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Reviewer #1 (Remarks to the Author):

This manuscript presents a rich fMRI dataset collected from ten human participants while watching 

1,102 short naturalistic video clips collected from the Moments in Time database depicting visual 

events. The authors provide a range of different quality measures of the data and a number of 

regions of interests in early visual cortex and the ventral visual stream. In addition, the authors 

explore to which degree the dataset can be used to explore different stages involved in the 

processing of visual events. To this aim, they present a number of modelling approaches in 

combination with representational similarity analysis and encoding and variance partitioning to 

capture higher-level visual aspects of the stimuli, and word- and sentence-level descriptions. 

These models are derived from different layers of a deep neural network and human ratings. In 

addition, the authors examined to which degree the data capture information regarding 

memorability scores and temporal order.

There is a lot to like about this manuscript. The authors use a number of state-of-the-art 

approaches carried out in a rigorous way demonstrating the wide range of ways in which this 

dataset can be used. In light of the growing interest in the use of naturalistic stimuli in Cognitive 

Neuroscience and reproducibility, I am convinced that this dataset is going to be of interest to a 

wide audience struggling to find a good balance between ecological validity and experimental 

control. That said, I think this manuscript could profit from a somewhat deeper embedding into the 

existing literature – please find below suggestions for threads the authors may want to pick up. 

Moreover, given the large number of different analyses reported in this manuscript, I believe that 

the readability of the manuscript could be improved substantially if the authors offered some 

guidance from time to time regarding the questions they aimed to address, and if occasionally 

some more details are added, and/ or explicit links to the corresponding methods sections are 

established. I hope that my comments and suggestions below can help the authors to further 

improve this otherwise really interesting and rich manuscript.

signed by Angelika Lingnau

Major comments

(01) In the introduction (first paragraph), the authors state that the processing of visual events 

engages regions performing visual object recognition, temporal integration and memory. While this 

is certainly true, the authors may want to acknowledge that many more processes are known to 

contribute to the processing of visual events, including information about scenes, action semantics, 

body posture and movement kinematics (in line with some of the analyses using metadata labels 

reported in the manuscript).

(02) In the introduction (4th paragraph), the authors state that they aimed to predict brain 

responses in the dorsal visual and parietal cortices. The authors may want to motivate this choice, 

also in light of a growing literature that points towards the importance of ventral stream regions 

for the processing of visual events (for reviews, see e.g. Lingnau & Downing, 2015; Wurm & 

Caramazza, 2021; Pitcher & Ungerleider, 2021). The same applies to several statements 

throughout the manuscript (e.g. page 21, line 455f: ‘despite the parietal cortex’ heavy 

involvement in action observation).

(03) Overall, the introduction might profit from some examples regarding open questions that one 

might want to address with the current data set.

(04) Overall, many of the results would be easier to understand if the authors provided brief 

statements regarding the purposes of the analyses, and if they pointed to the corresponding 

sections in the methods section for details. To give a concrete example, on page 11, line 246, the 

authors write that they accessed multivariate reliability (using RSA) to determine the upper and 

lower estimate of the noise ceilings (which I really appreciate). However, at this point the reader 

does not know yet what kind of models are entered into the RSA, and what the purpose of these 

noise ceilings is. Admittedly most of these points are explained later on in the methods section, 

but it would save the reader a lot of time and effort if once in a while some insights regarding the 

purpose and general logic of an analysis was provided upfront.

(05) Results, page 11: The authors state that they observed statistically significant reliability 

values across occipital and parietal cortex. It seems to me that Figure 3 also suggests an 

involvement of temporal regions, which brings me back to the point addressed in one of my 



previous comments regarding the processing of visual events in the ventral stream. The same 

comment applies to the paragraph on page 14, where the dorsal visual stream and parietal cortex 

is highlighted.

(06) Results, page 15f, frame shuffling: I really liked this analysis. That said, I was wondering to 

which degree the performance of the DNN (rather than the brain) in predicting DNN activations for 

unseen unshuffled sequences is impaired by the shuffling. I’m assuming the authors could 

examine this and determine if they find an increase of the impact of shuffling across the different 

blocks of the DNN that resembles the pattern obtained across the different ROIs. I do not consider 

this analysis to be essential for the manuscript, but it could be something worth looking into if the 

authors wish to do so.

Minor points

(1) Figure 4, captions: The authors write that ‘All videos are shown to both a DNN and a human.’ 

The authors may want to state which DNN they used – they do so in panel B, so I’m assuming 

they used the same DNN here, but why not make that explicit from the start.

(2) I appreciate the level of detail the authors provide to access the quality of the (f)MRI data. 

That said, some of the reported image quality metrics might not be known to the readers of Nature 

Communications, so some more guidance regarding the interpretation of these measures might be 

helpful.

(3) Figure 4, captions, panel C: It did not become entirely clear to me why the difference in 

predictive performance was computed between block 1 and 4 – why these particular blocks? Can 

the authors motivate this choice?

(4) Methods, page 6, line 129: It might help to inform the reader already here which of these 

labels were generated by humans, and which were generated by a DNN.

(5) Methods, page 7, line 161: What was the reason to resample the data from a TR of 1.75 to 1 s, 

instead of collecting data at a TR of 1 s right away?

(6) On page 14, line 301f, the authors write that they release the model to aid investigations of 

visual event understanding. Here might be a good location to state where the model can be found.

(7) Figure 7: How similar are the models for scenes, actions and text caption?

(8) Figure 7, panel A: At this point in the manuscript it was not clear to me yet what video 

metadata are. Also here, the authors may want to refer to the corresponding methods section.

(9) Results, page 21, line 447f, RSA: here I was wondering how the neural RDM was constructed. 

The authors may want to provide the reader with a link to the corresponding methods section.

(10) Methods, Stimuli, page 27, line 577f: How was the semantic overlap between a pair of videos 

determined?

(11) Methods, Functional localizers, page 27, line 597f: It would be helpful to provide the reader 

with more details about these videos. Can the authors show some example snapshots? Moreover, I 

was wondering whether the authors can provide a justification regarding the use of videos rather 

than static images, in particular for stimulus categories such as objects and scenes.

(12) Related to the previous point: Was there a fixation cross provided during the functional 

localizer?

(13) Methods, Main experiment, page 28, line 626f: How were the null events modelled in the 

analysis?

(14) Methods, Main experiment, page 28, line 632f: I don’t fully get the meaning of the statement 

‘with the restriction of excluding successive repetitions of test runs within one session’. Could the 

authors clarify?

(15) Methods, Main experiment and functional localizer: I did not find any information regarding a 

fixation period at the beginning and end of each run – is this simply an omission in the text, or was 

no such fixation period included?

(16) Page 29, Metadata, line 638: Do the five annotations refer to each stimulus or each rater (or 

something else)?

(17) Related to the previous point, on line 640, the authors write that the five annotations were 

collected to ensure comprehensive coverage, and to form a group consensus. I might have 

misunderstood, but this seems to be a bit in conflict with the statement on line 645f, which states 

that the authors did not enforce that all 5 object labels describe the same object.

(18) Page 29, Metadata, Action labels: Why did the authors select one action label that best 

described the video, but up to five different object labels (see comment above)? The authors argue 

that this is to reflect the participant’s limited ability to perceive every day action due to limited 



stimulus presentation time and their central fixation. Why would this apply to actions but not to 

objects?

(19) Page 30, line 686f, Memorability score and decay rate: how is the memorability decay rate 

defined?

(20) Page 32, line 730f: What makes this template asymmetrical?

(21) Page 32, line 735f: The authors state that the fieldmap was estimated on the basis of a 

phase-difference map using a dual-echo GRE sequence, but I could not find such a sequence 

among the sequences that were listed in the section ‘fMRI data acquisition’ on page 31.

(22) Related to the previous point, the authors state that the fieldmap was co-registered to the 

target EPI reference run. Which run did they use as the target?

