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S1. Experimental Section

S1.1. Chemicals

Methanol (≥ 99.5%), N, N-Dimethylformamide (DMF, ≥ 99.8%), isopropanol (≥ 99.5%), and N-methyl-2-

pyrrolidone (NMP, 99.9%) were obtained from Makclin Chemistry (Shanghai, China). Zinc acetate dihydrate 

(Zn(OAc)2·2H2O, 99%), 2-methylimidazole (MeIm, 98%) and sodium molybdate (Na2MoO4, 99%) were 

purchased from Aladdin Chemistry (Shanghai, China). Polyvinylidene fluoride (PVDF 6020), carbon black 

(Super P), and Nafion solution (5 wt.%) were provided by Sigma-Aldrich (Merck, Shanghai, China). Bulk 

molybdenum carbide (MoC, 99.95%) for the comparison was obtained from Aladdin Chemistry (Shanghai, 

China). All chemicals were used as purchased without further processing.

S1.2. Construction of ZIF-8 RDs

For a typical synthesis of ZIF-8 RDs [S1, S2], 1.0 mmol (219.5 mg) of Zn(OAc)2·2H2O was dissolved into 10 

mL of ultrapure water to form a homogeneous Zn2+ solution. 10 mmol (821.1 mg) of MeIm was dissolved 

into 10 mL of ultrapure water to prepare another solution. The Zn2+ solution was quickly added into the MeIm 

solution. After vigorously stirring for 5 min, the mixture solution was kept at room temperature for 24 h to 

obtain the white precipitates. The white precipitates were separated by centrifugation and thoroughly washed 

with water and methanol for several times, and dried in vacuum oven at 60 °C overnight to harvest ZIF-8 RDs.

S1.3. Preparation of MOF/MoO4-x

MOF/MoO4-x (x stands for the mass ratio of Na2MoO4 to ZIF-8, x=0.25, 0.5, and 1) were prepared according 

to the previous report [S1] with some modifications. Briefly, 200 mg of the ZIF-8 RDs were ultrasonically 

dissolved into 20 mL of DMF. Following this, 100 mg of Na2MoO4 with the mass ratio of 0.5 was added into 

the above ZIF-8 RDs solution to synthesis MOF/MoO4-0.5. Under stirring for 20 min, the mixture solution 

was transferred into a Teflon-lined stainless steel autoclave and kept at 150 ℃ for 6 h. After cooling down to 

ambient temperature, the MOF/MoO4-0.5 was collected by centrifugation and washed by DMF and methanol 

for several times, and finally dried in vacuum oven.
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Another two amounts of Na2MoO4 (50 and 200 mg) with the mass ratios of 0.25 and 1 were also added into 

the ZIF-8 RDs solution (200 mg in DMF) for the construction of MOF/MoO4-0.25 and MOF/MoO4-1 by using 

the similar procedures as described above, respectively.

S1.4. Synthesis of NC/MoyC-x

The above MOF/MoO4-x precursors were placed into a ceramic boat and thermally carbonized under nitrogen 

gas flow in a tube furnace, yielding NC/MoyC-x (y represents the atomic ratio of Mo to C, y= 1 or 2; x stands 

for the mass ratio of Na2MoO4 to ZIF-8, x=0.25, 0.5, and 1). During the carbonization process, the 

MOF/MoO4-x were firstly heated from room temperature to 400 ℃ with a heating rate of 2 ℃ min-1 and keep 

for 3 h. Subsequently, the temperature was further improved from 400 to 800 ℃ with the same heating rate 

(2 ℃ min-1) and also kept for another 3 h. After cooling down to room temperature, the NC/MoyC-x products 

were obtained. Specifically, the MOF/MoO4-0.25 and MOF/MoO4-0.5 precursors were converted into 

NC/MoC-0.25 and NC/MoC-0.5 with the single-phased MoC nanocrystals, while the MOF/MoO4-1 precursor 

was transformed to the dual-phased NC/MoC/Mo2C-1 after the thermal pyrolysis [S1-S3]. For comparison, 

ZIF-8 RDs were pyrolyzed to yield the carbonaceous materials, denoted as ZIF-8-C.

