
Optimization-based Pairwise Interaction Point Process (O-PIPP): A 

Precise and Universal Retinal Mosaic Modeling Approach  

Liuyuan He1,2, Wenyao Wang2*, Lei Ma2, 3, 4*, Tiejun Huang1, 2, 4 

 

Supplementary Text 1: Technical Details of Models  

1. The 𝒅𝒎𝒊𝒏 Model 

In the process of the 𝑑𝑚𝑖𝑛 model (Figure 1A), mosaic modeling was initialized with an empty 

area. During the updating stage, cells were arranged one by one with a random position and a radius 

(𝑑𝑚𝑖𝑛). The 𝑑𝑚𝑖𝑛, representing the minimal distance between the cell and other settled cells, also 

known as the "exclusion zone", ensures that no other cells should be inside this zone. Specifically, 

during each update, one cell was placed at a random location. If the cell’s nearest neighbor was 

farther than the 𝑑𝑚𝑖𝑛, the cell would be settled down in the location. Otherwise, we would need to 

attempt more times. The modeling process continued until all cells were settled in the mosaic, or the 

model couldn’t find an eligible position for the waiting cell (we had set the maximum number of 

attempts to 10,000 times).  

The number for each cell type in the mosaic was determined by the actual cell density and the 

area of the modeling region. The value of 𝑑𝑚𝑖𝑛 was randomly sampled from a Gaussian distribution 

with a mean value (𝑑𝑚𝑒𝑎𝑛) and a standard deviation (𝑑𝑠𝑡𝑑). We used a grid search to find the optimal 

parameters (𝑑𝑚𝑒𝑎𝑛 and 𝑑𝑠𝑡𝑑). Taking horizontal cells as an example, candidates for 𝑑𝑚𝑒𝑎𝑛 ranged 

from 10 to 40 μm and candidates for 𝑑𝑠𝑡𝑑 ranged from 1 to 10 μm, covering the observed statistics of 

horizontal cells (mean 23.57 μm and standard deviation 4.75 μm). We performed 50 simulations for 



each combination of 𝑑𝑚𝑒𝑎𝑛 and 𝑑𝑠𝑡𝑑, and finally selected the combination that showed the least loss 

to the observed mosaic. Supplementary Table 1 displays the performance of the 𝑑𝑚𝑖𝑛 model with 

different combinations of 𝑑𝑚𝑒𝑎𝑛 and 𝑑𝑠𝑡𝑑 in the simulation for horizontal cells. In this case, the pair, 

𝑑𝑚𝑒𝑎𝑛 = 39 𝜇𝑚 and 𝑑𝑠𝑡𝑑 = 7 𝜇𝑚, yielded the lowest loss value (the red bold number) and we used 

them as the final parameters. 

2. The PIPP Model 

       The PIPP model initialized all cells with random positions (Figure 1B). At each update step, the 

model selected a cell and attempted to reinsert it into the mosaic at a random position. The decision 

of whether to accept the new position followed the pairwise interaction point process, known as 

PIPP. Specifically, the interaction function ℎ(𝑢) (1, 2) followed 

ℎ(𝑢) = {

0, 𝑢 < 𝛿

1 − exp (− (
𝑢 − 𝛿

𝜙
)

𝛼ℎ

), 𝑢 ≥ 𝛿
, (1) 

where 𝑢 is the distance between two cells. 𝛿, 𝜙, and 𝛼ℎ are the hyperparameters. The acceptance 

probability 𝑝(𝑥𝑖) of the 𝑖-th cell was 

𝑝(𝑥𝑖) = ∏ ℎ(‖𝑥𝑖 − 𝑥𝑗‖)

𝑁

𝑗=1,𝑗≠𝑖 

, (2) 

where 𝑥𝑖  denotes the position of the 𝑖-th cell, 𝑥𝑗  denotes the position of others excluding the 𝑖-th 

cell, and 𝑁 denotes the total number of cells. Following this formation, the acceptance probability 

𝑝(𝑥𝑖) would be smaller if the cell was closer to neighbors. The PIPP model updated all cells in an 

iteration and terminated if the number of iterations reached a preset value (we had set the number to 

20 iterations, as described in (2)). When compared with other methods, we chose the optimal mosaic 

with the lowest loss value from all iterations instead of relying on the result of the final iteration.  