(23) Page 33, line 759: Please define DVARS.

(24) Page 33, line 765f: How was the set of physiological regressors extracted?

(25) Page 34, line 813f: The authors may want to state more explicitly what were their regressors 

of interest.

(26) Page 37, line 884f: The reader might be curious to be provided with a few more details 

regarding how the authors used the Glasser atlas, given that there exist a number of different 

ways in which one can extract them.

(27) Page 37, line 909f: the raw beta values of what?

(28) Page 38, line 918f: Since not all readers might be familiar with voxel-wise upper and lower 

noise ceilings, could the authors provide a reference?

(29) Page 38, line 933f: what is LSEP loss?

(30) Page 38, line 937f: How were some of the details of the analysis determined (e.g. the split of 

the input video into 8 segments, sampling 1 frame from each segment; initialization of the 

learning rate and the weight decay with values of 0.02 and 0.0001, respectively)?

(31) Page 39, line 951: Please provide a reference for the encoding model procedure.

(32) Page 39, line 956: The statement regarding PCA on the DNN activations would profit from a 

few more details. As an example, what does the N refer to – number of components?

(33) Page 40, line 993f: What is the justification to extract the top 100 components for each 

block?

(34) Page 40, line 997f: What was the reasoning behind averaging beta values across TRs 5-9 

(i.e., why these specific TRs)?

(35) Page 41, Encoding and variance partitioning analysis procedure: I found the entire first 

paragraph of this section hard to understand. It might be easier to follow if the authors provided 

the reader with a brief statement upfront regarding the purpose of this analysis. The authors also 

may want to double-check the readability of this paragraph (as an example, what exactly do the 

authors mean by ‘feature maps of shape’ (line 1019f?)?

(36) Related to the previous point, on page 41, line 1029, the authors write ‘To test our 

hypothesis’, but at this point I really was not clear about what that might be.

(37) Page 42, RSA-based decoding analysis procedure: Also here, a brief statement regarding the 

purpose of the analysis would be helpful. I also didn’t fully follow the reasoning by the statement 

made in the last two sentences of the first paragraph (lines 1060-1663).

(38) Page 43, line 1096: What is the reason to use one-sided t-tests for the Memorability analysis 

procedure, and two-sided t-tests for the RSA-based decoding procedure?
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Reviewer #2 (Remarks to the Author):



In this paper, the authors introduce a new repository of data collecting whole-brain fMRI responses 

from 10 subjects to over 1000 short (3s) naturalistic video clips of visual events. They assessed 

the quality of preprocessing and showcased some exploratory results to highlight the potential of 

BMD in addressing temporal events, high-level concepts, and memorability topics using BOLD 

signals. Overall, this dataset is timely for fMRI-based neural encoding research. My comments are 

as follows:

1. In Figure 1c, the differences between various blocks appear relatively small. How do the authors 

address the influence of previous stimulus blocks, especially considering hemodynamics and 

memory effects? There needs to be a justification for using the canonical HRF approaches to 

mitigate memory impacts.

2. In relation to Figure 4, the evaluation hinges on the choice of TSM ResNet50. Can the authors 

elucidate the roles of different blocks in TSM ResNet50 from a computer vision standpoint? This 

clarification might help in understanding the alignment between the two network types. Moreover, 

the stationarity of dynamics with the TR remains unclear, making it difficult to discern whether a 

region reconfigures its role or maintains a singular mode corresponding to a TSM ResNet50 block. 

Furthermore, given the plethora of existing research on static image encoding, this section doesn't 

offer new insights.

3. For Figure 5, I'm primarily concerned about the extent to which the results hinge on the choice 

of TSM. What kind of temporal dynamics is encoded by frame order? For instance, even when the 

order is shuffled, the variance—potentially another form of dynamics—remains unchanged. Given 

the temporal resolution of BOLD and the brain's processing speed for image sequences, the 

concept of "dynamics" requires further elucidation and discussion.

4. Pertaining to Figure 6, how reliable are the TR peak estimations? Given the size of the unique 

variance, I'm skeptical about the validity of the claims presented. Additionally, it seems the only 

definitive conclusion is that BOLD signals can differentiate between images with a 1-2TR delay. 

Contrasting experiments using the same stimuli might be beneficial.

5. As for Figure 7, while the findings are intriguing, they aren't novel. A more extensive static 

dataset might provide clearer insights. I recommend the authors explore meta-information that 

can uniquely be derived from the videos.

In summary, this dataset is crucial and beneficial for the broader research community. Concerning 

the manuscript, if the submission is to Scientific Data, its current content seems apt. However, if 

intended for Nature Communications, the content should emphasize the dynamic aspects and 

condense sections relating to static image stimuli.



Dear Reviewers:

Thank you for your thoughtful feedback that led to what we believe is a greatly improved manuscript. We 

summarize the major revisions following your suggestions: 

(1) Significant textual edits throughout the manuscript to clarify procedures, highlight the dataset’s 

potential, and better motivate existing analyses. These edits include a new supplementary discussion 

section titled, p5KA <@@A@ a<O_A RC =V<LQ VAWTRQWAW XR < WKRVX aL@AR @<X<WAX aAVW_W < WX<Z> LP<IA @<X<WAXq

[reviewer 1 major comments 1-5, minor comments 1-38; reviewer 2 major comments 1, 4, 5]. 

(2) We ran additional crowd-sourced experiments to include human-annotated (instead of top-5 ResNet50 

predictions) scene and object metadata. These new annotations are more accurate than AI generated 

labels, provide human ground truth values, and overlap with additional computer science/neuroscience 

datasets (Places365 and THINGS) for even broader appeal among researchers. All provided metadata are 

now sourced from human experiments. As a consequence of this change, we revisited the “Semantic 

metadata reveal strong similarity between sentence-level descriptions and visual brain activity” section to 

include the new object and scene labels. This inclusion provides greater insight into how well ROI 

representations reflect spatial (object and scene), temporal (action), spatiotemporal 

(objects+scenes+actions), and relational (sentence descriptions) information [reviewer 1 major comments 

4, minor comments 4, 7, 8, 9, 16, 17, 18, 37; reviewer 2 major comment 5]. 

(3) We ran additional experiments related to the analyses presented in Figure 4 and Figure 5 to measure 

the generalization of our results and better elucidate the temporal dynamics captured in the BOLD signal 

[reviewer 1 major comment 6; reviewer 2 major comment 2 and 3]. 

(4) We release another version of the dataset to further enhance impact and adoption, detailed in 

Supplement 2, output from an additional fMRIPrep preprocessing pipeline. We provide single trial beta 

estimates of this data version using GLMsingle (Prince et al., 2022) in MNI volumetric space and beta 

estimates using GLMsingle (Prince et al., 2022) in cortical surface space converted to the HCP preprocessing 

format using Ciftify (Dickie et al., 2019; Glasser et al., 2013). We believe these additional spaces, 

registrations, and preprocessed formats will greatly facilitate this dataset’s wide adoption in the field. We 

additionally provide an analysis predicting these single trial brain responses from motion energy features 

(Adelson & Bergen, 1985; Nishimoto et al., 2011) and show the highest accuracies are in motion-sensitive 

regions, including MT [reviewer 1 major comment 3; reviewer 2 major comment 1, 5]. 

We respond to your comments below in bold. Revised text is tracked in the revised manuscript in red. Any 

revised text from the manuscript reproduced below will also be shown in red bold font. Your reviewer 

comments are reproduced in unbolded green text, our responses in the rebuttal in black normal font.

