**Supplemental Material** 

## Blue valorization of lignin-derived monomers via reprogramming marine bacterium *Roseovarius nubinhibens*

Ying Wei<sup>1</sup>, Shu-Guang Wang<sup>1,2,3</sup>, Peng-Fei Xia<sup>1,\*</sup>

<sup>1</sup> School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China

<sup>2</sup> Sino-French Research Institute for Ecology and Environment, Shandong University, Qingdao 266237, China

<sup>3</sup> Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China

\* Correspondence:

Peng-Fei Xia

School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

Email: pfxia@sdu.edu.cn

## **Table of contents**

| Table S1. Plasmids used in this study                                                | S3  |
|--------------------------------------------------------------------------------------|-----|
| Table S2. CRISPRi-mediated PCA production by <i>R. nubinhibens</i> at 36 h           | S4  |
| Table S3. Multiplex CRISPRi-mediated PCA production by <i>R. nubinhibens</i> at 36 h | S5  |
| Table S4. Primers used in this study.                                                | S6  |
| Table S5. gRNA sequences used in this study                                          | S7  |
| Table S6. Sequences of synthesized mCherry gene used in this study                   | S8  |
| Fig. S1. The color variation of the wild-type <i>R. nubinhibens</i>                  | S9  |
| Fig. S2. MS analysis of standards.                                                   | S10 |
| Fig. S3. Relative expression of target genes.                                        | S11 |
| Fig. S4. Growth profile                                                              | S12 |
| Fig. S5. Growth profile                                                              | S13 |
| Fig. S6. PCA production in strains with pWYi                                         | S14 |
| Fig. S7. Molar yield of PCA in strains with pWYi.                                    | S15 |
| Fig. S8. Growth profile                                                              | S16 |
| Fig. S9. Growth profile                                                              | S17 |
| References                                                                           | S18 |

| Name         | Description                                                       | Source                 |
|--------------|-------------------------------------------------------------------|------------------------|
| pQLL-mCherry | <i>pBR322</i> ori, <i>bla</i> , mCherry                           | Beijing Liuhe BGI.     |
| pBBR1MCS-5   | <i>pBBR1</i> ori, <i>pBBR1</i> Rep, <i>Gm<sup>R</sup></i>         | Lab stock              |
| pTemplate    | <i>pUC</i> ori, <i>bla</i> , gRNA scaffold                        | Lab stock <sup>1</sup> |
| pCasEnv-lacl | pBBR1MCS-5, <i>lacI</i> -P <sub>trc</sub> , <i>cas9</i>           | Lab stock <sup>2</sup> |
| pWY06        | pWY, gRNA06                                                       | Lab stock <sup>2</sup> |
| pgRNA-pcaG   | pTemplate, gRNA07                                                 | Lab stock <sup>2</sup> |
| pgRNA-pcaC   | pTemplate, gRNA09                                                 | This study             |
| pmCherry     | pBBR1MCS-5, <i>lacI</i> -Ptrc, mCherry                            | This study             |
| pWYi01       | pBBR1MCS-5, <i>lacl</i> -P <sub>trc</sub> , <i>dcas9</i> , gRNA09 | This study             |
| pWYi02       | pBBR1MCS-5, <i>lacl</i> -P <sub>trc</sub> , <i>dcas9</i> , gRNA06 | This study             |
| pWYi-M03     | pWYi02, gRNA09                                                    | This study             |
| pWYi-M04     | pWYi02, gRNA07                                                    | This study             |

Table S1. Plasmids used in this study.

| Target       | Plasmid | IPTG<br>(mM)                      | 4HB Consumption<br>(mM)           | PCA Titer<br>(mM) | Yield<br>(%, moL/moL) |
|--------------|---------|-----------------------------------|-----------------------------------|-------------------|-----------------------|
| / pBBR1MCS-5 | 0.25    | $7.52\pm0.39$                     | $0.33\pm0.07$                     | $4.38 \pm 1.11$   |                       |
|              | 0.5     | $\textbf{9.69} \pm \textbf{0.91}$ | $\textbf{0.46} \pm \textbf{0.43}$ | $5.00\pm4.69$     |                       |
| pcaC pWYi01  |         | 0.25                              | $6.61\pm0.43$                     | $0.39\pm0.02$     | $5.90 \pm 0.12$       |
|              | 0.5     | $8.28 \pm 0.58$                   | $\textbf{0.97} \pm \textbf{0.03}$ | $11.74 \pm 1.16$  |                       |
| рсаН р       | pWYi02  | 0.25                              | $5.77\pm0.76$                     | $0.54\pm0.05$     | $9.44\pm0.30$         |
|              |         | 0.5                               | $\textbf{7.26} \pm \textbf{0.65}$ | $1.39\pm0.06$     | $19.27 \pm 1.93$      |

Table S2. CRISPRi-mediated PCA production by R. nubinhibens at 36 h. a

<sup>a</sup> Data are the averages and standard deviations from two independent biological experiments. IPTG, Isopropyl-β-D-thiogalactopyranoside; 4HB, 4-hydroxybenzoate; PCA, protocatechuate.