S1.5. Characterizations

The structure and morphology of the MOF/MoO4-x and NC/MoyC-x were observed by field emission scanning 

electron microscopy (SEM, Hitachi SU-8000, Japan) with an accelerating voltage of 10.0 kV. Transmission 

electron microscopy (TEM), high-resolution TEM (HRTEM) images, and elemental mapping analysis were 

performed using a JEM-2100F (JEOL, Japan) operated at 200 kV. X-ray photoelectron spectroscopy (XPS) 

spectra were collected on a PHI Quantera SXM (ULVAC-PHI, Japan) instrument with an Al Kα radiation, 

and the binding energies were calibrated by referencing them to the C 1s (284.5 eV) binding energy. X-ray 

diffraction (XRD) patterns were examined by using a Rigaku Rint 2000 X-ray diffractometer (Tokyo, Japan) 

with monochromatic Cu Kα radiation (40 kV, 40 mA) at a scanning rate of 2° min-1. Nitrogen adsorption-

desorption isotherms were obtained by using an Autosorb-iQ Automated Gas Sorption System 
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(Quantachrome, USA) at 77 K. The specific surface area was evaluated by the multipoint Brunauer-Emmett-

Teller (BET) method based on the adsorption data. The pore-size distributions were calculated from the 

adsorption branches of isotherms based on the density functional theory method. Fourier-transformed infrared 

spectra (FT-IR) were obtained using a Bruker Alpha spectrometer (Ettlingen, Germany) in the range of 500-

2000 cm-1. The concentration of NaCl solution was continuously measured by a REX DDSJ-308F conductivity 

meter (INESA Scientific Instrument, Shanghai, China).

S1.6. Electrocatalysis measurements

All electrochemical measurements were carried out in 1 M NaCl aqueous electrolyte at room temperature with 

a three-electrode system on Chenhua CHI 760E electrochemical workstation (Shanghai, China). The Pt/C 

electrode and KCl-saturated Ag/AgCl were adopted as counter electrode and reference electrode, respectively. 

The working electrode slurry was prepared by ultrasonically dispersing 2 mg of as-synthesized samples in a 

mixed solution consisting of 950 µL of isopropanol and 50 µL of Nafion solution (5.0 wt.%).

The specific capacitances (C, F g-1) are calculated by the following eqn [1] from the GCD curves [S4, S5]:

                                      [1]
C =  

I ×  ∆t
m ×  V

where I is the current (A), ∆t is the discharge time (s), m is the mass of sample (g), and V is the voltage 

window (V).

The correlation between the measured current (i) and the scanning rate (v) can be expressed by the following 

eqn [2] and [3]:

                                        [2]i =  avb

                            [3]log i =  blog v +  log a

where the modulatory parameters a and b, obtained from the fitted curves, can indicate whether the process 

is diffusion-controlled (when b approaches 0.5) or capacitive-controlled (when b is close to 1.0) [S6, S7].

The contribution mechanisms of various charging and discharging processes are calculated by the following 

eqn [4] [S6, S7]:
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                                [4]i(V) =  k1v +  k2v1/2

where k1v and k2v1/2 represent the capacitive-controlled contribution and diffusion-controlled contribution, 

respectively.

S1.7. Desalination performance measurements

The CDI measurements were carried out in a continuous cycle system including a peristaltic pump, constant 

current power supply, stirring device, a tank and a CDI unit consisting of a pair of working electrodes (2.5 

×2.5 cm2) and a pair of ion exchange membranes. The CDI electrodes were fabricated by a slurry mixing in 

NMP solution of the NC/MoyC-x: carbon black: PVDF=8: 1: 1. The slurry was coated on graphite paper (2.5 

×2.5 cm2) and dried overnight at 80 ºC in a vacuum. In the CDI experiments, the ion conductivity meter was 

used to monitor and measure the real-time change of NaCl concentration at the outlet of CDI device under 

different concentrations (100, 250, 500, 750, and 1000 mg L-1) and voltages (0.8, 1.0, 1.2, 1.4, and 1.6 V). 