    When we determined the hyperparameters of PIPP, taking horizontal cells as an example 

(Supplementary Figure 5), we first used the spatstat package in R to accomplish the non-parametric 

estimation (the red curve in Supplementary Figure 5) as described in (2). Then, we used non-linear 

least squares fitting in Python to find the optimal values of 𝛿, 𝜙, and 𝛼ℎ based on the Equation 1 (the 

black curve in Supplementary Figure 5). Detailed instructions are available in the GitHub tutorials 

(https://github.com/heliy/OPIPP/blob/main/tutorial/estimate_inter_ps.md). 

3. Parameters in the O-PIPP Model 

     We conducted experiments on the horizontal cell mosaic to show the impact of O-PIPP 

parameters (T0, α, Pr) on performance. For Tmin, we fixed its value at 0.0001 to ensure enough 

optimization iterations. Each set of parameters underwent 50 simulation runs. We used the 

performance (the averaged L𝐹) and the time consumption (the averaged simulation time or the 

iteration numbers) as evaluation metrics.  

       In the first experiment, we assessed the impact of T0 ∈ [0.1, 0.3, 0.5, … , 3.9, 4.1], and α ∈

[0.9, 0.95, 0.99] on the simulation results. We fixed Pu = 0.01 for all cases. In Supplementary Figure 

3, it is evident that under these experimental conditions, there was a trade-off between performance 

and time consumption. Specifically, the impact of T0 on performance saturated around 2.0 across 

different α values. While larger α values could further enhance performance, they also resulted in 

higher computational costs. Considering the balance between performance and time consumption, we 

chose this parameter set (T0 = 2.0 and α = 0.95) for our study.   

       In the second experiment, we evaluated how the update probability Pu ∈

[0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1.0] alter the simulation results. This time we fixed T0 = 2.0, and 

α = 0.95 for all cases. Supplementary Figure 4 shows that when Pu ∈ [0.001, 0.01], the O-PIPP 

yielded similar good performances and fast simulation. And we finally chose Pu = 0.01 in our study. 

https://github.com/heliy/OPIPP/blob/main/tutorial/estimate_inter_ps.md


Supplementary Text 2: Details of Network Models  

1. The neural dynamic system 

     The neural dynamic system of the model (Supplementary Figure 6) was based on the hierarchical 

Linear-Nonlinear (LN) model for primate GCs (3), which used subunits to present BCs in retinal 

circuits. We simplified the LN block with a temporal filer into a Weight-Nonlinear block, where a 

cell summed inputs with corresponding weights and then turned them into outputs nonlinearly. 

Specifically, the response of the 𝑗-th bipolar cell at time 𝑡 was 

𝑜𝑏𝑐
𝑗

(𝑡) = 𝑓𝑏𝑐 (∑
𝑥𝑐

𝑖 (𝑡)

𝑛

𝑛

𝑖=1

) , (3) 

where 𝑓𝑏𝑐(∎) denotes the BC nonlinearity, 𝑛 denotes the number of cones providing inputs, and 

𝑥𝑐
𝑖 (𝑡) denotes the stimuli for the 𝑖-th cone. Similarly, the firing rate of the ganglion cell at time t was 

𝑜𝑔𝑐(𝑡) = 𝑓𝑔𝑐 (∑
𝑜𝑏𝑐

𝑗
(𝑡)

𝑚

𝑚

𝑗=1

) , (4) 

where 𝑓𝑔𝑐(∎) denotes the GC nonlinearity, 𝑚 denotes the number of BCs providing inputs. The 

nonlinearities 𝑓𝑏𝑐 and 𝑓𝑔𝑐 were sigmoid functions as 

𝑓(𝑥) =
1

1 + exp (−
𝑥 − ℎ

𝑠 )
, (5)

 

where ℎ = 0, 𝑠 = 0.1 in 𝑓𝑏𝑐 and ℎ = 0.5, 𝑠 = 0.01 in 𝑓𝑔𝑐. For simplification, all bipolar cells and 

ganglion cells were ON-type.  



