APPENDIX

A DERIVATION OF TEST STATISTIC FOR $K > 2$ GROUPS

Here, we extend our weighted log rank test procedure to compare $K > 2$ groups. We will assume an incomplete within-cluster group structure, as the complete within-cluster group structure is a special case. Recall that the weighted countinga nd at risk processes for group k were defined as

$$
\hat{N}_k(t) = \sum_{i=1}^N M \sum_{j=1}^{n_i} \omega_{ik} I[X_{ij} \le t, \delta_{ij}, G_{ij} = k]
$$

$$
\hat{Y}_k(t) = \sum_{i=1}^N M \sum_{j=1}^{n_i} \omega_{ik} I[X_{ij} \ge t, G_{ij} = k],
$$

where the weights ω_{ik} are as defined in the main manuscript. When more than two groups are present, the counting processes $\hat{N}_k(t)$ and $\hat{Y}_k(t)$ follow the same formula, with weights defined as

$$
\omega_{ik} = \begin{cases} \left(K_i^c n_{ik}\right)^{-1} & \text{if } n_{ik} > 0\\ 0 & \text{if } n_{ik} = 0 \end{cases}
$$

where K_i^c is the number of groups having observations in cluster *i*, i.e., $K_i^c = \sum_{k=1}^{K} I[n_{ik} > 0]$. The rationale for this particular weight comes from consideration of the modified WCR procedure discussed in the main manuscript. In cluster *i*, a group is selected with equal probability from the groups available in the given cluster, i.e., with probability $(K_i^c)^{-1}$. Then, an observation is selected with equal probability from all observations from the selected group, i.e., with probability n_{ik}^{-1} for each group $k = 1, ..., K$. The two-step WCR procedure then suggests the weight $(K_i^c n_{ik})^{-1}$ for the weighted counting processes. If group k is not represented in cluster i , then, clearly, this group is selected with probability 0, and thus the weight for cluster i is also 0. The test statistic for group k is then defined as before

$$
\hat{Z}_k(t) = \int_0^t \mathrm{d}\hat{N}_k(s) - \frac{\hat{Y}_k(s)}{\hat{Y}(s)} \mathrm{d}\hat{N}(s),
$$

where $\hat{N}(t) = \sum_{i=1}^{K} \hat{N}_k(t)$ and $\hat{Y}(t) = \sum_{i=1}^{K} \hat{Y}_k(t)$. Let $\hat{\mathbf{Z}}(t) = (\hat{Z}_1(t), \dots, \hat{Z}_K(t))$ be the vector of test statistics. The estimated covariance matrix of $\hat{\mathbf{Z}}(t)$, denoted $\hat{\mathbf{\Sigma}}(t)$, can be estimated via jackknife as described in the main manuscript. The covariance matrix has rank $K - 1$, so we construct the test statistic as the quadratic form

$$
X^{2}(t) = \hat{\mathbf{Z}}_{-k}^{T}(t)\hat{\mathbf{\Sigma}}_{-k}(t)\hat{\mathbf{Z}}_{-k}(t),
$$

where the subscript $_{-k}$ denotes removal of the k^{th} element of $\hat{\mathbf{Z}}(t)$ and the k_{th} row and column of $\hat{\Sigma}(t)$, where k can be arbitrarily selected. Under typical regularity conditions, it is expected that $X^2(t)$ follows the χ^2_{K-1} distribution and we reject $H_0: S_1(t) = \ldots = S_K(t)$ if $X^2(t) > \chi^2_{K-1,1-\alpha}$. This procedure, calculating the quadratic form with the removal of one group, corresponds to the traditional K sample test for i.i.d. data.¹¹