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Supplementary Figure 1. Localizer and resting state functional scan data quality. Panels compare 

IQM values for each subject for the localizer and resting state functional runs in the BMD (per subject: 

localizer, n=5; resting state, n=5) with anonymous BOLD data from MRIQCeption (BOLD, n=624). 

Source data are provided as a Source Data file. The overlaid points correspond to the IQM value for the 

BMD subject’s individual run. MRIQCeption does not distinguish between different tasks within BOLD 

scans. The boxplot extends 1.5 times the high and low quartiles, with outliers defined as a scan with a 

value outside that range and denoted by diamonds. The up or down arrows after the IQM title 

correspond to whether higher or lower IQM values denote higher data quality. X-axis labels are shared 

vertically. 
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Supplementary Figure 2. Whole-brain split-half reliability for all subjects. The glass brains show the 

split-half reliability (Spearman Brown corrected) at every voxel for each of the ten subjects. A Pearson’s 

R correlation value was obtained by correlating random splits of the 10 repetitions from the 102 testing 

videos. The Spearman Brown split-half reliability was computed using the Pearson’s R (𝜌) value from 

the formula: Spearman Brown = (2𝜌/(1 + 𝜌)), equation (1). 
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Supplementary Figure 3. Whole-brain multivariate searchlight-based noise ceilings for all 

subjects. a Lower noise ceiling: The lower noise ceiling is estimated using a leave-one-subject out 

procedure. A subject’s RDM at a given voxel v is correlated (Spearman’s R) with the remaining nine-

subject average RDM at that voxel v, repeated over all voxels. b Upper noise ceiling: The upper noise 

ceiling is estimated by correlating (Spearman’s R) a subject’s RDM at a given voxel v with the ten-

subject group average RDM at that voxel v, repeated over all voxels. We show the whole-brain 

visualization for the upper and lower noise ceilings averaged over all subjects (top row) and each 

subject individually (bottom). RDMs are computed from the testing set.  
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Supplementary Figure 4. ROI reliability and size for each subject. The bar plots show the total 

number of voxels in the ROI mask (gray bar) and the total number of reliable voxels (p<0.05, 

Spearman-Brown) in the ROI mask (red bar) for each subject across the 22 ROIs. Subject 6 did not 

show any activation from the functional localizer task for ROI transverse occipital sulcus (TOS), and 

subject 7 did not show any activation from the functional localizer task for ROIs retrosplenial cortex 

(RSC) and transverse occipital sulcus (TOS). Y-axis and X-axis labels are shared horizontally and 

vertically, respectively. Source data are provided as a Source Data file.  
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Supplementary Figure 5. Average reliability in each ROI for each subject. The bar plots show the 

average split-half reliability (Spearman Brown corrected split-half correlation) in each ROI of all reliable 

voxels, separated for each subject. Y-axis and X-axis labels are shared horizontally and vertically, 

respectively. Source data are provided as a Source Data file. 
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Supplementary Figure 6. Encoding the temporal dynamics of the BOLD signal. a Whole-brain 

analysis: Each voxel shows the percentage of subjects with a TR peak difference of 2 TRs at that 

specific voxel. Only significant voxels are plotted (p<0.05, binomial test, FDR corrected). The TR shifts 

are observed predominantly in the visual cortex. b ROI analysis: Unique variance explained by the first 

(0-1s) and third video epoch (2-3s) synthetic fMRI data, at each TR. Red asterisks along the x-axis 

indicate unique variance scores significantly greater than 0 (p<0.05, one-sample one-side t-test, FDR 

corrected across 9 TRs x 2 video epochs = 18 comparisons). Large blue/orange stars indicate the TR 

with the highest subject averaged unique variance for the first/third video epochs, respectively. Source 

data are provided as a Source Data file. The box plot encompasses the first and third data quartiles and 

the median (horizontal line). The whiskers extend to the minimum and maximum values within 1.5 times 

the interquartile range, and values falling outside that range are considered outliers (denoted by a 

diamond). The overlaid points show the value at each observation (n=10 for all ROIs except transverse 

occipital sulcus (TOS, n=8) and retrosplenial cortex (RSC, n=9)). Y-axis and X-axis labels are shared 

horizontally and vertically, respectively. 
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Supplementary Figure 7. Encoding model performance on BMD. a TSM ResNet50 trained on M4: 
Features were extracted after blocks 1 (blue), 2 (orange), 3 (green), and 4 (red) in the ResNet 50 
architecture. b TSM MobileNetV2 trained on Kinetics-400: Features were extracted after the first 
bottleneck layer (blue), third bottleneck layer (orange), sixth bottleneck layer (green), and last 2D 
convolutional layer before the average pool (red) in the MobileNetV2 architecture. c TimeSformer S+T 
trained on HowTo100M: Of the twelve model layers, features were extracted after the first (blue), fourth 
(orange), eighth (green), and twelfth (red) layers. The box plot on the left side in each panel shows the 
noise-normalized predictivity of four of each architecture’s features at each of the 22 ROIs. The 
features were extracted at early (blue), intermediate (orange and green), and late (red) processing 
stages in each architecture to capture increasingly high-level degrees of transformations. The box plot 
on the right side in each panel shows the brain prediction difference between each architecture’s most 
deep and early layers for each subject and ROI. Source data are provided as a Source Data file for all 
three panels and the left and right graphs. For the box plots on the right, a blue or red colored box plot 
denotes a significant difference in correlations from 0 (p<0.05, two-sided one-sample t-test, Bonferroni 
corrected for n=22 comparisons), and gray denotes no significance. The box plots encompass the first 
and third data quartiles and the median (horizontal line). The whiskers extend to the minimum and 
maximum values within 1.5 times the interquartile range, and values falling outside that range are 
considered outliers (denoted by a diamond). The overlaid points show the value at each observation 
(n=10 for all ROIs except transverse occipital sulcus (TOS, n=8) and retrosplenial cortex (RSC, n=9)).  
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Supplementary Figure 8. Distributions of stimuli metadata between training and testing sets. The 
training and testing sets consist of 1,000 and 102 different videos, respectively. An author manually 
inspected the pairs of testing set videos to ensure no high-level semantic overlap, in terms of objects 
and actions. a Object, scene, and action label frequency of occurrence: The bar plot depicts the 
frequency of occurrence, (between 0 and 1) of, from left to right, the single-word object, scene, and 
action labels of the 1,102 video stimuli used in the BOLD Moments Dataset. The frequency bars for 
each label are separated by training (blue) and testing (orange) splits to show their similar frequency of 
distributions. Source data are provided as a Source Data file. b Text description and spoken 
transcription t-sne distances: The scatterplot shows the t-sne components (n=2 components, 
perplexity=10, number of iterations=1000) of each text description or spoken transcription embedding. 
The 6 sentence descriptions per video (5 text descriptions and 1 spoken transcription) serve as a useful 
proxy for the video’s content. The t-sne plot shows the training and testing set stimuli cover similar 
spaces of video content. Source data are provided as a Source Data file. c Memorability distribution: 
The distribution of the memorability scores and memorability decay rates (1 per video) between the 
training and testing splits are highly similar and approximately normal. Source data are provided as a 
Source Data file. Note that the positive memorability decay rates, while theoretically implausible, reflect 
the true experimental results detailed in the Memento10k dataset. Users may want to set positive 
values to 0 depending on the analysis. 