2. The Receptive Field Measurement 

     The RGC's RF in a network model was measured by the STA (Spike-Triggered Average), 

method(4) (Supplementary Figure 9). The STA method typically uses discrete spike trains, to sum up 

stimulus and yield the receptive field of a neuron. The firing rate of the ganglion cell is the number of 

spikes in a single time bin and can represent the weight of the time bin when we do an average 

alongside a spike train. Therefore, in our network model, we referred to the previous work(5) and 

used the firing rates as the weights, to sum up the stimulus and got the receptive field.  

      The stimulus spreaded out 20 x 20 pixels(6) (1 pixel covers a 23μm x 23μm area) and included 

500,000 steps. Pixels were independently chosen from a white-noise distribution in [-0.5, 0.5] with 

mean value = 0. As the discrete-neuronal network model didn't include temporal filters, the RF was a 

spatial array without temporal information. Then we used the convexity index (CI) (6) to quantify 

spatial RF shapes. We labeled pixels whose weights were higher than the mean weight value by at 

least half the standard deviation and binarized them together into a convex hull. The CI value is the 

ratio of the pixel number of the convex hull over its area. We used the Gaussian kernel density 

estimation to infer the probability density of CI values from a population of RFs.  

 

  



Supplementary Tables 

Supplementary Table 1: Losses of 𝑑𝑚𝑖𝑛-simulated mosaics with different parameters. 

𝒅𝒔𝒕𝒅 

𝒅𝒎𝒆𝒂𝒏 

1 2 3 4 5 6 7 8 9 10 

10 2.334 2.376 2.539 2.617 2.784 2.842 2.741 2.788 3.016 2.908 

11 2.117 2.188 2.279 2.427 2.329 2.499 2.639 2.621 2.811 2.665 

12 1.883 1.882 2.025 2.093 2.198 2.282 2.406 2.571 2.637 2.593 

13 1.76 1.725 1.775 1.806 1.945 2.035 2.194 2.353 2.433 2.693 

14 1.459 1.576 1.591 1.658 1.747 1.799 2.006 2.241 2.369 2.35 

15 1.226 1.284 1.295 1.448 1.531 1.763 1.973 2.087 2.181 2.231 

16 1.092 1.081 1.178 1.271 1.363 1.617 1.753 1.935 2.131 2.178 

17 0.96 0.886 1.015 1.195 1.257 1.44 1.577 1.721 1.945 2.055 

18 0.83 0.802 0.922 0.972 1.015 1.273 1.383 1.612 1.815 1.962 

19 0.745 0.737 0.708 0.79 0.905 1.196 1.288 1.468 1.52 1.815 

20 0.663 0.65 0.628 0.697 0.826 0.962 1.07 1.269 1.517 1.656 

21 0.636 0.578 0.586 0.562 0.726 0.86 0.986 1.181 1.375 1.581 

22 0.595 0.506 0.521 0.525 0.637 0.757 0.916 1.067 1.332 1.586 

23 0.601 0.492 0.438 0.431 0.521 0.654 0.819 0.916 1.005 1.403 

24 0.665 0.524 0.459 0.408 0.47 0.605 0.738 0.798 1.039 1.186 

25 0.743 0.558 0.458 0.4 0.392 0.476 0.642 0.801 0.965 1.078 

26 0.873 0.608 0.428 0.378 0.361 0.456 0.555 0.676 0.849 1.146 

27 0.946 0.677 0.475 0.371 0.343 0.406 0.507 0.623 0.845 1.052 

28 1.07 0.74 0.524 0.369 0.333 0.374 0.443 0.578 0.814 0.938 



29 1.115 0.796 0.531 0.406 0.325 0.343 0.469 0.535 0.742 0.806 

30 1.25 0.846 0.615 0.393 0.363 0.343 0.344 0.487 0.528 0.76 

31 1.484 0.9 0.648 0.42 0.36 0.311 0.361 0.437 0.599 0.731 

32 1.906 1.054 0.655 0.472 0.351 0.329 0.348 0.417 0.499 0.668 

33 2.366 1.268 0.727 0.495 0.38 0.319 0.352 0.424 0.499 0.638 

34 3.12 1.556 0.789 0.537 0.419 0.35 0.321 0.362 0.468 0.634 

35 4.269 1.984 0.988 0.559 0.376 0.356 0.33 0.356 0.416 0.537 

36 5.253 2.866 1.261 0.619 0.41 0.346 0.329 0.355 0.419 0.473 

37 7.08 3.747 1.668 0.689 0.428 0.366 0.32 0.294 0.357 0.487 

38 8.845 4.817 2.114 0.845 0.462 0.334 0.307 0.331 0.374 0.449 

39 10.124 6.496 3.01 1.154 0.502 0.378 0.291 0.311 0.354 0.439 

40 11.687 7.993 3.831 1.635 0.613 0.4 0.322 0.308 0.342 0.404 

 

Supplementary Table 2. Mean and standard deviation (STD) of metrics from O-PIPP-simulated 

mosaics. 