The volume of NaCl solution was 32 mL, and the flow rate was 20 mL min-1. The salt adsorption capacity 

(SAC, mg g-1) and salt adsorption rate (SAR, mg g-1 min-1) at t min are calculated as following eqn [5] and 

[6]:

                                     [5]

SAC =  
(C0 -  Ct) ×  Vs

m

                                            [6]
SAR =  

SAC
t

where C0 and Ct are the NaCl concentrations at initial stage and t min (mg L-1), respectively; Vs is the solution 

volume (L); and m is the total mass (16 mg) of the electrode materials on the working electrodes [S8, S9].

The charge efficiency (Λ) is calculated according to eqn [7] [S10, S11]:

                                        [7]
Λ =  

Γ ×  Ϝ
Σ

where Γ represents the desalination capacity (mol g-1), Ϝ denotes the Faraday constant (96485 C mol-1), and 

Σ stands for the integral of the current-time curve (C g-1).
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The energy consumption (E, Wh g-1) is obtained according to eqn [8] [S10, S11]:

                                 [8]

E =
ν × ∫ idt

3.6 × (C0 -  C ) V

where the v indicated a driven potential, ∫idt corresponded to the integrated value of the current transient vs. 

running time plot, and V (mL) was the rotational solution volume. C0 and C (mg L-1) were initial and final 

concentrations, respectively.

The Langmuir isotherm model (eqn [9]) is adopted to simulate the experimental SAC data of ion adsorption 

on the electrode [S12, S13]:

                                       [9]
q =

qmKLC

1 +  KLC

where q is the SAC (mg g-1), KL is the Langmuir constant related to the heat of adsorption, qm is the 

maximum SAC (mg g-1) corresponding to complete monolayer coverage, and C is the equilibrium 

concentration (mg L-1).

S2. DFT Calculation Methods

The Cambridge sequential total energy package (CASTEP) module in DFT-based Material Studio was utilized 

to perform all calculations [S14, S15]. Perdew-Burke-Ernzerhof (PBE) within the generalized gradient 

approximation (GGA) is employed to calculate the exchange-correlation potential. The cutoff energy is set to 

be 400 eV. All structures were optimized until the energy converged to 1.0×10-5 eV and the force reached 0.02 

eV Å-1.
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Fig. S1. SEM images of (a) MOF/MoO4-0.25, (b) MOF/MoO4-1, and their-derived (c) NC/MoC-0.25, and (d) 

NC/MoC/Mo2C-1.
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Fig. S2. (a1) HRTEM, (a2) inverse fast Fourier transformation (IFFT) image, and (a3) corresponding line scan 

of NC/MoC-0.25. (b1) HRTEM, and (b2-b4) IFFT images and corresponding line scans of NC/MoC/Mo2C-

1, including (b2, b4) IFFT images and (b3, b5) corresponding line scans.
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Fig. S3. Pore size distributions of (a) ZIF-8 RDs and MOF/MoO4-x (x=0.25, 0.5, and 1) and (b) their derived 

ZIF-8-C, NC/MoC-0.25, NC/MoC-0.5, and NC/MoC/Mo2C-1.
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Fig. S4. The Mo contents in NC/MoC-0.25, NC/MoC-0.5, and NC/MoC/Mo2C-1.
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Fig. S5. (a) CV and (b) GCD curves for ZIF-8-C.
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Fig. S6. (a) CV and (b) GCD curves of NC/MoC-0.25.
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Fig. S7. (a) CV and (b) GCD curves of NC/MoC/Mo2C-1.
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Fig. S8. CDI Ragone plots of NC/MoC-0.5 with an initial NaCl concentration of 500 mg L-1 at various voltages 

from 0.8 to 1.6 V.
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Fig. S9. SAC versus deionization time plots of the (a) ZIF-8-C, (b) NC/MoC-0.25, and (c) NC/MoC/Mo2C-1 

electrodes with initial concentration of 500 mg L-1 using different voltages. The corresponding CDI Ragone 

plots for (d) ZIF-8-C, (e) NC/MoC-0.25, and (f) NC/MoC/Mo2C-1.