9 
 

 

Supplementary Figure 9. The effect of Temporal Shift Module (TSM) on brain prediction 
performance. The difference in subject brain prediction performance of a Temporal Shift Module 
(TSM) ResNet50 and Temporal Segment Network (TSN) ResNet50 each trained on a 10,000-video 
subset of the M4 dataset (Multi-moments Minus Memento) was computed at each of the four Blocks for 
each ROI. TSM results in increased brain prediction performance most prominently in early visual 
ROIs. Colored asterisks along the x-axis indicates significant difference between the TSM and TSN 
prediction accuracy at that DNN block (p<0.05, one sample two-sided t-test against a population mean 
of 0, FDR correction across 22 ROIs x 4 blocks=88 comparisons). Source data are provided as a 
Source Data file. The box plot encompasses the first and third data quartiles and the median (horizontal 
line). The whiskers extend to the minimum and maximum values within 1.5 times the interquartile 
range, and values falling outside that range are considered outliers (denoted by a diamond). The 
overlaid points show the value at each observation (n=10 for all ROIs except transverse occipital sulcus 
(TOS, n=8) and retrosplenial cortex (RSC, n=9)).  
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Supplementary Figure 10. The effect of frame shuffling on brain prediction performance across 
different architectures. We compute the difference in the correlation between the shuffled frame 
prediction accuracy and unshuffled frame prediction accuracy at all 22 ROIs and four layers for a TSM 
ResNet50, b TSM MobileNetV2, and c TimeSformer model. Features were extracted at increasing 
levels of depth in each model (blue, orange, green, red) that reflect higher levels of model processing 
stages. Only the TSM ResNet50 architecture trained on the M4 dataset (Multi-moments Minus 
Memento10k) showed evidence of robust differences across cortex between shuffled and unshuffled 
input. Colored asterisks along the x-axis plot indicates significant difference between the unshuffled and 
shuffled prediction accuracy at that DNN block (p<0.05, one sample two-sided t-test against a 
population mean of 0, FDR correction across 22 ROIs x 4 blocks=88 comparisons). Source data are 
provided as a Source Data file. The box plot encompasses the first and third data quartiles and the 
median (horizontal line). The whiskers extend to the minimum and maximum values within 1.5 times the 
interquartile range, and values falling outside that range are considered outliers (denoted by a 
diamond). The overlaid points show the value at each observation (n=10 for all ROIs except transverse 
occipital sulcus (TOS, n=8) and retrosplenial cortex (RSC, n=9)). 
  



12 
 

 

Supplementary Figure 11. Representational similarity of frame and video captions to fMRI 
responses. a ROI-based correlation: We correlate (Spearman’s R) a representational dissimilarity 
matrix (RDM) derived from captions of short videos (purple) and captions of the middle frame of each 
video (beige) with an RDM at each voxel in the brain. The correlation is normalized by the voxel’s upper 
noise ceiling. Noise-normalized correlations are averaged within each ROI and plotted for each 
individual subject. Five frame captions were computed from the image captioning GIT model version 
git-large-coco. The five video captions were human annotated and described in the Methods section 
Metadata subsection Text descriptions. Source data are provided as Source Data files. b Difference in 
correlations: The difference between the video-fMRI normalized correlation and frame-fMRI normalized 
correlation for each subject was computed and plotted. Statistically significant ROIs are colored in 
green and marked with a black asterisk above (p<0.05, one sample two-sided t-test against a null 
correlation of 0, Bonferroni corrected with n=22 ROIs). Source data are provided as Source Data files. 
The box plots in both panels encompass the first and third data quartiles and the median (horizontal 
line). The whiskers extend to the minimum and maximum values within 1.5 times the interquartile 
range, and values falling outside that range are considered outliers (denoted by a diamond). The 
overlaid points show the value at each observation (n=10 for all ROIs except transverse occipital sulcus 
(TOS, n=8) and retrosplenial cortex (RSC, n=9)). 
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Original 

Citation Dataset Name 

Number of 

Subjects 

Number of 

Unique stimuli 

(Shared 

across all 

subjects) 

Stimulus 

Repetitions 

Within Subject 

(Stimuli x 

repetitions) 

Provided 

Stimulus 

Metadata? 

Stimulus 

Superset 

MRI Scanner 

Strength of 

Main Task 

Auxiliary 

Measurements 

(in addition to 

structural)? 

Other 

Neuroimaging 

Modalities 

Experiment 

Superset 

Ours 

BOLD Moments 

(BMD) 10 

1,102 3 

second videos 

(1102) 

1,000 videos x 

3 

102 videos x 

10 Yes 

Moments in 

Time 

Multi-Moments 

in Time 

Memento10k 3T Yes 

EEG (in 

progress) None 

1 BOLD5000 4 

4,916 images 

(113)a 

4,916 images 

x 1 Yes 

SUN 

COCO 

ImageNet 3T Yes None None 

2 Forrest Gump 15 

1 2-hour 

movie (1) 1 movie x 1 Yes None 3T Yes 

fMRI (audio-

only)c 

fMRI (music 

listening) StudyForrest 

3 NSD 8 

70,566 images 

(515) 

10,000d 

images x 3 Yes COCO 7T Yes None None 

4 Doctor Who 1 

30 45-minute 

TV episodes 

(n/a) 

7 1-3 minute 

video clips 

(n/a) 

30 episodes x 

1 

7 video clips x 

22 No None 3T Yes Nonee None 

5 

Naturalistic 

Neuroimaging 

Database (NNDb) 86 

10 movies 

(10)f 1 movie x 1 No None 1.5T Yes Noneg None 

6 THINGS-data 3 

8,740 images 

(8,740) 

8640 x 1 

100 x 12 Yes THINGS 3T Yes 

MEG 

EEG 

THINGS 

initiative 

7 Vim-2 3 

2 continuous 

video streams 

(2) 

1 stream 

(7200 

seconds) x 1 

1 stream (540 

seconds) x 10 No None 4T No None None 

8 n/a 3 

2 continuous 

video streams 

(2) 