Cell Types 

KL divergence 

of 

NN distances 

KL divergence 

of 

VD areas 

𝑳𝑭 NNRI VDRI 

Mean STD Mean STD Mean STD Mean STD Mean STD 

HC 0.024 0.004 0.009 0.001 0.034 0.004 4.688 0.181 4.595 0.139 



 

Supplementary Table 3. Mean and standard deviation (STD) of metrics from PIPP-simulated 

mosaics. 

Cholinergic 

AC 

0.016 0.002 0.012 0.001 0.028 0.002 4.047 0.127 3.895 0.141 

VGluT3 

AC 

0.034 0.002 0.026 0.003 0.060 0.004 3.578 0.137 3.243 0.104 

AII 

AC 

0.008 0.002 0.007 0.002 0.014 0.002 3.018 0.073 2.714 0.052 

T2 

BC 

0.008 0.002 0.010 0.003 0.018 0.002 3.027 0.061 2.326 0.084 

T3b 

BC 

0.003 0.001 0.008 0.002 0.011 0.002 2.879 0.064 2.167 0.073 

T4BC 0.024 0.003 0.032 0.007 0.056 0.009 2.489 0.082 2.210 0.062 

WT 

Cone 

0.003 0.001 0.039 0.015 0.042 0.015 4.209 0.043 2.830 0.412 

RP 

Cone 

0.015 0.005 0.029 0.007 0.044 0.008 2.618 0.088 0.810 0.101 

Cell Types 

KL divergence 

of 

NN distances 

KL divergence 

of 

VD areas 

𝑳𝑭 NNRI VDRI 

Mean STD Mean STD Mean STD Mean STD Mean STD 



 

Supplementary Table 4. Mean and standard deviation (STD) of metrics from 𝑑𝑚𝑖𝑛-simulated 

mosaics. 

HC 0.228 0.077 0.100 0.057 0.328 0.106 4.582 0.555 4.705 0.511 

Cholinergic 

AC 

0.140 0.042 0.077 0.021 0.217 0.046 4.620 0.488 4.951 0.363 

VGluT3 

AC 

0.245 0.067 0.325 0.060 0.571 0.095 3.786 0.406 3.741 0.361 

AII 

AC 

0.110 0.056 0.174 0.043 0.284 0.076 3.031 0.245 2.775 0.305 

T2 

BC 

0.093 0.038 0.100 0.034 0.192 0.050 3.354 0.289 2.558 0.395 

T3b 

BC 

0.187 0.052 0.131 0.037 0.318 0.075 4.123 0.256 3.204 0.458 

T4BC 0.256 0.077 0.359 0.128 0.615 0.145 2.825 0.373 2.768 0.406 

WT 

Cone 

0.018 0.017 0.055 0.023 0.073 0.037 4.126 0.140 2.867 0.335 

RP 

Cone 

0.186 0.173 0.358 0.330 0.544 0.502 2.982 0.376 1.444 0.668 

Cell Types 

KL divergence 

of 

NN distances 

KL divergence 

of 

VD areas 

𝑳𝑭 NNRI VDRI 



 

  

Mean STD Mean STD Mean STD Mean STD Mean STD 

HC 0.190 0.073 0.134 0.072 0.322 0.094 6.135 0.798 4.601 0.519 

Cholinergic 

AC 

0.154 0.055 0.158 0.040 0.318 0.068 5.320 0.559 4.470 0.485 

VGluT3 

AC 

0.237 0.073 0.525 0.080 0.790 0.124 4.855 0.676 3.844 0.484 

AII 

AC 

0.094 0.036 0.183 0.071 0.197 0.070 3.361 0.309 2.079 0.500 

T2 

BC 

0.101 0.038 0.136 0.053 0.235 0.058 3.416 0.293 2.139 0.486 

T3b 

BC 

0.121 0.040 0.095 0.030 0.230 0.053 3.528 0.288 2.342 0.390 

T4BC 0.151 0.059 0.362 0.210 0.336 0.084 2.650 0.292 1.694 0.384 



Supplementary Figures  

 

Supplementary Figure 1. Triangulation-related spatial features on a horizontal cell mosaic. 