Reviewer #1 (Remarks to the Author):

This manuscript presents a rich fMRI dataset collected from ten human participants while watching 1,102 

short naturalistic video clips collected from the Moments in Time database depicting visual events. The 

authors provide a range of different quality measures of the data and a number of regions of interests in 

early visual cortex and the ventral visual stream. In addition, the authors explore to which degree the 



dataset can be used to explore different stages involved in the processing of visual events. To this aim, they 

present a number of modelling approaches in combination with representational similarity analysis and 

encoding and variance partitioning to capture higher-level visual aspects of the stimuli, and word- and 

sentence-level descriptions. These models are derived from different layers of a deep neural network and 

human ratings. In addition, the authors examined to which degree the data capture information regarding 

memorability scores and temporal order.

There is a lot to like about this manuscript. The authors use a number of state-of-the-art approaches 

carried out in a rigorous way demonstrating the wide range of ways in which this dataset can be used. In 

light of the growing interest in the use of naturalistic stimuli in Cognitive Neuroscience and reproducibility, I 

am convinced that this dataset is going to be of interest to a wide audience struggling to find a good 

balance between ecological validity and experimental control. That said, I think this manuscript could profit 

from a somewhat deeper embedding into the existing literature – please find below suggestions for threads 

the authors may want to pick up. Moreover, given the large number of different analyses reported in this 

manuscript, I believe that the readability of the manuscript could be improved substantially if the authors 

offered some guidance from time to time regarding the questions they aimed to address, and if 

occasionally some more details are added, and/ or explicit links to the corresponding methods sections are 

established. I hope that my comments and suggestions below can help the authors to further improve this 

otherwise really interesting and rich manuscript.

signed by Angelika Lingnau

Major comments

(01) In the introduction (first paragraph), the authors state that the processing of visual events engages 

regions performing visual object recognition, temporal integration and memory. While this is certainly true, 

the authors may want to acknowledge that many more processes are known to contribute to the 

processing of visual events, including information about scenes, action semantics, body posture and 

movement kinematics (in line with some of the analyses using metadata labels reported in the manuscript). 

Thank you for highlighting the large number of relevant processes in visual event perception. We agree that 

the original text unintentionally read like other processes were not involved and did not adequately 

communicate the vast number of processes engaged in visual event understanding. The revised text aims to 

communicate the broad complexity of visual event understanding while explicitly highlighting specific 

processes that you point out and are related to analyses presented later in the manuscript. The first 

paragraph of the introduction now reads: 

“Understanding visual events is a hallmark of human intelligence that engages a distributed and 

functionally diverse network of cortical regions. For example, extracting the meaning of even a 

simple event, such as a person opening a door, requires at a minimum parsing the scene into 

relevant components (a person, door, indoor room) (Carandini, 2005; DeYoe & Van Essen, 1988; 

DiCarlo et al., 2012; Felleman & Van Essen, 1991; Logothetis & Sheinberg, 1996; Ress & Heeger, 

2003) and integrating these components over time for accurate action recognition (the door is 

being opened, not closed) (Fairhall et al., 2014; Hasson, Yang, et al., 2008; Lingnau & Downing, 

2015; Orlov & Zohary, 2018; Wurm & Caramazza, 2022), including socially relevant cues (is the 

person opening the door angry or friendly?) (McMahon et al., 2023; Pitcher et al., 2011; Pitcher & 



Ungerleider, 2021). Part of the event is also encoded into brain memory regions for later recall 

(Bainbridge, 2019; Bylinskii et al., 2022; Han et al., 2015; Hasson, Furman, et al., 2008; Schneider, 

2013). Due to the richness of this cortical network, ecologically-valid visual event understanding is 

challenging to study with experimental rigor.”

(02) In the introduction (4th paragraph), the authors state that they aimed to predict brain responses in the 

dorsal visual and parietal cortices. The authors may want to motivate this choice, also in light of a growing 

literature that points towards the importance of ventral stream regions for the processing of visual events 

(for reviews, see e.g. Lingnau & Downing, 2015; Wurm & Caramazza, 2021; Pitcher & Ungerleider, 2021). 

The same applies to several statements throughout the manuscript (e.g. page 21, line 455f: ‘despite the 

parietal cortex’ heavy involvement in action observation). 

Thank you for pointing out this body of literature that even further highlights the importance using video 

stimuli to study visual perception. Originally, focusing on predicting dorsal visual and parietal cortices was 

seen as a major differentiator to still image datasets, where these regions do not or only weakly respond. 

However, we agree that predicting ventral regions’ response to videos presents great opportunities to 

better understand visual perception. We clarify that we do also predict brain responses in all cortex, 

including ventral cortex. We updated the manuscript in the following places:

Introduction – we change the wording to emphasize, to your point, that regions evoked by both visual 

events and still images can be functionally different: 

“Short video stimuli supplement work using still images by driving a greater extent (Bartels & 

Zeki, 2004; Konen & Kastner, 2008; Press et al., 2001; Schultz & Pilz, 2009; Yildirim et al., 2019) 

and different pattern (Buccino et al., 2004; Kret et al., 2011; Lingnau & Downing, 2015; Wurm & 

Caramazza, 2022) of neural responses.” 

Introduction – we clarify the sentence describing the DNN prediction analysis that your comment 

refers to: 

“Aided by BMD’s large number of stimuli and widespread reliable activity, we use a video-

computable deep neural network (DNN) trained on an action recognition task to predict brain 

responses through all cortex, including the dorsal visual and parietal cortices.” 

Results – Metadata RSA Analysis – we emphasize that regions throughout visual cortex are involved in 

action recognition. We remove the line ‘despite the parietal cortex heavy involvement in action 

observation’ and instead highlight the result of the action metadata’s higher correlations in the non-

parietal regions. The motivation of the analysis now reads: 

“It is unclear how these varying levels of complexity and content are reflected in ROIs while 

viewing visual events, especially given that regions throughout the ventral visual, dorsal 

visual, and parietal cortices have all been implicated in processing temporal aspects of videos 

(Buccino et al., 2004; Konen & Kastner, 2008; Lingnau & Downing, 2015; Silver & Kastner, 

2009; Wurm & Caramazza, 2022) but also diverse feature preferences (Buccino et al., 2004; 



Kanwisher, 2010; Kanwisher et al., 1997; Konen & Kastner, 2008; Lafer-Sousa et al., 2016; 

Ratan Murty et al., 2021).” 

And the results of this analysis are rephrased to say: 

“Action labels (blue) correlate with ventral and dorsal visual regions (Lingnau & Downing, 

2015; Wurm et al., 2017) more strongly than parietal regions (Hardwick et al., 2018).” 

(03) Overall, the introduction might profit from some examples regarding open questions that one might 

want to address with the current data set.

We agree the introduction can benefit from more concrete examples of open questions that can be 

uniquely addressed with this dataset. In response to your first comment, we revised the first paragraph of 

the Introduction to better emphasize the plethora of visual processes engaged in visual event 

understanding. This revised paragraph also points the reader to processes, or combinations of processes, 

that can be addressed with BMD. We also add a few sentences to the last paragraph of the introduction to 

highlight methodological and cognitive open questions that can be addressed with this dataset. Lastly, we 

add a supplementary discussion section titled, “The added value of brain responses to a short video dataset 

aAVW_W < WX<Z> LP<IA @<X<WAXq to detail unique research opportunities afforded by a short video dataset like 

BMD. The last paragraph of the introduction now reads: 

“Together, BMD’s 1,102 thoroughly sampled short video stimuli isolate brain responses to 

ecologically-valid but experimentally controlled dynamic content. This dataset is well-suited to 

address open questions as diverse as developing methodologies to model rapid event BOLD 

signals (Misaki et al., 2013; Prince et al., 2022; Wittkuhn & Schuck, 2021), characterizing 

interactions between visual processing pathways (Lingnau & Downing, 2015; Mineault et al., 

2021; Pitcher & Ungerleider, 2021; Wurm & Caramazza, 2022), and bridging the gap between still 

image and longform movie perception (Aliko et al., 2020; Allen et al., 2022; Hanke et al., 2016; 

Hebart et al., 2019) (see Supplementary 1 section, “The added value of brain responses to a short 

video dataset versus a static image dataset” for further discussion). Crucially, BMD’s shared 

experimental design across subjects enables robust and generalizable conclusions, and its 

preparation in BIDS format facilitates easy adoption among researchers. Its scale of stimuli and 

subjects, reliable brain activity, and stimuli metadata enable a wide range of interdisciplinary 

analyses to reveal the neural mechanisms underlying visual event understanding.” 