1 374-clip 

stream (2.4 

hours) x 2 

1 598-clip 

stream (40 

minute) x 10 No None 3T No None None 

9 
Human Action 

Dataset (HAD) 30 

21,600 2 

second video 

clips (0) 720 videos x 1 Yes 

Human Action 

Clips and 

Segments 

(HACS) Clips 3T No 

MEG (in 

progress) None 

10 Friends s01 - s06 6 

146 22-minute 

TV episodes 

(146)h 1 episode x 1 No None 3T Yes None 

Courtois 

NeuroMod 

10 movie10 6 

4 ~1-3 hour 

movies (4) 

2 movies x 1 

2 movies x 2 No None 3T Yes None 

Courtois 

NeuroMod 

11 
Generic Object 

Decoding (GOD) 5 

1,250 images 

(1,250) 

1200 images 

x 1 

50 images x 

35 Yes ImageNet 3T Yes 

fMRI (mental 

imagery) None 
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a Chang et al., 2019: 4 subjects saw 112 images, 3 subjects saw 1 image 

b Chang et al., 2019: Images were sampled from SUN (1000), COCO (2000), and ImageNet (1916) 

c Hanke et al., 2016: Audio-visual fMRI was originally acquired 

d Allen et al., 2022: Subjects each saw between 9-10,000 images 

e Seeliger et al., 2019: Audio-visual fMRI was originally acquired 

f Aliko et al., 2020: 8 movies were seen by 6 subjects, 1 movie was seen by 18 subjects, and 1 movie 

was seen by 20 subjects 

g Aliko et al., 2020: Audio-visual fMRI was originally acquired 

h Boyle et al., 2020: Subject 04 completed seasons 1-4 and part of season 5 

 

Supplementary Table 1. BMD relative to other publicly available large fMRI datasets. We compare 
BMD with other large, naturalistic, task-based, visual fMRI datasets on different measures of interest (to 
computational neuroscientists). These measures highlight the kind of visual stimuli (type, number, 
overlap with existing stimuli sets, and annotations), fMRI acquisition (scanner strength, auxiliary 
measurements, complementary neuroimaging modalities, and subset in greater neuroimaging efforts), 
and experimental design (number of subjects and stimulus repetitions). This table showcases the niche 
each dataset fills and must not be mistaken for comparison between dataset quality or usefulness. 
Values may differ slightly from the original publication to facilitate comparisons across datasets and 
summarize information. Note that while some datasets are not officially part of a larger experiment 
superset, many have been used in independent studies and thus may have additional stimuli metadata 
and neuroimaging data. Such cases are not noted in this table to maintain clarity. Please see the 
original publication for the most accurate information.
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The added value of a short video versus a static image neuroimaging 

dataset 

We emphasize that a short video (e.g., 3 second duration, as in BMD) fMRI dataset is not better or 

worse than a static image fMRI dataset; rather, they are different in terms of stimulus features and 

corresponding brain responses that may make one better suited to answer specific research questions. 

Most obvious, short videos contain a naturalistic temporal dimension that static images do not, allowing 

the video to communicate crucial contextual information about how spatial components in our 

environment move (or not) and spatially relate to each other over time. The benefit of this temporal 

dimension is clear in our everyday lives – we can interpret transitions between states (a door is being 

opened, not closed), direction (a steering wheel is being turned to left, not right or still), reactions (the 

child laughed after being shown the picture), motion (the baby is crawling slowly, not fast), and more. 

 

The contextual value of a video’s temporal dimension is reflected in BMD’s own action and sentence 

text description metadata. Concerning action labels, images can only be labelled with a limited subset 

of actions or be highly constrained to capture a specific action. For example, the action of a baseball 

player “hitting” the ball can only be captured with an image if the photo were taken at a very specific 

instant in time. Otherwise the action may be “standing” or “swinging”. A short 3s video, as in BMD, 

easily captures these actions without heavily constraining the space of possible videos that correspond 

to “hitting”. Concerning text descriptions, short videos can capture temporal sequences of events that 

an image cannot. We contrast these video captions with captions of only each video’s middle frame 

(frame captions generated by GIT 12 below (emphasis our own): 

Video 0001:  

 Video caption: "A mallard is in the water alone swimming around and putting its beak in." 

 Frame caption: "A duck floating on top of a blue body of water.” 

Video 0002:  

 Video caption: "A man is showing another man how to move feet back and forth." 

 Frame caption: “a couple of men standing in a garage.” 

Video 0005:  

 Video caption: "A woman guides a little boy's arms up and down as other kids stretch around 

him." 
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 Frame caption: “a group of children standing around a room.” 

Video 0006:  

 Video caption: "a chess tournament is going on this is focused on two players one is moving 

their queen and taking something to put the king in checkmate" 

 Frame caption: “a group of people sitting at tables playing chess.” 

 

Static frames of these videos cannot capture the temporal facts that the mallard is “putting its beak in”, 

the man “is showing another man how”, “a woman guides…as other kids stretch”, and a chess player 

“is moving their queen and taking something to put the king in checkmate.” This temporal information 

adds valuable context that often makes one’s understanding of the 3s video vastly richer compared to 

any single static frame. 

 

These differences in short videos and static images also translate to differences in fMRI brain 

responses. Previous work has found that videos evoke a greater extent 13–17 and pattern 18–21 of cortex 

responding to videos than images throughout occipito-temporal, dorsal visual, and parietal cortex. In 

this manuscript we describe our highly reliable activations throughout cortex (Fig. 3) with notably high 

reliability in parietal cortex, a region of the brain that weakly responds to static images. These highly 

reliable brain responses are not just a result of increased participant engagement or stimulus saliency; 

we even show that BMD brain responses capture temporal information from the videos (Fig. 5, Fig. 6, 

Supplementary Fig. 9, Supplementary Fig. 13c) despite the BOLD response’s temporal sluggishness 

and fMRI’s low sampling rate. We further show that the full video captions lead to higher 

representational similarity with BMD’s brain responses than the frame captions through much of the 

ventral visual cortex (Supplementary Fig. 11). 

 

In the adjacent field of computer vision, researchers have long recognized that videos and images 

demand different modeling approaches 22–26 and training datasets 27–31 for strong task performance. 