S15

Table S1. Comparisons of the transition metal carbides/dichalcogenides or MOFs-derived carbons for their 

CDI performance.

Samplesa SSAs (m2 g-1) NaCl concentrations (mg L-1) Voltages (V) SACs (mg g-1) Refs.
MoC@CNFAs 351.4 3000 1.2 37.03 [S16]
WC@GNFs 379 150 (300 μS m-1) 1.4 22.155 [S17]
CoCr7C3@CNFs - 500 (1000 μS m-1) 1.0 20.4 [S18]
T-MoS2 42.8 100 0.8 35.0 [S19]
MoS2-S180 - 500 0.8 28.85 [S20]
MoS2/CNT 225 300 0.8 10 [S21]
MoS2/PDA - 200 1.2 16.94 [S22]
MoS2-rGO 28.7 200 1.0 16.82 [S23]
MoS2/g-C3N4 174.3 250 1.6 24.16 [S24]
MoS2/NOMC 233.4 250 1.6 28.82 [S25]
Ce-MoS2 3.71 400 1.2 8.81 [S26]
NC@GC/CNTs 516.46 1000 1.6 56.30 [S27]
NPC/rGO 1336 1000 1.2 39.34 [S28]
CNFZIF 416 500 1.2 50.88 [S29]
NHPC 848 500 1.4 20.05 [S30]
NC-800 798 50 1.2 8.52 [S31]
NP-EHPC 1165.8 500 1.2 24.14 [S32]
P-CNFA 728.2 1000 1.2 16.20 [S33]

500 1.2 84.2
NC/MoC-0.5 506.3

1000 1.6 123.4
This study

a MoC@CNFAs: Molybdenum carbide nanoparticle-embedded carbon nanofiber aerogels; WC@GNFs: Tungsten 
carbide@graphene nanoflakes; CoCr7C3@CNFs: CoCr7C3 metallicemetallic carbides@carbon nanofibers; T-MoS2: Defect-
rich MoS2; MoS2-S180: Oxygen-incorporated MoS2 that synthesized at 180 ºC; MoS2-CNT: Molybdenum disulfide /carbon 
nanotube; MoS2/PDA: MoS2/polydopamine; MoS2-rGO: 3D flower-like MoS2/reduced graphene oxide composite; MoS2/g-
C3N4: MoS2/graphitic carbon nitride composite; MoS2/NOMC: MoS2/nitrogen-doped highly ordered mesoporous carbon; 
Ce-MoS2: Chemically exfoliated multi-layer MoS2 nanosheets; NC@GC/CNTs: Nitrogen-doped carbon@graphitic 
carbon/carbon nanotubes; NPC/rGO: Porous N, P-doped carbon/reduced graphene oxide; CNFZIF: Carbon nanofiber@ZIF-
8 derived N-rich porous carbon nanosheets; NHPC: Hierarchical porous ZIF-8 derived carbon; NC-800: ZIF-8 derived N-
doped carbon by the pyrolysis at 800 ºC; NP-EHPC: N, P co-doped eave-like hierarchical porous carbon; P-CNFA: P-doped 
carbon nanofiber aerogels.
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Fig. S10. (a, b) SEM, (c, d) TEM, (e) HRTEM (Insert: the IFFT image), and (f) XRD pattern of NC/MoC-0.5 

after the 200 CDI cycles (Applied voltage: 1.2 V; NaCl concentration: 500 mg L-1).
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