We facilitate these endeavors by providing an additional preprocessed version of the dataset with more 

output spaces and different ROI definitions to appeal to more researchers. We describe this in the last 

paragraph of the main text under the section, “(f)MRI data processing, response modeling, and ROI 

definition”:  

“All together, this preprocessing suite ensures a low threshold for researchers to interact with the 

brain data at their desired processing level. All results presented here in the main text use version 

A of the dataset. We provide another preprocessed version of BMD (version B) to make it 

available in more output spaces (version B is detailed in Supplementary 2).” 



Lastly, the supplementary 2 discussion section, “The added value of brain responses to a short video 

dataset versus a static image dataset” reads: 

The added value of brain responses to a short video dataset versus a static image dataset 

“We emphasize that a short video (e.g., 3 second duration, as in BMD) fMRI dataset is not better 

or worse than a static image fMRI dataset; rather, they are different in terms of stimulus features 

and corresponding brain responses that may make one better suited to answer specific research 

questions. Most obvious, short videos contain a temporal dimension that static images do not, 

allowing the video to communicate crucial contextual information about how spatial components 

in our environment move (or not) and spatially relate to each other over time. The benefit of this 

temporal dimension is clear in our everyday lives – we can interpret transitions between states (a 

door is being opened, not closed), direction (a steering wheel is being turned to left, not right or 

still), reactions (the child laughed when shown the picture), motion (the baby is crawling slowly, 

not fast), and more. 

The contextual value of a video’s temporal dimension is reflected in BMD’s own action and 

sentence text description metadata. Concerning action labels, images can only be labelled with a 

limited subset of actions or else be highly constrained in order to capture a specific action. For 

example, the action of a baseball player “hitting” the ball can only be captured with an image if 

the photo were taken at very specific instant in time, otherwise the action may be ”standing” or 

“swinging”. Even a short video like in BMD easily captures these actions without heavily 

constraining the space of possible videos that correspond to “hitting”. Concerning text 

descriptions, short videos can capture temporal sequences of events that an image cannot. 

Examples of such captions sampled from some of BMD’s first videos include (emphasis our own): 

� Video 0001: "A mallard is in the water alone swimming around and putting its beak in." 

� Video 002: "A man is showing another man how to move feet back and forth." 

� Video 005: "A woman guides a little boy's arms up and down as other kids stretch around 

him." 

� Video 006: "a chess tournament is going on this is focused on two players one is moving 

their queen and taking something to put the king in checkmate" 

Static frames of these videos cannot capture the temporal facts that the mallard is “putting its 

beak in”, the man “is showing another man how”, “a woman guides…as other kids stretch”, and a 

chess player “is moving their queen and taking something to put the king in checkmate.” This 

temporal information adds valuable context that often makes one’s understanding of the 3s 

video vastly different compared to any one of its single static frames. 

But do these differences in short videos and static images translate to differences in fMRI brain 

responses? Yes, previous work has found that videos evoke a greater extent (Bartels & Zeki, 2004; 

Konen & Kastner, 2008; Press et al., 2001; Schultz & Pilz, 2009; Yildirim et al., 2019) and pattern 

(Buccino et al., 2004; Kret et al., 2011; Lingnau & Downing, 2015; Wurm & Caramazza, 2022) of 

cortex responding to videos than images throughout occipitotemporal, dorsal visual, and parietal 

cortex. In this manuscript we describe our highly reliable activations throughout cortex (Figure 3) 

with notably high reliability in parietal cortex, a region of the brain that weakly responds to static 



images. These highly reliable brain responses are not just a result of increased participant 

engagement or stimulus saliency; we even show that BMD brain responses capture temporal 

information from the videos (Figure 5, Figure 6, Supplementary 1 Figure 9, Supplementary 2 

Figure 2) despite the BOLD response’s temporal sluggishness and fMRI’s low sampling rate. 

In the neighboring field of computer vision, researchers have long recognized that videos and 

images demand different modeling approaches (Ahn et al., 2023; Bertasius et al., 2021; Lin et al., 

2019; Tong et al., 2022; Wang et al., 2016) and training datasets (Goyal et al., 2017; Kay et al., 

2017; Miech et al., 2019; Monfort et al., 2020; Soomro et al., 2012) for strong task performance. 

Videos continue to be at the forefront of ground breaking computer vision research due to their 

creative, cross-domain, and practical applications in text-to-video generation (Ho et al., 2022; 

Singer et al., 2022; Wu et al., 2023), video understanding with large language models (Ju et al., 

2022; Maaz et al., 2023; Zhang et al., 2023), and efficient action recognition and pose estimation 

(Liu et al., 2023; Qing et al., 2024; Zheng et al., 2023). 

Taken together, short video fMRI datasets offer unique opportunities to advance the field of 

computational neuroscience where static image fMRI datasets cannot. They can advance 

methodologies around estimating BOLD signals in response to rapid stimulus presentations 

(Misaki et al., 2013; Prince et al., 2022; Wittkuhn & Schuck, 2021), elucidate cognitive functions 

concerning temporal integration (Fairhall et al., 2014; Hasson et al., 2008; Orlov & Zohary, 2018), 

test temporally specific cognitive objective functions (Doerig et al., 2022; Kanwisher et al., 2023), 

and detail how multiple visual pathways interact to achieve an understanding of an event 

(Lingnau & Downing, 2015; Mineault et al., 2021; Pitcher & Ungerleider, 2021; Wurm & 

Caramazza, 2022). As neuroscience and computer science research become increasingly 

intertwined (Allen et al., 2022; Chen et al., 2023; Cichy et al., 2019, 2021), BMD is well-suited to 

integrate with state-of-the-art video modeling work from the computer vision community. 

Importantly, a short video dataset like BMD can make these scientific advancements while 

staying connected to the vast body of still image work by sharing event-related paradigms, 

multivariate and univariate methodologies, representational similarity analyses, and/or encoding 

and decoding techniques. Short video datasets offer more ecological validity than static images 

while retaining experimental control and offer tremendous potential to advance our 

understanding of the human visual system.” 

(04) Overall, many of the results would be easier to understand if the authors provided brief statements 

regarding the purposes of the analyses, and if they pointed to the corresponding sections in the methods 

section for details. To give a concrete example, on page 11, line 246, the authors write that they accessed 

multivariate reliability (using RSA) to determine the upper and lower estimate of the noise ceilings (which I 

really appreciate). However, at this point the reader does not know yet what kind of models are entered 

into the RSA, and what the purpose of these noise ceilings is. Admittedly most of these points are explained 

later on in the methods section, but it would save the reader a lot of time and effort if once in a while some 

insights regarding the purpose and general logic of an analysis was provided upfront. 

We updated the manuscript accordingly to better motivate analyses and point the reader to the methods 

sections: 

In “Reliable univariate and multivariate response profiles”: 



“.<SM8G <I:J;DIB 8I; ;<:J;DIB 8I8GWN<N JA<I SN< NDIBG<cTJV<G M<NKJIN<N OJ H<8NSM<

DI=JMH8PJI :JIO<IO DI 8I 2/* e.8N<G8MDN <O 8G]Z ljkkfZ 8I; CWKJOC<NDN HJ;<GN J= I<SM8G

M<KM<N<IO8PJIN ;<MDT<; =MJH :JHKSO8PJI8G JM 9<C8TDJM8G HJ;<GN :8I 9< <8NDGW :JHK8M<; OJ

OC< 9M8DI DI HSGPT8MD8O< 8I8GWNDN =M8H<UJMFN e+MD<B<NFJMO< g +D<TDOZ ljkmf] 4C<N< M<GD89DGDOW

H<8NSM<N KMJTD;< DIOSDPJI JI ;8O8 LS8GDOW 8I; :8I SN<; 8O OC< ;DN:M<PJI J= OC< M<N<8M:C<M OJ

normalize results with respect to the noise in BMD’s data.”