Videos continue to be at the forefront of ground breaking computer vision research due to their creative, 

cross-domain, and practical applications in text-to-video generation 32–34, video understanding with large 

language models 35–37, and efficient action recognition and pose estimation 38–40. 
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Taken together, short video fMRI datasets offer unique opportunities to advance computational 

neuroscience where static image fMRI datasets do not. They can advance methodologies around 

estimating BOLD signals in response to rapid stimulus presentations 41–43, elucidate cognitive functions 

concerning temporal integration 44–46, test temporally specific cognitive objective functions 47,48, and 

detail how multiple visual pathways interact to achieve an understanding of an event 20,21,49,50. As neuro 

and computer science research become increasingly intertwined 3,51–53, BMD is well-suited to integrate 

with state-of-the-art video modeling work from the computer vision community. Importantly, a short 

video dataset like BMD can make these scientific advancements while staying connected to the vast 

body of still image work by sharing event-related paradigms, multivariate and univariate methodologies, 

representational similarity analyses, and/or encoding and decoding techniques. Short video datasets 

offer more ecological validity than static images while retaining experimental control and offer 

tremendous potential to advance our understanding of the human visual system.  
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Structural and functional scan quality assessment 

We use MRIQC 54 to measure the quality of our study’s original or minimally preprocessed structural 

and functional MRI scans. MRIQC is an open-source software that outputs a large and diverse set of 

image quality metrics (IQMs) to comprehensively quantify the quality of (f)MRI data in a standardized 

and reproducible manner. IQMs are calculated at the level of a single run, and group reports are 

generated for all T1w, T2w, and BOLD runs in the study. We present a representative subset of 6 IQMs 

to summarize the quality of our structural scans and another subset of 6 IQMs to summarize the quality 

of our functional scans (see MRIQC documentation for details on all 112 

IQMs: https://mriqc.readthedocs.io/en/latest/measures.html). Note that no set of metrics can fully 

describe data quality by itself. Thus, when choosing IQMs to represent the structural and functional 

scan quality, we considered the following three criteria: 

 

First, the representative IQMs for the structural scans and for the functional scans should capture 

metrics especially relevant to the properties of structural and functional scans. 

 

Second, IQMs that are useful for describing the quality of both structural and functional scans are 

preferred in order to create more cohesive and shared IQM subsets between the structural and 

functional scans. 

 

Third, IQMs commonly reported in previous literature are preferred in order to improve comparisons 

across studies and be more familiar to readers. 

 

We additionally use MRIQCeption to contextualize our study’s group reported results within a large 

collection of anonymized group reports from studies of comparable scanner parameters (1 < Tesla < 3, 

1 <= TR < 3). 

 

For structural (T1w and T2w) scans, we present the results from the following IQMs: 

 

SNR Total - Signal to Noise Ratio: SNR Total for structural scans is computed by averaging the SNR 

across the cerebrospinal fluid (snr_csf), gray matter (snr_gm), and white matter (snr_wm). SNR is 

calculated by the following formula: 

𝑆𝑁𝑅 𝑇𝑜𝑡𝑎𝑙 =
𝜇𝐹

𝜎𝐹√𝑛(𝑛−1)
  (3) 

https://www.google.com/url?q=https://mriqc.readthedocs.io/en/latest/measures.html&sa=D&source=docs&ust=1700961676876197&usg=AOvVaw2tB9D6uITvdnuysrYQtTlw
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Where 𝜇𝐹 is the mean intensity of the foreground, 𝜎𝐹 is the standard deviation of the foreground 

intensity, and 𝑛 is the number of voxels in the foreground mask. Higher values correspond to higher 

quality. 

CNR - Contrast to Noise Ratio: CNR, an extension of SNR, computes the absolute value difference of 

the gray and white matter image values (|SW - SG|) and divides them by the standard deviation of the 

values in the surrounding air (σair). Higher values correspond to higher quality. 

CJV - Coefficient of Joint Variation: CJV is the ratio of the coefficient of variation in the gray matter to 

the coefficient of variation in the white matter. Lower values correspond to higher quality. 

EFC - Entropy Focus Criterion: EFC is the Shannon entropy of voxel intensities normalized by the 

maximum Shannon entropy value. It measures ghosting and blurring due to head motion. Lower values 

correspond to higher quality. 

FWHM Avg - Average Full-Width Half Maximum Smoothness: FWHM Avg is the average spatial 

distribution of voxel intensities in an image using a Gaussian width estimator. Lower values correspond 

to higher quality. 

FBER - Foreground-Background Energy Ratio: FBER is the ratio of the mean energy inside the 

head to the mean energy outside the head. Higher values correspond to higher quality. 

 

For functional scans, we present the results from the following IQMs: 

SNR - Signal to Noise Ratio:  SNR for functional scans is calculated by the following formula: 

𝑆𝑁𝑅 =
𝜇𝐹

𝜎𝐹√𝑛(𝑛−1)
  (4) 

Where 𝜇𝐹 is the mean intensity of the foreground, 𝜎𝐹 is the standard deviation of the foreground 

intensity, and 𝑛 is the number of voxels in the foreground mask. Higher values correspond to higher 

quality. 

tSNR - Temporal Signal to Noise Ratio: tSNR divides the mean BOLD signal across time by the 

temporal standard deviation map. Higher values correspond to higher quality. 

FD Mean - Mean Framewise Displacement: FD Mean computes the average displacement of all six 

motion parameters. Lower values correspond to higher quality. 

FWHM Avg - Average Full-Width Half Maximum Smoothness: FWHM Avg is the average spatial 

distribution of voxel intensities in an image using a gaussian width estimator. Lower values correspond 

to higher quality. 

AOR - AFNI Outlier Ratio: AOR is the average fraction of outliers found in each fMRI volume as 

computed by AFNI’s “3dToutcount” function. Lower values correspond to higher quality. 
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AQI - AFNI Quality Index: AQI computes the average distance between each volume and the median 

volume of a series, given by AFNI’s “3dTqual” function. Lower values correspond to higher quality.  
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The Algonauts Project 2021 challenge approaches of the top three 

winners 

The Algonauts Project 2021: How the Human Brain Makes Sense of a World in Motion is an open 

challenge that took place during the spring and summer of 2021 and culminated in an interactive 

workshop and speaking event at the Computational Cognitive Neuroscience (CCN) conference 53,55. 

For the challenge, participants submit the predictions of their computational model on held-out brain 

data (see http://algonauts.csail.mit.edu/challenge.html for the final challenge leaderboard and details). 

We summarize the top three challenge entries, highlighting their different modeling approaches and 

insights at the intersection of natural and artificial intelligence research. 

 

The first-place team “huze” approached this challenge using an ensemble of 6 different models that 

together integrate meaningful features of video understanding: spatiotemporal, motion, edge, and audio 

features 56. They then weighted the outputs of each model representation and found that the predictivity 

for each ROI was highest when combining features from all models. They additionally optimized the 

receptive field size for each of the four I3D RGB model layers and ROI 30. They showed that early ROIs 

benefited most from smaller receptive fields on low-level layers (layers 1 and 2) and later ROIs 

benefited most from larger receptive fields on high-level layers (layers 3 and 4), replicating 

neuroscience results 57. 

