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1.1 MRI Processing  

Structural data preprocessing was performed with FreeSurfer (http://surfer.nmr.mgh.harvard.edu). T1w and 

T2w images were visually inspected to ensure brain structures were free of blurring, ringing, striping, 

ghosting, etc., caused by head motion. Three raters (B.L., D.D., and G.V.) reviewed the segmentations with 

an experienced neuroradiologist (JS) to ensure data quality [1]. Preprocessing of fMRI data followed 

previously described methods, including compensation for slice-dependent time shifts, elimination of 

systematic odd-even slice intensities, and rigid body correction of head movement [2, 3]. The data were 

then resampled and registered in 3mm3 atlas space using affine transformations to the T1w structural image. 

Additional processing steps encompassed the elimination of linear trends on a voxel-wise basis, application 

of temporal low-pass filtering to preserve frequencies below 0.1Hz, regression of nuisance waveforms, and 

spatial smoothing using 6mm full width at half maximum Gaussian blurring in all directions. Frame 

censoring was implemented using the DVARS measure as previously described [2].  

 

Automated tumor segmentation was performed with a pre-trained convolutional neural network (CNN) 

architecture [4] using post-contrast T1w, T2w, and Fluid Attenuated Inversion Recovery (FLAIR) scans. 

The algorithm segments tissue into vasogenic edema, necrotic/non-enhancing core, and enhancing core. 

Tumor segmentations underwent visual inspection for quality assurance, and any segmentations deemed 

inadequate were excluded. A whole tumor mask was used for masking during the registration of the 

structural and functional images. The automated tumor segmentation maps were also used to create maps 

showing the relevant frequency of a voxel overlapping with the tumor. For each map, regions not contained 

in the segmentation were assigned a value of zero, regions segmented as edema were assigned a one, and 

the non-enhancing/enhancing core was assigned a value of two. Subsequently, the individual maps were 

aggregated to generate heat maps illustrating the extent to which the presence of a tumor influences each 

voxel within the atlas. 

 

1.2 RS-fMRI Measures 
Our analysis included two measures of RS-fMRI, connectivity and spatial overlap of the tumor with each 

RSN. Connectivity measures were calculated as follows. Regions of interest (ROI) derived from past 

studies [5] were used to generate similarity maps for 15 resting state networks (RSN). ROIs were generated 

by taking each network's top 200 voxels with the highest probabilities. The networks include dorsal 

somatomotor (SMD), inferior somatomotor (SMI), cinguloopercular (CON), auditory (AUD), default mode 

(DMN), parietal memory (PMN), visual (VIS), frontoparietal (FPN), salience (SAL), ventral attention 

(VAN), dorsal attention (DAN), medial temporal (MET), reward (REW), thalamus (THA), and basal 

ganglia (BGA). Network similarity was calculated by computing the distance correlation [6] between the 

network-specific ROIs, resulting in 120 within and between similarity measures. Between-network 

correlations were calculated by comparing all 200 voxels for the two given networks in a single calculation. 

Within-network connections were calculated by computing the distance correlation between each voxel and 

the other 199 voxels and averaging all measures. 

 

Spatial features were calculated as follows. First, tumor segmentation maps were generated for each 

individual (see section 2.4, automated tumor segmentation). Then, we acquired publicly available RSN 

probability maps [5]. These maps were generated from >2000 subjects and reflect the probability of each 

voxel belonging to each of the 15 RSNs described above. Then, we took the dot product of the tumor 

segmentation maps with the RSN probability maps over voxels for which the argmax (maximum 

probability) of the probability maps corresponds to the network in question (e.g., if we are calculating the 

spatial overlap for SMD, we only consider voxels that would be classified as SMD based on the argmax of 
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the probabilities for all 15 networks). We then normalize the measures by the number of voxels in the given 

calculation to account for networks of different sizes. 

 

1.3 Machine Learning and Statistical Analysis 
Analyses were performed in MATLAB R2022b. Functional status was classified utilizing Random Forest 

models, an ensemble methodology comprising multiple decision trees [7]. Each of the trees is independently 

trained on a distinct, randomly selected subset of the data, and the collective output of the trees forms the 

basis of the final model predictions. Before training, dimensionality reduction via an autoencoder with a 

single hidden layer was used to reduce the FC feature space to 11 components labeled as FC1, FC2,…FC11. 

The model inputs included age, the encoded FC features, the spatial relationship of the tumor with respect 

to the RSNs, and tumor volume. The model was trained to classify patients into two groups based on their 

Karnofsky Performance Status (KPS) score: KPS<70 (indicating a negative functional outcome) and 

KPS≥70 (indicating a positive functional outcome). All models were trained with 10-fold nested cross-

validation (CV) stratified based on functional outcome, age, and tumor volume. Each outer fold reserved 

approximately ten samples for external validation, and the remaining samples for the corresponding outer 

fold were used to train the model with 10-fold cross-validation. Weighted classification was used during 

training to correct for class imbalance. The autoencoder was trained on 80% of the FC data, with 20% 

reserved for validation termination. 

 

Permutation feature importance [7, 8] was used to identify the strongest predictive features of functional 

outcomes. Permutation feature importance involves randomly permuting each feature in the original dataset 

and evaluating the model's performance after each permutation. Comparing the model’s accuracy with 

permuted features to the accuracy without permuted features allows the identification of features that 

significantly affect model performance and are, therefore, considered strong predictors. This iterative 

process was repeated 100 times for each model corresponding to a specific cross-validation fold. Results 

were computed using the validation data reserved for the respective fold and aggregated and averaged to 

obtain a single weight for each feature. This process was used to identify the strongest predictive features 

of functional outcomes and which functional networks were most associated with each encoded FC feature. 

Average network feature weights were generated by averaging all within and between-network feature 

weights for each network. Then, voxel-wise feature maps were generated by multiplying the average feature 

weights with publicly available FC probability maps [5]. 
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