In the Modeling visual event understanding with a video-computable deep neural network for action 

recognition” section, we describe the most pertinent details in the text and point the reader to the 

Methods section for additional details: 

“We train the model on an action recognition task using the same dataset from which the 

BMD stimuli were sampled, the Moments in Time dataset (Monfort et al., 2020, 2022) (BMD 

stimuli were excluded from model training (see Methods section “DNN Block to Cortex 

Correspondence Procedure” for encoding model details)” 

“Using a voxelwise encoding model approach (Naselaris et al., 2011) (Figure 6A), we observe 

a correspondence between DNN block depth and predictivity performance along the visual 

processing hierarchy and beyond (see Methods section “DNN Block to Cortex Correspondence 

Procedure” for encoding model details).” 

In the frame shuffling analysis, we make sure to point readers to the methods section: 

“By using the shuffled and unshuffled activations from these blocks to predict the brain 

responses, we can assess the effect of correct temporal ordering on our BMD brain responses 

(see Methods section “Shuffling Analysis to Determine Importance of Temporal Order” for 

details).” 

Similarly, in the variance partitioning analysis we add: 

`6< SN<; T8MD8I:< K8MPPJIDIB OJ D;<IP=W OC< SIDLS< :JIOMD9SPJI J= OC< ?MNO 8I; OCDM; TD;<J

<KJ:CN_ KM<;D:PJIN OJ OC< M<8G =-2* M<NKJIN<N e'DBSM< p$f eN<< -<OCJ;N N<:PJI `&I:J;DIB

8I; 58MD8I:< 08MPPJIDIB "I8GWNDN 0MJ:<;SM<a =JM ;<O8DGNf]a

In the Metadata RSA analysis, we add a stronger motivation for the analysis in line with the work on 

action recognition in LOTC you cited above. We believe this motivation makes the results much more 

interesting to researchers: 

“Varying levels of semantic information content, from static objects and scenes (e.g., “duck”, 

“water”) to temporal actions (e.g., “swimming”) to complex relations between parts (e.g., 

“the duck is swimming on the water"), can describe a visual event. It is unclear how these 

varying levels of complexity and content are reflected in ROIs while viewing visual events, 

especially given that regions throughout the ventral visual, dorsal visual, and parietal cortices 

have all been implicated in processing temporal aspects of videos (Buccino et al., 2004; Konen 



& Kastner, 2008; Lingnau & Downing, 2015; Silver & Kastner, 2009; Wurm & Caramazza, 2022) 

but also diverse feature preferences (Buccino et al., 2004; Kanwisher, 2010; Kanwisher et al., 

1997; Konen & Kastner, 2008; Lafer-Sousa et al., 2016; Ratan Murty et al., 2021).” 

Also, in this section we point readers to the Methods for additional details: 

“We use representational similarity analysis (RSA) (Kriegeskorte, 2008) to correlate the 

metadata representations (Figure 7B) with neural representations to measure how similarly 

the different metadata descriptions are reflected in brain activity of dynamic videos (see 

methods section “Metadata RSA Analysis Procedure” for more information).” 

Lastly, the memorability analysis section, we point readers to the Methods for more details: 

“Under the hypothesis that stimuli with higher memorability scores elicit a greater magnitude 

of brain response (Bainbridge et al., 2017; Bainbridge & Rissman, 2018; Jaegle et al., 2019), 

we correlate a vector of video memorability scores with a vector of each voxel’s 

corresponding brain responses (beta values) (Figure 8A) (see Methods section “Memorability 

Analysis Procedure” for details).” 

(05) Results, page 11: The authors state that they observed statistically significant reliability values across 

occipital and parietal cortex. It seems to me that Figure 3 also suggests an involvement of temporal regions, 

which brings me back to the point addressed in one of my previous comments regarding the processing of 

visual events in the ventral stream. The same comment applies to the paragraph on page 14, where the 

dorsal visual stream and parietal cortex is highlighted. 

We agree that we should better highlight the ventral and temporal regions’ involvement in processing 

videos. 

The text you first refer to under “Reliable univariate and multivariate fMRI response profiles” has been 

updated to: 

“In both the whole-brain univariate and multivariate reliability analyses, we observe statistically 

significant reliability values across the occipital, temporal, and parietal cortices, even extending 

into the frontal lobe.” 

The text you refer to under “Modeling visual event understanding with a video-computable deep 

neural network for action recognition” has been updated to include additional citations emphasizing 

different neural responses between images and videos: 

“However, modeling visual events has been limited by the lack of a suitable dataset that 

accounts for complex distributed processes across the whole brain (Yildirim et al., 2019), 

drastic differences to image understanding (Buccino et al., 2004; Krekelberg et al., 2003; Kret 

et al., 2011; Lingnau & Downing, 2015; Schultz & Pilz, 2009; Senior et al., 2000; Shirai & Imura, 



2014; Wurm & Caramazza, 2022), and the temporal boundaries of a visual event (Aliko et al., 

2020; Hasson, Yang, et al., 2008; Nishimoto et al., 2011; Seeliger et al., 2019).” 

In the same section, we delete the word “notably” to de-emphasize dorsal and parietal cortices: 

“We observe that predictivity of DNN Block 4 becomes significantly greater than DNN Block 1 

beginning in the ventral visual cortex and extending notably into dorsal visual cortex and 

parietal cortex (Figure 6C), reflecting the increase of feature complexity in the 

representations across the visual processing hierarchy (see Supplementary Figure S7 for 

results on all layers and ROIs).” 

Again, in the same section, we rearrange and add to the last paragraph to stress the involvement of 

ventral visual and temporal cortices in event perception: 

“This result extends previous research demonstrating a hierarchical correspondence between 

DNNs and brains from still image stimuli (Cichy, Pantazis, et al., 2016; Eickenberg et al., 2017; 

Kriegeskorte, 2015; Kubilius et al., 2019; D. L. K. Yamins et al., 2014) to dynamic video stimuli, 

a non-trivial outcome given that many cortical regions in the ventral visual and temporal 

cortex and beyond respond to stimulus features uniquely present in videos and not images 

(e.g., movement kinematics, temporal interactions) (Lingnau & Downing, 2015; Pitcher et al., 

2011; Wurm et al., 2017; Wurm & Caramazza, 2022). These results also help clarify previously 

conflicting results about whether or not DNNs trained on action recognition tasks accurately 

predict dorsal stream regions (Bakhtiari et al., 2021; Güçlü & van Gerven, 2017; Mineault et 

al., 2021), showing that they accurately predict responses not only in the dorsal visual stream 

but also in the parietal cortex.” 

Note that we do keep the focus on dorsal visual stream and parietal regions in the last sentence 

because the “previously conflicting results” specifically concern those regions. 

(06) Results, page 15f, frame shuffling: I really liked this analysis. That said, I was wondering to which 

degree the performance of the DNN (rather than the brain) in predicting DNN activations for unseen 

unshuffled sequences is impaired by the shuffling. I’m assuming the authors could examine this and 

determine if they find an increase of the impact of shuffling across the different blocks of the DNN that 

resembles the pattern obtained across the different ROIs. I do not consider this analysis to be essential for 

the manuscript, but it could be something worth looking into if the authors wish to do so. 

Thank you for this suggestion, it is definitely a good analysis to do. Since this analysis you propose does 

not do any direct comparisons with the brain data, there is no need to perform regression onto voxels. 

Thus, we can simply compute the correlations (Pearson) between the activations from the 

“unshuffled” and “shuffled” inputs at each block. 