 

The second-place team “bionn” was interested in evaluating a range of DNNs from the more classical 

supervised CNNs (AlexNet, VGG19, ResNet50, and ResNet152) to the more modern contrastive 

learning and visual transformer networks (simclr, pclv2, and visual transformer network ViT) 58. They 

found the ResNet models, specifically ResNet152, outperformed the visual transformer and contrastive 

learning networks. Similar to “huze”, “bionn” also took advantage of pooling the model features to 

simulate small receptive fields for early regions and large receptive fields for later regions. 

 

The third-place team “shinji” 59 experimented with state-of-the-art spatiotemporal vision features from 

TimeSformer 23 and classical, neurophysiology-based motion energy features 7,60. Looking exclusively 

at the TimeSformer model, they first saw that earlier layers (layers 4-6 out of 12) best predicted early 

visual regions (V1-V4) while later layers (layers 9-11 out of 12) best predicted later visual regions (EBA, 

LOC, STS, FFA, and PPA). In early visual regions (V1-V3), the motion-energy model outperformed the 

TimeSformer model, and in the later visual regions (V4, EBA, LOC, STS, FFA, and PPA), the 

http://algonauts.csail.mit.edu/challenge.html
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TimeSformer model was better. However, the combination of both the TimeSformer and motion-energy 

features was best for all ROIs except for FFA, STS, and PPA. 

  

For more details about the approaches of the top three challenge winners, see the PDFs of their full 

reports, available online or with the BMD dataset.  
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Version B preprocessing pipeline 

Overview 

Here we detail an additional preprocessed version (version B) of the BOLD Moments Dataset (BMD) 

released alongside the version presented in the manuscript (version A). Version B offers additional 

flexibility to use BMD in a researcher’s desired output space and ROI format (see Supplementary Fig. 

12). In brief, version B is preprocessed in five output spaces (MNI152NLin2009cAsym, anatomical, 

fsaverage, fsnative, fsLR32k), contains beta estimates computed with GLMsingle 42 for 

MNI152NLin2009cAsym, fsLR32k, and fsaverage spaces, and defines 47 ROIs in 

MNI152NLin2009cAsym space (Supplementary Fig. 13b, left and right hemispheres of the 22 ROIs 

defined in the main text and MT, plus one “BMDgeneral” ROI). We show whole brain noise ceiling 

reliability results in the volume-based MNI152NLin2009cAsym (Supplementary Fig. 13a) and surface-

based fsLR32k (Supplementary Fig. 14) spaces and high predictivity of a motion energy model in 

motion-selective ROIs (MT, hV4, V3AB, IPS0) (Supplementary Fig. 13c). 

 

Both version A (presented in the manuscript) and version B (described here) are identical up to 

fMRIPrep 61 preprocessing (see Supplementary Fig. 12). Details on the experimental design, 

participants, and MRI acquisition protocols can be found in the main text. Version A was preprocessed 

using the default 6 degrees of freedom for BOLD to T1w image registration (the flag –bold2t1w-dof) and 

one standard volumetric output space (MNI152NLin2009cAsym). Version B was preprocessed with 12 

degrees of freedom for BOLD to T1w image registration and five output spaces comprising a standard 

and native volume output (MNI152NLin2009cAsym, anat) and two standard and native surface outputs 

(fsaverage, fsLR32k, fsnative) with transformation matrices available between the spaces (see 

fMRIPrep preprocessing boilerplate text below). Registration to the fsLR32k space takes advantage of 

scripts for the minimal preprocessing pipeline used in the Human Connectome Project 62,63. This 

registration uses the CIFTI format, where cortical structures are organized in 2D surface-based 

“grayordinates” and subcortical structures are organized in 3D volume-based voxels. This registration 

provides excellent volume-to-surface registration, especially for inter-subject analyses, and access to a 

suite of HCP analysis and visualization tools 62,64.  

 

We provide single trial beta estimates using GLMsingle 42 in the volume-based MNI152NLin2009cAsym 

and surface-based fsLR32k and fsaverage output spaces. We also define 47 ROIs in the 

MNI152NLin2009cAsym volume space for greater research and modeling flexibility. The 47 ROIs are 

similar to the 22 ROIs described in the main manuscript but are separated by left and right hemisphere, 
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include the motion-selective MT ROI, include a “BMDgeneral” ROI that broadly defines reliably 

activated cortex across all BMD subjects, and enforce ROIs to have an equal number of voxels across 

subjects to facilitate inter-subject modeling.   

 

 
Supplementary Figure 12. Overview of preprocessing pipelines. Version A (left) of BMD was 

preprocessed with fMRIPrep into a standard volumetric output space, modeled with FIR functions, and 

supplemented with 22 ROI definitions. Details are provided in the main manuscript. Version B (right) of 

BMD was preprocessed with fMRIPrep into two volume-based and three surface-based output spaces. 

Single trial beta estimates using GLMsingle and 47 ROI definitions were provided in the standard 

volume-based space. 
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Version B MNI152NLin2009cAsym, fsLR32k, and fsaverage preprocessing 
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Supplementary Figure 13. Whole-brain noise ceiling and regions of interest (ROIs). a For each 

subject and voxel in the whole brain, we show the noise ceiling as percent of explainable variance 

using the testing set videos. b We show the 46 non-overlapping parcels (combined left and right 

hemispheres) and BMDgeneral (black) in a glass brain. Each subject's 8 category-selective ROIs (EBA, 

OFA, STS, RSC, FFA, LOC, PPA, and TOS) are functionally defined by extracting the top 50% most 

active voxels within the respective parcel. All subjects share the same ROI definition from the remaining 

parcels. BMDgeneral is defined independently from the ROIs and reflects a group-averaged region of 

cortex that reliably responds to videos in the BOLD Moments experiment. c The boxplots depict the 

correlation (Pearson) between the predicted brain responses with the true responses of the testing set 

using stimulus features computed from a motion energy model. The boxes show the median response 

across subjects (horizontal line), 25th and 75th percentile (lower and upper box boundary), and whiskers 

extending to maximum and minimum values within 1.5 times the interquartile range. Individual subject 

results are shown as black points, and outliers are shown as diamonds (n=10 subjects for all ROIs). 

 

All fMRI data were organized in the standardized BIDS format 65 and preprocessed using fMRIPrep 61. 

The data were slice time corrected to 0s, co-registered to the subject's T1w anatomical scan, and 

registered to standard and nonstandard output spaces (MNI152NLin2009cAsym, fsLR32k, fsaverage, 

fsnative, native volume). Registration to fsLR32k space employs the MSMSulc algorithm 64 for more 

accurate alignment of the cortical surface by weighting voxels along the cortical ribbon and projecting to 

vertices on the surface (e.g., “grayordinates”). Subcortical voxels (including cerebellum) are resampled 

to volumetric MNI space.  