| Target        | Plasmid    | 4HB Consumption<br>(mM) | PCA Titer<br>(mM)                 | Yield<br>(%, moL/moL) |
|---------------|------------|-------------------------|-----------------------------------|-----------------------|
| /             | pBBR1MCS-5 | $9.69\pm0.91$           | $\textbf{0.46} \pm \textbf{0.43}$ | $5.00\pm4.69$         |
| pcaC and pcaH | pWYi-M03   | $7.41\pm0.14$           | $1\ 49\pm0.12$                    | $20.15 \pm 1.72$      |
| pcaH and pcaG | pWYi-M04   | $5.88 \pm 1.51$         | $1.42\pm0.22$                     | $24.47 \pm 2.30$      |

Table S3. Multiplex CRISPRi-mediated PCA production by R. nubinhibens at 36 h. a

<sup>a</sup> Data are the averages and standard deviations from three independent biological experiments. IPTG, Isopropyl-β-D-thiogalactopyranoside; 4HB, 4-hydroxybenzoate; PCA, protocatechuate.

| Primer             | Sequence                                       |  |  |
|--------------------|------------------------------------------------|--|--|
| Primers for In-Fus | sion DNA assembly                              |  |  |
| XIA-WY-109         | TTTCACACAGGAAACAGACCATGGTGAGCAAGGGCGAGGA       |  |  |
| XIA-WY-110         | CGCTTACAATTTCCATTCGCCTACTTGTACAGCTCGTCCA       |  |  |
| XIA-WY-111         | TCCTCGCCCTTGCTCACCATGGTCTGTTTCCTGTGTGAAA       |  |  |
| XIA-WY-112         | TGGACGAGCTGTACAAGTAGGCGAATGGAAATTGTAAGCG       |  |  |
| XIA-WY-093         | TTGACTACCGGAAGCAGTGTTCTAGATTGTAAAACGACGGCCAGTC |  |  |
| XIA-WY-094         | CATTTGAGAAGCACACGGTCACAGGAAACAGCTATGACCG       |  |  |
| XIA-WY-095         | GACTGGCCGTCGTTTTACAATCTAGAACACTGCTTCCGGTAGTCAA |  |  |
| XIA-WY-096         | CGGTCATAGCTGTTTCCTGTGACCGTGTGCTTCTCAAATG       |  |  |
| XIA-WY-201         | GATCATTTATTCTGCCTCCCTCGAACCACGCAATGCGTCT       |  |  |
| XIA-WY-202         | CACCGTTTTTATCAGGCTCTTTGAGTGAGCTGATACCGCT       |  |  |
| XIA-WY-203         | AGACGCATTGCGTGGTTCGAGGGAGGCAGAATAAATGATC       |  |  |
| XIA-WY-204         | AGCGGTATCAGCTCACTCAAAGAGCCTGATAAAAACGGTG       |  |  |
| Primers for invers | e PCR                                          |  |  |
| XIA-WY-155         | TTTCAGACGCTGATCACCGAGTTTTAGAGCTAGAAATAGC       |  |  |
| XIA-WY-156         | TCGGTGATCAGCGTCTGAAAGCTAGCATTATACCTAGGAC       |  |  |
| XIA-WY-199         | TAGAGATCGCTAACTGGTTGGGACTGGTTGCATAACCATG       |  |  |
| XIA-WY-200         | CAACCAGTTAGCGATCTCTAGTCACCTCCTAGCTGACTCA       |  |  |
| Primers for colony | y PCR                                          |  |  |
| XIA-WY-044         | TTAGGTGGCGGTACTTGGGT                           |  |  |
| XIA-WY-045         | GCAGTCGCCCTAAAACAAAG                           |  |  |
| Primers for RT-qP  | PCR                                            |  |  |
| XIA-WXY-001        | CCTGATCTAGCCATGCCG                             |  |  |
| XIA-WXY-002        | CGTATTACCGCGGCTGCT                             |  |  |
| XIA-WY-222         | TTTCGAGGAAATCCCCATGC                           |  |  |
| XIA-WY-223         | TTCCGCATAGGTTTCCTTGG                           |  |  |
| XIA-WY-224         | ATGACCAGGGCTATTACGTC                           |  |  |
| XIA-WY-225         | CGCCCTCGAAATAACATTGG                           |  |  |
| XIA-WY-226         | CATCGGTCTCAACACAAGGC                           |  |  |
| XIA-WY-227         | GGATGTCGAAACGGTAGACG                           |  |  |

Table S4. Primers used in this study.

| gRNA   | Target | Strand <sup>a</sup> | PAM | Protospacer          |
|--------|--------|---------------------|-----|----------------------|
| gRNA06 | pcaH   | С                   | CGG | CAAAGCGCCAGCGAAATCAC |
| gRNA07 | pcaG   | С                   | AGG | GCAACGTCTCGACTACCTCA |
| gRNA09 | pcaC   | С                   | AGG | TTTCAGACGCTGATCACCGA |

 Table S5. gRNA sequences used in this study.