Our method is as follows: we extract the activations for each of the 1,102 videos at each of the four 

blocks in the TSM ResNet50 model trained on the M4 dataset (same model as in the manuscript). We 

extract activations under two conditions: (1) the frame order is unshuffled and (2) the frame order is 

randomly shuffled (repeated with ten different random seeds). In all blocks, the activations are 



flattened and averaged over the frames. At each of the four blocks, we then correlate the unit 

activations between the (1) unshuffled activations and (2) each of the ten shuffled activations. For each 

randomly shuffled seed, the correlations are averaged over the layer units. The final correlations at 

each block averaged over the ten random seeds are: 

Block 1: 0.9984845300607047 

Block 2: 0.9842916420921666 

Block 3: 0.9282806628390048 

Block 4: 0.8082267527419473 

These results show decreasing activation similarity between the unshuffled and shuffled activations 

through the four blocks, with a notably steep drop in activation similarity by block 4. This result 

suggests that block 4 is most impacted by frame shuffling. We find a similar pattern in brain prediction 

performance, where in figure 5B, block 4 shows a dramatically larger “unshuffled minus shuffled” brain 

prediction performance throughout cortex compared to blocks 1-3. Using the model’s sequential 

processing of activations through the four blocks as a proxy for a cortical processing hierarchy (Cichy, 

Pantazis, et al., 2016; Eickenberg et al., 2017; Kriegeskorte, 2015; Kubilius et al., 2019; D. L. K. Yamins 

et al., 2014), we find a similar trend where block 4 has the largest impact in all cortical ROIs and 

especially in the high-level regions (figure 5C).  

We believe this result is a valuable evaluation of the DNN itself and will be of interest to other 

researchers. We summarize these results in the corresponding methods section “Shuffling analysis to 

determine importance of temporal order”: 

“We additionally correlate (Pearson) the unshuffled activations with each of the ten shuffled 

activations at each of the four blocks to examine the effect of frame shuffling on the model 

itself without the brain data. We average the correlations across activation units and the ten 

random seeds and find the following block correlations: 

Block 1: 0.998 

Block 2: 0.984 

Block 3: 0.928 

Block 4: 0.808 

These results show decreasing activation similarity between the unshuffled and shuffled 

activations through the four blocks, with a notably steep drop in activation similarity by block 

4. This result suggests that block 4 is most impacted by frame shuffling. Subsequently, block 4 

also has the largest impact in brain prediction performance across cortex (figure 5B) and ROIs 

(figure 5C). “ 

We additionally want to make you aware that the ten sets of features from the shuffled inputs 

originally used to make Figure 5 were misplaced, so we re-extracted them for this revision in order to 

do this analysis and subsequent analyses for Reviewer 2. Due to the stochasticity of the random 

shuffling, the numerical values of the feature maps – and subsequently the brain prediction 



performance – are different. In order to be fully transparent and reproducible, we decided it would be 

best to update the main manuscript Figure 5 to reflect these newly extracted feature maps from the 

shuffled inputs. The overall pattern of the results nor our conclusions changed as a result of this. We 

reproduce the figure and caption below: 

“Figure 5: Importance of temporal order in predicting fMRI responses. 

A) Frame shuffling procedure: We predict the real fMRI responses using both the DNN 

activations of the original (unshuffled) frame order and the DNN activations of the randomly 

shuffled frame order.  A difference in prediction accuracy between the DNN activations of the 

unshuffled and shuffled frames indicates the preservation of correct temporal order in the 

fMRI response. B) Whole-brain prediction difference: Difference in the correlation averaged 

over participants between the shuffled framed prediction accuracy and unshuffled frame 

prediction accuracy across the whole brain at different DNN layers (TSM model). C) ROI-based 

prediction difference: Difference in the correlation between the shuffled frame prediction 

accuracy and unshuffled frame prediction accuracy at different ROIs and DNN layers (TSM 



model). A colored asterisk above a box plot indicates significant difference between the 

unshuffled and shuffled prediction accuracy at that DNN block (one sample two-sided t-test 

against a population mean of 0, FDR correction across 22 ROIs x 4 blocks = 88 comparisons, p 

< 0.05). The box plot encompasses the first and third data quartiles and the median 

(horizontal line). The whiskers extend to the minimum and maximum values within 1.5 times 

the interquartile range, and values falling outside that range are considered outliers (denoted 

by a diamond). The overlaid points show the value at each observation (n=10 for all ROIs 

except TOS (n=8) RSC (n=9)).” 

Minor points

(1) Figure 4, captions: The authors write that ‘All videos are shown to both a DNN and a human.’ The 

authors may want to state which DNN they used – they do so in panel B, so I’m assuming they used the 

same DNN here, but why not make that explicit from the start. 

We add the specific type of DNN used in Figure 4’s panel A text. It now reads: 

“All videos are shown to both a TSM ResNet50 DNN and a human.” 

(2) I appreciate the level of detail the authors provide to access the quality of the (f)MRI data. That said, 

some of the reported image quality metrics might not be known to the readers of Nature Communications, 

so some more guidance regarding the interpretation of these measures might be helpful. 

We agree that more motivation and explanation behind the IQMs would benefit the readers.

*QXAVTVAX<ZRQ XK<X >OA<VOd OLQNW *2. a<O_AW XR U_<OLXd RC @RbQWXVA<P <Q<OdWLW VAW_OXW vAmImk AQ>R@LQI

PR@AO TVA@L>ZRQw LW RHAQ QRX TRWWL=OAm 5KAWA *2.W PA<W_VA TVRTAVZAW =ACRVA RV @_VLQI TVATVR>AWWLQI

W_>K <W IV<dsbKLXA P<\AV >RQXV<WXWk PRZRQk 4/3k <Q@ IAQAV<O U_<OLXd PA<W_VAW RC W><QWm 4_>K

PA<W_VAW <VA a<O_<=OA XR AWZP<XA @<X< U_<OLXd p>ORWA XR XKA W><QQAVq =ACRVA <Qd QA_V<O PR@AOLQI vAmImk

(-.w RV <Q<OdWAW X<NAW TO<>Am 8A =AOLAaA XKA CROORbLQI _QLa<VL<XA <Q@ P_OZa<VL<XA VAOL<=LOLXd PA<W_VAWk

which are post-GLM and much closer to the downstream analysis results, complement these IQM 

PAXVL>W bAOOm 5KA C_OO .3*2$ VATRVX LW <a<LO<=OA LQ XKA @<X<WAX VAOA<WAk <Q@ bA <@@LZRQ<OOd TRLQX XKA

readers to the supplementary material where all 12 IQMs are explained in greater detail and the link to 

the MRIQC website that provides details for all 112 IQMs.