 

The main experimental runs were then temporally interpolated from their acquisition TR of 1.75 

seconds to a TR of 1 second to time-lock volume sampling to stimulus presentations. A General Linear 

Model (GLM) was used to estimate single trial beta estimates 42 in the MNI152NLin2009cAsym, 

fsLR32k, and fsaverage spaces. The beta responses were then normalized (z-scored) within each 

scanning session across conditions. 

 

Note that preprocessing BMD through the entire HCP preprocessing pipeline is expected to obtain even 

better results in fsLR32k due to BMD’s availability of high resolution T2w and fieldmap scans. We use 

the fsLR32k registration native to the fMRIPrep preprocessing tool to maintain a common root between 

output spaces all while still making the data immediately available in the advantageous CIFTI format. 

General linear model 

Functional localizer 

We use GLMsingle 42 to model the fMRI response to the video localizer for each subject separately. 

The subject’s preprocessed data was spatially smoothed with a 9mm full width half maximum of the 
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Gaussian kernel. The data was then temporally interpolated from an acquisition TR of 1.75s to an 

interpolated TR of 1s to timelock image acquisition to block onset. Each block, although composed of 6 

3s videos (except for the fixation blocks, where no videos were shown), was modeled as a single 

stimulus. The onsets and durations (18s) of the Body, Face, Object, Scene, and Scrambled blocks, 

along with the temporally interpolated and smoothed fMRI time series, were input to the general linear 

model. GLMsingle (1) chose an optimal HRF from a library at each voxel, (2) identified a number of 

nuisance regressors from principal component analysis of a noise pool that explain a maximum amount 

of variance, and (3) performed fractional ridge regression at each voxel to estimate single trial betas. 

Main experiment 

For each subject, we fit beta estimates to each single-trial fMRI response in the main experiment using 

GLMsingle 42. The preprocessed data was temporally interpolated from an acquisition TR of 1.75s to an 

interpolated TR of 1s to time-lock stimulus onset to image acquisition (1.75s does not evenly divide the 

inter-trial interval of 4s). In this way, we acquire fMRI scans at different timepoints along the BOLD 

signal (with respect to stimulus presentation) and, after interpolating, achieve a regular sampling of the 

BOLD signal time-locked to stimulus onset for easier analysis. The interpolated fMRI time series, 

stimulus onsets, and stimulus durations (modeled with 3s durations) for each session separately were 

input to the general linear model. GLMsingle estimated single trial beta values by (1) fitting an optimal 

HRF to each voxel from a library of HRFs, (2) identifying nuisance regressors from a noise pool that 

maximally explain variance, and (3) implementing fractional ridge regression to improve estimates in a 

rapid event-related design. Responses for both the training and testing videos within a session were 

estimated with the same GLM to take advantage of the testing set’s multiple repetitions for GLMsingle’s 

type-d estimations. 

 

In this way, we obtained a single beta estimate for each stimulus presentation for each subject. This 

resulted in a total of 4,020 beta estimates per subject (3 beta estimates x 1,000 training videos and 10 

beta estimates x 102 testing videos). 

 

The beta estimates were normalized within each scanning using the session’s training set mean and 

standard deviation. Specifically, the mean and standard deviation at each voxel across the session’s 

training set videos were computed. The mean was subtracted from the training set estimates and the 

testing set estimates, and the standard deviation was divided from the data. For the data in 

MNI152NLin2009cAsym space, nan-indices corresponding to outside the subject’s brain mask were 

identified and removed. 
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MNI152NLin2009cAsym Regions of interest definition 

We computed a non-overlapping set of 46 ROIs (regions of interest) (23 ROIs separated by left and 

right hemispheres) previously known to be driven by dynamic stimuli spanning visual and parietal 

cortices 66–73 (Supplementary Fig. 13b). Note that these ROI definitions differ slightly compared to those 

detailed in the main manuscript (version A). We first created a non-overlapping parcellation in the 

standard MNI152NLin2009cAsym space identical across subjects composed of parcels resampled from 

Wang and colleagues, Glasser and colleagues, and Julian and colleagues 63,74,75. Finally, we used the t-

contrasts from each subject’s functional localizer results to identify the top 50% of voxels within the 

corresponding functional parcel from Julian and colleagues 74 (bodies > objects: EBA; objects > 

scrambled: LOC; scenes > objects: PPA, RSC, STS; faces > objects: OFA, FFA, STS). This ROI 

definition method facilitated inter-subject modeling approaches by ensuring all ROIs were defined for 

each subject and each ROI contained the same number of voxels across subjects. Furthermore, the 

parcellation shared across subjects (before taking each subject’s top 50% of voxels in the parcels from 

Julian and colleagues 74) allowed modeling approaches that incorporate voxel-level spatial information, 

since the parcel indices are the same for each subject.  

 

In detail, we defined ROIs V1v, V1d, V2v, V2d, V3v, V3d, hV4, V3a, V3b, IPS0, IPS1, IPS2, IPS3 from 

Wang and colleagues 75 (maxprob_vol_{h}h.nii, where {h} is “l” or “r”), 2 (here referred to as BA2), 7AL, 

PFt, PFop, and MT from Glasser and colleagues 63 (MNI_Glasser_HCP_2019_v1.0.nii available from 

afni.nimh.nih.gov), and EBA, LOC, PPA, RSC, STS, OFA, FFA, and STS from Julian and colleagues 74 

({h}{parcel}.img from the n=30 group, where {h} is “l” or “r” and {parcel} is the parcel name). We group 

V3a and V3b into V3ab and IPS1, IPS2, and IPS3 into IPS1-2-3 due to subtle differences in functional 

preferences that can be difficult to resolve with our in-the-wild naturalistic stimuli 14,15,76,77. All ROIs were 

resampled into our functional volumetric dimensions and separated by left and right hemispheres. 

Voxels outside a common brain mask computed across subjects were removed from the parcel. There 

was no overlap between the parcels within Wang and colleagues 75 or between the parcels within 

Glasser and colleagues 63. 

 

To address minimal overlap between the parcels derived from Julian and colleagues 74, the in-question 

voxels were assigned to the parcels that had a greater inter-subject agreement from our functional 

localizer experiment. Specifically, a t-test (two-sided, independent) was computed between the 

condition beta estimates to define category-selective contrasts: bodies > objects (body selective; EBA), 

objects > scrambled (object selective; LOC), scenes > objects (scene selective; PPA, RSC, TOS), and 

faces > objects (face selective; OFA, FFA, STS). Similar to the Group-constrained Subject Specific 

https://afni.nimh.nih.gov/
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(GSS) procedure 74, the t-contrast maps were binarized at a p-value cutoff (p < 0.05, uncorrected), 

where voxels below this cutoff were assigned 0 and voxels above this cutoff were assigned 1. The 

binarized t-contrast maps were averaged across subjects and smoothed (6mm full width half maximum 

of the Gaussian kernel) to obtain four probability maps (one for each contrast) that contains information 

on inter-subject agreement at each voxel. If both LOC and EBA overlapped at voxel A, for example, we 

indexed voxel A’s value in both the objects > scrambled probability map (for LOC) and the bodies > 

objects probability map (for EBA) and assigned voxel A to the parcel with the higher value (i.e., the 

higher inter-subject agreement). No parcels within a contrast overlapped.  