<sup>a</sup> C stands for coding strand and N stands for non-coding strand.

| Table S6. | Sequences | of synthesized | mCherry gene | e used in this study. |
|-----------|-----------|----------------|--------------|-----------------------|
|-----------|-----------|----------------|--------------|-----------------------|

| Gene    | Sequence <sup>a</sup>                                 |
|---------|-------------------------------------------------------|
|         | CGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTAATCATCC       |
|         | <b>GGCTCGTATAATGTGTGGAATTTCACACAGGAAACAGACCATGGTG</b> |
|         | AGCAAGGGCGAGGAGGATAACATGGCCATCATCAAGGAGTTCATG         |
|         | CGCTTCAAGGTGCACATGGAGGGCTCCGTGAACGGCCACGAGTTC         |
|         | GAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCA          |
|         | GACCGCCAAGCTGAAGGTGACCAAGGGTGGCCCCCTGCCCTTCGC         |
|         | CTGGGACATCCTGTCCCCTCAGTTCATGTACGGCTCCAAGGCCTAC        |
|         | GTGAAGCACCCCGCCGACATCCCCGACTACTTGAAGCTGTCCTTC         |
|         | CCCGAGGGCTTCAAGTGGGAGCGCGTGATGAACTTCGAGGACGG          |
| monerry | CGGCGTGGTGACCGTGACCCAGGACTCCTCCCAGGACGGCG             |
|         | AGTTCATCTACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGA        |
|         | CGGCCCCGTAATGCAGAAGAAGACCATGGGCTGGGAGGCCTCCTC         |
|         | CGAGCGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCA          |
|         | AGCAGAGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCTGAG          |
|         | GTCAAGACCACCTACAAGGCCAAGAAGCCCGTGCAGCTGCCCGGC         |
|         | GCCTACAACGTCAACATCAAGTTGGACATCACCTCCCACAACGAGG        |
|         | ACTACACCATCGTGGAACAGTACGAACGCGCCGAGGGCCGCCACT         |
|         | CCACCGGCGGCATGGACGAGCTGTACAAGTAG <sup>b</sup>         |

<sup>a</sup> Synthesized gene was carried by pQLL plasmid with Amp<sup>R</sup>.

<sup>b</sup> The promoter sequence was shown in Blue and the coding sequence of mCherry was shown in Red.



Fig. S1. The color variation of the wild-type R. nubinhibens. During the cultivation,

4HB was added into the basal medium as the sole carbon source.



Fig. S2. MS analysis of standards. (A) MS analysis of the 4HB standard. (B) MS analysis of the PCA standard.



**Fig. S3. Relative expression of target genes. (A)** Relative expression of *pcaC* in the strain with pWYi01. **(B)** Relative expression of *pcaH* in the strain with pWYi01. Experiments were carried in triplicate and the error bars represented the standard deviations of the means of three biological replicates.



**Fig. S4. Growth profile.** OD<sub>600</sub> of the strain with pBBR1MCS-5, pWYi01 and pWYi02 with 0.5 mM IPTG induction. Experiments were carried in triplicate and the error bars represented the standard deviations of the means of three biological replicates.



**Fig. S5. Growth profile.** OD<sub>600</sub> of the strain with pBBR1MCS-5, pWYi01 and pWYi02 with 0.25 mM IPTG induction. Experiments were carried in triplicate and the error bars represented the standard deviations of the means of three biological replicates.



**Fig. S6. PCA production in strains with pWYi. (A)** Utilization of 4HB, **(B)**Titer of PCA with pBBR1MCS-5, pWYi01 and pWYi02 with 0.25 mM IPTG induction. Experiments were carried out in duplicate and the error bars represented the standard deviations of the means of two biological replicates.



**Fig. S7. Molar yield of PCA in strains with pWYi.** Yield (%) of PCA with pBBR1MCS-5, pWYi01 and pWYi02 with 0.25 mM IPTG induction. Experiments were carried out in duplicate and the error bars represented the standard deviations of the means of two biological replicates. The differences were statistically evaluated by t-test (\*, p<0.05).



**Fig. S8. Growth profile.** OD<sub>600</sub> of the strain with pBBR1MCS-5, pWYi-M03 and pWYi-M04 with 0.5 mM IPTG induction. Experiments were carried in triplicate and the error bars represented the standard deviations of the means of three biological replicates.



**Fig. S9. Growth profile.** OD<sub>600</sub> of the strain with pBBR1MCS-5 and pWYi-M04 in real seawater media. Experiments were carried in triplicate and the error bars represented the standard deviations of the means of three biological replicates.

## References

(1) Li, X.; Bao, N.; Yan, Z.; Yuan, X. Z.; Wang, S. G.; Xia, P. F. Degradation of antibiotic resistance genes by VADER with CRISPR-Cas immunity. *Appl Environ Microbiol.* **2023**, *89*, e00053-00023.

(2) Wei, Y.; Feng, L. J.; Yuan, X. Z.; Wang, S. G.; Xia, P. F. Developing a base editing system for marine *Roseobacter* clade bacteria. *ACS Synth Biol.* **2023**, *12*, 2178-2186.