8A P<@A XKA CROORbLQI >K<QIAW XR XKA P<Q_W>VLTX _Q@AV XKA WA>ZRQ pvCw.3* LP<IA W><QW RC KLIK

quality across subjects and task” to convey the above points:

`4CDN WD<G;<; 8 :JHKM<C<INDT< N<O J= nn =SI:PJI8G 8I; pr NOMS:OSM8G image quality metrics 

(IQMs) e=SGG M<KJMO 8T8DG89G<fZ J= UCD:C U< KM<N<IO 8 M<KM<N<IO8PT< N<O J= NDV NOMS:OSM8G e'DBSM<

l"f 8I; NDV =SI:PJI8G -2* H<OMD:N e'DBSM< l#f eN<< Supplementary for more details on the 

IQMs and 3SKKG<H<IO8MW 'DBSM< 3k =JM OC< M<NPIB NO8O< 8I; =SI:PJI8G GJ:8GDX<M N:8INf] In 

9MD<=Z NDI:< IJ N<O J= H<OMD:N :8I :JHKG<O<GW ;<N:MD9< ;8O8 LS8GDOWZ OC< N<G<:PJI J= OC< *1-N

OJ ;DNKG8W C<M< =J:SN<; JI H<OMD:N <NK<:D8GGW M<G<T8IO OJ =SI:PJI8G JM NOMS:OSM8G N:8IN e<]B]Z

4<HKJM8G 3.2 =JM =SI:PJI8G N:8IN 8I; $JIOM8NO OJ .JDN< M8PJ =JM NOMS:OSM8G N:8INfZ H<OMD:N

NC8M<; 9<OU<<I =SI:PJI8G 8I; NOMS:OSM8G N:8IN =JM 8 HJM< :JC<NDT< N<O e<]B]Z 3.2 8I; 'SGGc

Width Half Maximum Smoothness), and metrics common across other literature and analysis 



packages to increase familiarity with readers (e.g., SNR, Framewise Displacement, AFNI 

/SOGD<M 28PJZ "'.* 1S8GDOW *I;<Vf]a

*Q XKA W_TTOAPAQX<Vd WA>ZRQ p4XV_>X_V<O <Q@ C_Q>ZRQ<O W><Q U_<OLXd <WWAWWPAQXqk bA <@@ XKA CROORbLQI

text:

`6< KM<N<IO 8 M<KM<N<IO8PT< NS9N<O J= p *1-N OJ NSHH8MDX< OC< LS8GDOW J= JSM NOMS:OSM8G

N:8IN 8I; 8IJOC<M NS9N<O J= p *1-N OJ NSHH8MDX< OC< LS8GDOW J= JSM =SI:PJI8G N:8IN (see 

-2*1$ ;J:SH<IO8PJI =JM ;<O8DGN JI 8GG kkl

IQMs: https://mriqc.readthedocs.io/en/latest/measures.html).”

(3) Figure 4, captions, panel C: It did not become entirely clear to me why the difference in predictive 

performance was computed between block 1 and 4 – why these particular blocks? Can the authors 

motivate this choice? 

We choose features from block 1 to reflect low-level feature processing and block 4 to reflect high-level 

feature processing. The difference in prediction performance between these two blocks summarizes the 

dominance of low-level or high-level features encoded within an ROI. We added relevant text and citations 

to the manuscript, reproduced below: 

“As a proxy for low-level and high-level features, we extract the video features at early (Block 

1) and late (Block 4) blocks of the DNN, respectively (Cichy, Khosla, et al., 2016; Kubilius et al., 

2019; D. L. Yamins et al., 2013; D. L. K. Yamins et al., 2014). We then estimate the dominance 

of low-level and high-level feature processing across ROIs by computing the difference in 

predictivity between DNN Block 1 and DNN Block 4.”  

(4) Methods, page 6, line 129: It might help to inform the reader already here which of these labels were 

generated by humans, and which were generated by a DNN. 

We ran additional human crowd-sourced experiments to record new scene and object labels. Now, all 

video labels (object, scene, action, text description, and spoken transcription) are generated by humans. 

The text has been updated accordingly: 

“Revealing how the brain mediates visual event understanding benefits from detailed, human-

labeled descriptions of a visual event. Thus, we used human crowd-sourced experiments to

annotate each clip with 5F2 word-level sceneZ J9E<:OZ 8I; 8:PJI G89<GNZ 5F2 sentence-level 

O<VO ;<N:MDKPJINZ one NKJF<I OM8IN:MDKPJIZ one behavioral memorability score, and one

memorability decay rate (Figure 1A).

Each category of metadata labels was collected in separate experiments. The possible scene, 

J9E<:OZ 8I; 8:PJI G89<GN U<M< N8HKG<; =MJH OC< 0G8:<Nmpo e7CJS <O 8G]Z ljkrfZ 4)*.(3

e)<98MO <O 8G]Z ljksZ ljlmfZ 8I; -SGPc-JH<ION DI 4DH< e-JI=JMO <O 8G]Z ljllf ;8O8N<ONZ

M<NK<:PT<GWZ =JM OC<DM :8M<=SGGW :M8A<; G89<G :JT<M8B< 8I; <VO<INDT< JT<MG8K UDOC :JHKSO<M

science resources. Due to most videos clearly containing more than one object, the 



.>>?D.D?BC 9> D82 ?/:20D <./2< 2H@2B9=2>D G2B2 9>CDBE0D21 D? <./2< D8B22 1942B2>D ?/:20DC 3?B .

OJO8G J= ko J9E<:O G89<GN K<M TD;<J] 4C< kZkjl #-% NPHSGD :JT<M mjo J= mpo KJNND9G< N:<I<

G89<GNZ kZjjl J= kZron KJNND9G< J9E<:O G89<GNZ 8I; lpk J= lsl KJNND9G< 8:PJI G89<GN] The 

N<IO<I:< O<VO ;<N:MDKPJIN ekm]jp H<8I tbc l]rjj NO; UJM;N K<M N<IO<I:<f were typed free-

form by the annotator to ;<O8DG N8GD<IO DIO<M8:PJIN DI OC< TD;<J 8I; NSHH8MDX< OC< K<MPI<IO

:JIO<IO] 4C< NKJF<I OM8IN:MDKPJIZ collected through free-form audio recordings and 

OM8IN:MD9<; e8S;DJ IJO 8T8DG89G< ;S< OJ KMDT8:W :JIND;<M8PJINfZ tends to be more verbose 

UDOC 8;;DPJI8G <HJPJI8G 8I; GDIBSDNP: NS9OG<P<N KM<N<IO DI NK<<:C 9SO JA<I IJO DI O<VO

elp]ql H<8I tbc kq]oo NO; UJM;N K<M OM8IN:MDKPJIf]

*Q XKA .AXKR@W WA>ZRQ _Q@AV p.AX<@<X<qk bA P<NA XKA CROORbLQI >K<QIAW bKAQ @AW>VL=LQI XKA R=MA>X

and scene labels:

“Metadata

5DNS8G <T<ION :JINDNO J= :JHKG<V :JH9DI8PJIN J= J9E<:ONZ GJ:8PJINZ 8:PJINZ 8I; HJM<] 4J

capture the many dimensions of visual events, we characterized each video with a set of 

seven metadata categories: J9E<:O G89<GNZ N:<I< G89<GNZ 8:PJI G89<GNZ O<VO ;<N:MDKPJINZ 8

NKJF<I OM8IN:MDKPJIZ 8 H<HJM89DGDOW N:JM<Z 8I; 8I DI;<V J= H<HJM89DGDOW ;<:8W M8O< e'DBSM<

k"f] 'DT< J9E<:OZ N:<I<Z 8:PJIZ 8I; O<VO ;<N:MDKPJI G89<GN U<M< :JGG<:O<; =JM <8:C NPHSGSN to 

ensure comprehensive coverage RD82 5F2 .>>?D.D?BCN <./2<C B2620D D829B E>9AE2

DIO<MKM<O8PJINf and form a group consensus RD82 5F2 .>>?D.D?BCN <./2<C 0.> /2 EC21 D?

converge on a single label). './2<C 3?B 2.08 =2D.1.D. 0.D27?BI G2B2 0?<<20D21 9> 1942B2>D

8E=.> 0B?G1QC?EB021 2H@2B9=2>DCM "> .>>?D.D?B G.C .<<?G21 D? <./2< E@ D? VT 1942B2>D

videos but no more than one label per video to encourage diversity of human annotators. 