 

Finally, we addressed the minimal overlap between parcels across the three atlases. If non-functionally 

defined parcels (i.e., the parcels derived from Wang and colleagues 75 and Glasser and colleagues 63) 

overlapped with functionally-defined parcels (i.e., from Julian and colleagues 74), preference was given 

first to the non-functionally defined parcel. Otherwise, the voxel may end up not being assigned to any 

ROI after subject-specific ROI definition (described below) because the functionally-defined parcels are 

generous in size, reflecting group-level inter-subject agreement. If the overlapping parcels were all non-

functionally defined, preference would have gone to the smaller parcel to preserve its size, but there 

was only overlap between functionally and non-functionally defined parcels. In this way, we obtained 46 

non-overlapping parcels identical for each subject. 

 

We then functionally define the category-selective ROIs for each subject by identifying the top 50% 

most active (i.e., highest t-values, uncorrected) voxels inside the ROIs respective t-contrast map 

masked by the corresponding parcel 78. This method achieves both a subject-specific functional 

definition, maintains the relative size between ROIs, and ensures the same number of voxels within an 

ROI across subjects. No constraint of contiguity was enforced. 

 

We additionally define a swath of cortex that showed consistently reliable responses to videos across 

subjects in this study, here termed BMDgeneral (Supplementary Fig. 13b). BMDgeneral was 

algorithmically defined in five steps: (1) compute split-half correlations between two randomly selected 

repetitions of all 1,102 stimuli repetitions to obtain p-values at each voxel (Pearson R correlation, two-

sided, p-values averaged over 10 sets of split-half correlations), (2) binarize the volume at p < 0.05 

(uncorrected), indicating voxels with a value of 0 and 1 have poor and good split-half reliability, (3) 

average each subject's binarized mask to obtain a probability map reflecting the inter-subject 

agreement of each voxel's reliability, (4) smooth the probability map (6mm at full width half maximum), 

and (5) identify clusters (cluster threshold = 50 voxels, 8mm between peaks, statistic threshold of 0.1). 
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All identified clusters are collectively identified as BMDgeneral. BMDgeneral may or may not overlap 

with the 46 ROIs. 

 
Supplementary Figure 14. Left and right cortex noise ceiling. For each subject and grayordinate 

vertex in the left and right flattened hemispheres, we show the noise ceiling as percent of explainable 

variance using the testing set videos. Values are thresholded at 1. 

Noise ceiling calculation 

We compute the percent of explainable variance at each voxel for each subject as an estimate of the 

noise ceiling (equation 6) 3,42. First, the noise, signal and total variance of the beta estimates are 
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computed. The noise variance is computed as the mean variance of the beta estimates of the within-

video presentation trials. The total variance is computed as the variance of the beta estimates across 

all video presentation trials. The signal variance is computed as the total variance minus the noise 

variance. The signal variance was positively rectified, where negative values were assigned 0 and 

positive values were preserved. Next, the noise ceiling signal-to-noise ratio (SNR) (ncsnr) is computed 

as the fraction of signal standard deviation (𝜎𝑠𝑖𝑔𝑛𝑎𝑙) to noise standard deviation (𝜎𝑛𝑜𝑖𝑠𝑒) (equation 5), 

𝑛𝑐𝑠𝑛𝑟 =
√𝑣𝑎𝑟𝑠𝑖𝑔𝑛𝑎𝑙

√𝑣𝑎𝑟𝑛𝑜𝑖𝑠𝑒
  (5) 

 

where the standard deviation is equal to the square root of the variance (𝜎 = √𝑣𝑎𝑟). Finally, the 

percentage of explainable variance (noise ceiling) is calculated as, 

𝑛𝑜𝑖𝑠𝑒𝑐𝑒𝑖𝑙𝑖𝑛𝑔 =
𝑛𝑐𝑠𝑛𝑟2

𝑛𝑐𝑠𝑛𝑟2+1
𝑛𝑢𝑚𝑇𝑟𝑖𝑎𝑙𝑠⁄

∗ 100  (6) 

 

where ncsnr is the noise ceiling signal-to-noise ratio (SNR) and numTrials is the number of video 

presentation trials (numTrials=10 for the testing set and numTrials=3 for the training set). This measure 

of voxel reliability differs from the split-half reliability measure used in the main manuscript (version A) 

but are mathematically related and produce similar results. The reliability measure proposed here is 

computationally less expensive than a split-half computation and has no stochastic elements. Noise 

ceiling estimates are shown for each subject in both the MNI152NLin2009cAsym space 

(Supplementary Fig. 13a) and fsLR32k space (Supplementary Fig. 14). 

Motion energy features computation and encoding model 

Motion energy features were used to predict brain activity in response to BMD’s 3 second naturalistic 

videos. The motion energy model 7,60,79 consists of a series of spatial and temporal Gabor filters 

intended to capture local motion and direction in a video stimulus, thus making it a highly interpretable 

method to model video dynamics. The motion energy encoding model accuracy (Supplementary Fig. 

13C) shows high prediction accuracy in motion selective ROIs, namely MT 80,81, hV4 82,83, V3AB 14,77, 

and IPS0 14. These results support that single trial beta estimates of BMD’s 3 second naturalistic videos 

capture motion information. 

 

Motion energy features for each BMD video stimulus was computed using the MATLAB code available 

here: https://github.com/gallantlab/motion_energy_matlab 7,81. For each 268x268 video, the frames 

were converted from RGB to LAB color space, and only the L (luminance) channel was retained. The 

luminance channel was then passed through a three-dimensional bank of spatiotemporal Gabor filters 

https://github.com/gallantlab/motion_energy_matlab
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consisting of two spatial dimensions and one temporal dimension. Similar to the filter bank used in 7 to 

model naturalistic movies, the three-dimensional filters are defined at five spatial frequencies (0, 2, 4, 8, 

16, and 32 cycles/image), three temporal frequencies (0, 2, and 4Hz), and eight directions (0, 45, 90, 

135, 180, 225, 270, and 315 degrees) with the exception that the 0 Hz temporal filter is defined at only 

0, 45, 90, and 135 degrees directions and the 0 cycles/image spatial filter is defined at 0 degree 

orientation. Local motion-energy features were computed by taking the square root of the sum of the 

squared outputs of each pair of filters with orthogonal phases. The logarithm of the output from these 

filters was computed to scale large values, and the temporal dimension of the output was downsampled 

to 1 second to match the fMRI sampling rate (i.e., the interpolated TR of 1 second) of the BOLD time 

series. The output was then z-scored across time. In total, this procedure resulted in a matrix of size 3 x 

6,555 (seconds x motion energy features). 

