF, 5: *Bsp*GalOx, 6: *Bsp*GalOx + PNGaseF, 7: *Efe*GalOx, 8: *Efe*GalOx + PNGaseF, 9: *Nha*GalOx, 10: *Nha*GalOx + PNGaseF (B) Lane 2: PNGaseF, 3: *Xpa*GalOx, 4: *Xpa*GalOx + PNGaseF, 5: *Nex*GalOx, 6: *Nex*GalOx + PNGaseF. Gels were stained with Coomassie blue.

Figure S3. pH-rate profiles. pH-rate profiles were determined using the HRP-ABTS coupled assay with 300mM galactose as the substrate for *Xpa-,Bsp-,Efe, Nex-* and *Nha-*GalOx and 10mM HMF for *Ast*AAO. Measurements were made in triplicate at room temperature. Sodium phosphate (black square), citrate phosphate (red circle), sodium acetate (blue circle), glycine NaOH (blue triangle) and CHES (green triangle) buffers at 50mM were used to cover a pH range of 4-10.5.

Figure S4. Temperature stability profiles. Activity was determined using the couple HRP-ABTS assay with 300 mM galactose and 10 mM HMF as substrates for the galactose oxidases and alcohol oxidase, respectively. Reactions were performed in duplicate at room temperature and each enzyme was pre-incubated at each temperature and maintained by a gradient thermocycler: 30°C (purple diamond), 35.2°C (green triangle), 39.3°C (blue triangle), 44.9°C (red circle) and 51.9°C (black square).

Figure S5. Effects of BSA addition on observed activity of *Xpa***GalOx**. Due to the high activity of *Xpa*GalOx, diluted solutions of enzyme required stabilisation by BSA. A working concentration of 5×10^4 mg mL⁻¹(7.3 nM) was used.

Figure S6. *Xpa***GalOx Michaelis-Menten kinetics.** Initial rates were measured in triplicate at each substrate concentration. The individual k_{cat} and K_M values were calculated by performing a non-linear fitting analysis of the standard Michaelis-Menten equation (red line) using OriginLab 9.85. A linear fit (black line) was applied to data from reactions that did not reach saturation. *Xpa*GalOx displayed substrate inhibition (blue line) when assayed on melibiose.

Figure S7. *Bsp***GalOx Michaelis-Menten kinetics.** Initial rate values were measured in triplicate at each substrate concentration. The individual k_{cat} and K_M values were calculated by performing a non-linear fitting analysis of the standard Michaelis-Menten equation (red line) using OriginLab 9.85. A linear fit (black line) was also applied to the data from reactions where saturation kinetics were not observed.

Figure S8. *EfeGalOx, NexGalOx* and *Nha*GalOx Michaelis-Menten kinetics. Initial rate values were measured in triplicate at each substrate concentration. The individual k_{cat} and K_M values were calculated by performing a non-linear fitting analysis of the standard Michaelis-Menten equation (red line) using OriginLab 9.85. A linear fit (black line) was also applied to data from reactions that did not reach saturation. *Efe*GalOx displayed substrate inhibition (blue line) when assayed on galactose.

(continued on next page)

Figure S9. *AstAAO* **Michaelis-Menten kinetics.** Initial rate values were measured in triplicate at each substrate concentration. The individual k_{cat} and K_M values were calculated by performing a non-linear fitting analysis of the standard Michaelis-Menten equation (red line) using OriginLab 9.85. A linear fit (black line) was also applied to data from reactions that did not reach saturation. *Ast*AAO displayed substrate inhibition (blue line) when assayed on veratryl alcohol and HMF.

Figure S10. Galactose oxidation by *Xpa***GalOx.** ¹H NMR spectra for the negative control reaction (red), reaction with *Xpa*GalOx (blue) and reaction with *Xpa*GalOx and 0.1 mg/mL BSA added (green). A 1:1 ratio of HRP: catalase was added and reactions were carried out for 24 hours at ambient temperature with stirring at 400 rpm. A concentration of 0.7 μ M (50 μ g) *Xpa*GalOx was used in a 1 mL reaction.

Figure S11. HMF oxidation by *Ast***AAO.** ¹H NMR spectra for the negative control reaction (red) and reaction with *Ast*AAO (blue). A 1:1 ratio of HRP: catalase was added, and reactions were carried out for 24 hours at ambient temperature with stirring at 400 rpm. A concentration of 1.4 μ M (100 μ g) *Ast*AAO was used in a 1 mL reaction. HMF, DFF, DFF hydrate and FFCA are denoted by open squares, open circles, black circles and black stars, respectively. Peaks were assigned versus reference spectra (1, 2).

Supplementary References

- 1. Cleveland ME, Mathieu Y, Ribeaucourt D, Haon M, Mulyk P, Hein JE, Lafond M, Berrin JG, Brumer H. 2021. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases. Cellular and Molecular Life Sciences **78**:8187-8208.
- Carro J, Ferreira P, Rodriguez L, Prieto A, Serrano A, Balcells B, Arda A, Jimenez-Barbero J, Gutierrez A, Ullrich R, Hofrichter M, Martinez AT. 2015. 5-hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase. Febs Journal 282:3218-3229.