(A) A horizontal cell mosaic from (7). Transparent points denote cells close to the boundary of the 

area with a 200𝜇𝑚 side length. 

(B) The Delaunay triangulation results. Gray edges denote the cellular neighborhoods. 



(C) The spatial features without boundary cells. (1) Nearest Neighbor (NN) distances, (2) Voronoi 

Domain (VD) areas. 

(D) Distributions of the population of features and related regularity indices (RI). (1) NN distances 

and the NNRI, (2) VD areas and the VDRI. 

 

 

Supplementary Figure 2. The track of loss values along the optimization process of an O-PIPP-

simulated HC mosaic. 



 

Supplementary Figure 3. Effect of 𝐓𝟎 and 𝛂 on the result of O-PIPP. 

 

 

 

Supplementary Figure 4. Effect of 𝐏𝐮 on the result of O-PIPP. 



 

Supplementary Figure 5. The interaction function 𝒉(𝒖) curves of horizontal cells. 

 

Supplementary Figure 6. The three-layer retinal discrete-neuronal network model with 

mosaics. 

(A) Schematic of the retinal network with cone – bipolar cell – ganglion cell connections.  

(B) The schema of the network model, modified from (3). 

(C) The WT cone mosaic and O-PIPP-simulated BC mosaic in the network. 



 

Supplementary Figure 7. Simulation results with the PIPP model and the 𝒅𝒎𝒊𝒏 model on wild-

type retinal mosaics. 

(A to G) Cell types are ordered by the regularity index (NNRI) of the natural mosaic. 

(1) The artificial mosaic generated by the PIPP approach. 

(2) The distribution of NN distances in natural mosaics (gray), overlaid by values extracted from 

PIPP-simulated mosaics (transparent red). 

(3) The distribution of VD areas in natural mosaics (gray), overlaid by values extracted from PIPP-

simulated mosaics (transparent red). 



(4) The artificial mosaic generated by the 𝑑𝑚𝑖𝑛 approach. 

(5) The distribution of NN distances in natural mosaics (gray), overlaid by values extracted from 

𝑑𝑚𝑖𝑛- simulated mosaics (transparent red). 

(6) The distribution of VD areas in natural mosaics (gray), overlaid by values extracted from 𝑑𝑚𝑖𝑛- 

simulated mosaics (transparent red). 

 

 

Supplementary Figure 8. Single simulation cases from three models on horizontal cell mosaics. 

(A to C) Simulation cases on horizontal cell mosaics. 

(1) Artificial mosaics generated by the O-PIPP approach. 

(2) The distribution of NN distances in natural mosaics (gray), overlaid by values extracted from the 

O-PIPP-simulated mosaic (transparent red). 

(3) The distribution of VD distances in natural mosaics (gray), overlaid by values extracted from the 

O-PIPP-simulated mosaic (transparent red). 

(4) Artificial mosaics generated by the PIPP approach. 



(5) The distribution of NN distances in natural mosaics (gray), overlaid by values extracted from the 

PIPP-simulated mosaic (transparent red). 

(6) The distribution of VD distances in natural mosaics (gray), overlaid by values extracted from the 

PIPP-simulated mosaic (transparent red). 

(7) Artificial mosaics generated by the 𝑑𝑚𝑖𝑛 approach. 

(8) The distribution of NN distances in natural mosaics (gray), overlaid by values extracted from the 

𝑑𝑚𝑖𝑛-simulated mosaic (transparent red). 

(9) The distribution of VD distances in natural mosaics (gray), overlaid by values extracted from the 

𝑑𝑚𝑖𝑛-simulated mosaic (transparent red). 

 

 

Supplementary Figure 9. Schematic of the Spike-Triggered Average (STA) method in the 

estimation of RFs. 
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