 

The motion energy features were then used in a voxelwise linear encoding model 84 to predict the brain 

activity (beta estimates) in 47 regions of interest (ROIs) from the version B preprocessed data in 

MNI152NLin2009cAsym space (Supplementary Fig. 13C). Specifically, the motion energy features for 

each video were concatenated along the three seconds and underwent principal component analysis 

(PCA) to reduce dimensionality to the number of components that explained 95% of the variance. PCA 

was fit to the training videos and applied to both the training and testing videos. A linear model was 

then fit to the training video features to predict the response at the voxel. The learned weights of the 

linear model were then applied to the testing video features. The encoding model accuracy was 

computed as the correlation of the vector of predicted responses of the test set with the vector of true 

responses of the test set. 

Version B fMRIPrep preprocessing boilerplate text 

We reproduce the fMRIPrep boilerplate text describing version B’s preprocessing details below 

(indented): 

Results included in this manuscript come from preprocessing performed using fMRIPrep 

23.0.2 (61,85; RRID:SCR_016216), which is based on Nipype 1.8.6 (86,87; 

RRID:SCR_002502). 

Preprocessing of B0 inhomogeneity mappings 

A total of 6 fieldmaps were found available within the input BIDS structure for this particular 

subject. A B0 nonuniformity map (or fieldmap) was estimated from the phase-drift map(s) 

measure with two consecutive GRE (gradient-recalled echo) acquisitions. The 

corresponding phase-map(s) were phase-unwrapped with prelude (FSL None). 
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Anatomical data preprocessing 

A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset. The 

T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 

N4BiasFieldCorrection 88, distributed with ANTs 2.5.0 (89; RRID:SCR_004757), and used 

as T1w-reference throughout the workflow. The T1w-reference was then skull-stripped 

with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 

OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 

(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 

T1w using fast (FSL (version unknown), RRID:SCR_002823, 90). Brain surfaces were 

reconstructed using recon-all (FreeSurfer 7.3.2, RRID:SCR_001847, 91), and the brain 

mask estimated previously was refined with a custom variation of the method to 

reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-

matter of Mindboggle (RRID:SCR_002438, 92). A T2-weighted image was used to 

improve pial surface refinement. Brain surfaces were reconstructed using recon-all 

(FreeSurfer 7.3.2, RRID:SCR_001847, 91), and the brain mask estimated previously was 

refined with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, 

92). Volume-based spatial normalization to two standard spaces 

(MNI152NLin2009cAsym, MNI152NLin6Asym) was performed through nonlinear 

registration with antsRegistration (ANTs 2.5.0), using brain-extracted versions of both 

T1w reference and the T1w template. The following templates were were selected for 

spatial normalization and accessed with TemplateFlow (23.1.0, 93): ICBM 152 Nonlinear 

Asymmetrical template version 2009c [94, RRID:SCR_008796; TemplateFlow ID: 

MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric 

Average Brain Stereotaxic Registration Model [95, RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym]. Grayordinate “dscalar” files containing 91k samples were 

resampled onto fsLR using the Connectome Workbench (62). 

Functional data preprocessing 

For each of the 62 BOLD runs found per subject (across all tasks and sessions), the 

following preprocessing was performed. First, a reference volume and its skull-stripped 

version were generated using a custom methodology of fMRIPrep. Head-motion 

parameters with respect to the BOLD reference (transformation matrices, and six 
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corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (FSL 6.0.5.1:57b01774, 96). The estimated fieldmap 

was then aligned with rigid-registration to the target EPI (echo-planar imaging) reference 

run. The field coefficients were mapped on to the reference EPI using the transform. The 

BOLD reference was then co-registered to the T1w reference using bbregister 

(FreeSurfer) which implements boundary-based registration 97. Co-registration was 

configured with twelve degrees of freedom to account for distortions remaining in the 

BOLD reference. Several confounding time-series were calculated based on the 

preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise 

global signals. FD was computed using two formulations following Power (absolute sum 

of relative motions, 98) and Jenkinson (relative root mean square displacement between 

affines, 96). FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (following the definitions by 98). The three global signals are 

extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of 

physiological regressors were extracted to allow for component-based noise correction 

(CompCor, 99). Principal components are estimated after high-pass filtering the 

preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off) for the 

two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor 

components are then calculated from the top 2% variable voxels within the brain mask. 

For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are 

generated in anatomical space. The implementation differs from that of 99 in that instead 

of eroding the masks by 2 pixels on BOLD space, a mask of pixels that likely contain a 

volume fraction of GM is subtracted from the aCompCor masks. This mask is obtained 

by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it 

ensures components are not extracted from voxels containing a minimal fraction of GM. 

Finally, these masks are resampled into BOLD space and binarized by thresholding at 

0.99 (as in the original implementation). Components are also calculated separately 

within the WM and CSF masks. For each CompCor decomposition, the k components 

with the largest singular values are retained, such that the retained components’ time 

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, 

WM, combined, or temporal). The remaining components are dropped from 

consideration. The head-motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. The confound time series derived from 

head motion estimates and global signals were expanded with the inclusion of temporal 
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derivatives and quadratic terms for each 100. Frames that exceeded a threshold of 0.5 

mm FD or 1.5 standardized DVARS were annotated as motion outliers. Additional 

nuisance timeseries are calculated by means of principal components analysis of the 

signal found within a thin band (crown) of voxels around the edge of the brain, as 

proposed by 101. The BOLD time-series were resampled onto the following surfaces 

(FreeSurfer reconstruction nomenclature): fsaverage, fsnative. The BOLD time-series 

were resampled onto the left/right-symmetric template “fsLR” using the Connectome 

Workbench 62. Grayordinates files (62) containing 91k samples were also generated with 

surface data transformed directly to fsLR space and subcortical data transformed to 2 

mm resolution MNI152NLin6Asym space. All resamplings can be performed with a 

single interpolation step by composing all the pertinent transformations (i.e. head-motion 

transform matrices, susceptibility distortion correction when available, and co-

registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using nitransforms, configured with cubic B-spline interpolation. Non-gridded 

(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn 0.10.2 (102, RRID:SCR_001362), 

mostly within the functional processing workflow. For more details of the pipeline, see 

the section corresponding to workflows in fMRIPrep’s documentation.  

https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
https://fmriprep.readthedocs.io/en/latest/workflows.html
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