6CDG< :MJU;cNJSM:< UJMF<MN U<M< IJO M<NOMD:O<; =MJH K8MP:DK8PIB DI HSGPKG< H<O8;8O8

<VK<MDH<IONZ OCDN U8N SIGDF<GW ;S< OJ OC< <VK<MDH<ION 9<DIB :JGG<:O<; 8O ;D><M<IO PH<N 8I;

OC< G8MB< KJKSG8PJI KJJG =MJH UCD:C OC< :MJU;cNJSM:< UJMF<MN U<M< ;M8UI]

Object labels

For each video, we obtained at least 5 C2DC ?3 E@ D? D8B22 1942B2>D object labels in a human 

0B?G1QC?EB021 2H@2B9=2>D ?> *B?<950M %.08 .>>?D.D?B G.C 9>CDBE0D21 D? C2<20D E@ D? D8B22

1942B2>D ?/:20D <./2<C F9C9/<2 9> D82 F912?M ,82I C2<20D21 .D <2.CD ?>2 ?/:20D <./2<L .>1 93 D82I

believed no more objects were present in the video, they were allowed to select a “No more 

J9E<:ON DI OC< TD;<Ja JKPJI SK OJ OUJ PH<N] 4CDN JKPJI OCSN <I:JSM8B<; 8::SM8O< G89<GN 8I;

:8MMD<; DI=JMH8PJI JI OC< ;<INDOW J= J9E<:ON DI OC< TD;<J] &8:C J9E<:O G89<G U8N JI< J= kZron

KJNND9G< G89<GN =MJH OC< 4)*.(3 ;8O8N<O OJ <I:JSM8B< JT<MG8K UDOC :JHKSO8PJI8G

I<SMJN:D<I:< UJMF 8I; G<T<M8B< OC< 8;;DPJI8G 4)*.(3 H<O8;8O8 JI <8:C G89<G e<]B]Z 8IDH8:WZ

NDX<Z DI;JJMbJSO;JJMf] 4C< J9E<:O G89<G N<G<:PJIN :8I 9< ;D><M<IO JM OC< N8H< 8:MJNN

annotators. One author manually reviewed the labels to ensure the labels assigned to the 

TD;<J U<M< N<IND:8G eD]<]Z K8MP:DK8ION U<M< IJO :CJJNDIB G89<GN 8O M8I;JHf]

Scene labels

For each video, we obtained at least 5 scene labels using a human crowd-sourced experiment 

?> *B?<950M %.08 ?3 D82 5F2 1942B2>D .>>?D.D?BC G2B2 9>CDBE0D21 D? C2<20D . C02>2 <./2< D8.D



best describes the scene of the video. All scene labels came from the Places365 dataset (Zhou 

et al., 2018) for its broad scene coverage and overlap with computer vision resources. The 

N:<I< G89<G N<G<:PJIN :8I 9< ;D><M<IO JM OC< N8H< 8:MJNN TD;<JN] /I< 8SOCJM H8IS8GGW

M<TD<U<; OC< G89<GN OJ <INSM< OC< G89<GN 8NNDBI<; OJ OC< TD;<J U<M< N<IND:8G eD]<]Z K8MP:DK8ION

were not choosing labels at random).”

(5) Methods, page 7, line 161: What was the reason to resample the data from a TR of 1.75 to 1 s, instead 

of collecting data at a TR of 1 s right away? 

Thank you for this question. We do not acquire the data directly at a TR of 1 second due to physical 

limitations and desired scanner protocols. We calculated that an acquisition TR of 1.75 seconds would allow 

us to achieve our desired acquisition performance with theoretically higher SNR than a 1 second acquisition 

TR. Additionally, an acquisition TR of 1.75 seconds also allows us to densely sample BOLD responses at 

different delays with respect to stimulus onset. For example, since 1.75 does not evenly divide into the 4 

second trial length, the BOLD response to a single video across three repetitions might be sampled at onset 

delays of [0.5, 2.25, 4, 5.75,…], [0, 1.75, 3.5, 5.25, …], and [1, 2.75, 4.5, 6.25,...] seconds for the three 

repetitions. Such a jittered sampling during acquisition allows for more accurate interpolation since the 

true acquired time points are sampled at different delays relative to the stimulus onset. An acquisition TR 

of 1 second would result in sampling the BOLD signal at [0, 1, 2, 3, 4, …] seconds every time, making the 

sampling less dense. Finally, the resampling from 1.75 second to 1 second TR allows the BOLD estimates to 

be time-locked to stimulus onset, as required by FIR modeling. 

We added the following text under “(f)MRI data preprocessing, response modeling, and ROI definition” to 

make this reasoning clearer: 

O-2 5BCD @B?02CC21 D82 1.D. EC9>7 D82 CD.>1.B19J21 3(+&*B2@ D??< R%CD2/.> 2D .<ML VTUXS D?

achieve reproducible and transparent results] %SMDIB 8:LSDNDPJIZ U< N8HKG<; =-2* ;8O8 8O 8

42 J= k]qoN OJ 8:CD<T< 8 ;<IN<GW N8HKG<; PH< :JSMN< UDOC M<NK<:O OJ OC< JIN<O J= OC<

NPHSGSN e+] +8W <O 8G]Z ljljf[ NDI:< k]qo ;J<N IJO <T<IGW ;DTD;< DIOJ OC< n N<:JI; OMD8G G<IBOCZ

OC< #/,% M<NKJIN< OJ 8 NDIBG< TD;<J 8:MJNN OCM<< M<K<PPJIN HDBCO 9< N8HKG<; 8O JIN<O ;<G8WN

of [0.5, 2.25, 4, 5.75,…], [0, 1.75, 3.5, 5.25, …], and [1, 2.75, 4.5, 6.25,...] seconds for the three 

eJM O<If M<K<PPJIN] *I OC< KM<KMJ:<NNDIB U< then temporally resampled the data from a TR of 

1.75s to a TR of 1s DI JM;<M OJ 8:LSDM< #/,% M<NKJIN<N <V8:OGW PH<cGJ:F<; OJ OC< JIN<O J=

<8:C OMD8G eNPHSGSN KM<N<IO8PJI C8KK<IN <T<MW nNZ D]<]Z 8 HSGPKG< J= kNZ 9SO IJO k]qoNf. To 

8::JHHJ;8O< T8MD89DGDOW DI OC< C<HJ;WI8HD: M<NKJIN<N 8O ;D><M<IO GJ:8PJIN DI :JMO<VZ OJ

M<NJGT< O<HKJM8G NOMS:OSM< J= OC< NPHSGDZ 8I; OJ 8;;M<NN M<NKJIN< JT<MG8K =MJH OC< M8KD;

<T<IOcM<G8O<; ;<NDBIZ U< SN<; 'DIDO< *HKSGN< 2<NKJIN< e'*2f 98NDN =SI:PJIN]a

(6) On page 14, line 301f, the authors write that they release the model to aid investigations of visual event 

understanding. Here might be a good location to state where the model can be found. 

We updated the manuscript to include the corresponding github link. The sentence now reads: 

“6< M<G<8N< OCDN HJ;<G OJ 8D; DIT<NPB8PJIN J= TDNS8G <T<IO SI;<MNO8I;DIB (model available 

8O\ CRKN\bbBDOCS9]:JHbK9Uc#<MUDIb-ncKM<OM8DI<;f]a



(7) Figure 7: How similar are the models for scenes, actions and text caption? 

Below are the spearman correlations between the scene, object, action, scene+object+action, and text 

description RDMs from the test set videos used in Figure 7: 

Scene <--> object: 0.1808 

Scene <--> action: 0.1133

Scene <--> scene+object+action: 0.6641

Scene <--> text description: 0.1969

object <--> action: 0.0884

object <--> scene+object+action: 0.6137

object <--> text description: 0.2618

action <--> scene+object+action: 0.5238

action <--> text description: 0.1560 

scene+object+action <--> text description: 0.3145 

The purpose of these 5 models is to convey increasing amounts of information content from individual 

labels (“scenes”, “objects”, “actions”) to the combination of individual labels (“scene+object+action”) to a 

full text description (“text description”). We expect the correlations between the individual label models to 

be lowest as they are capturing distinct pieces of information about the video. The correlations between 

the individual label models and the combination “scene+object+action” model should be highest, as this 

combination model explicitly encompasses the individual label models. We also expect and observe a high 

correlation between the “text description” model and “scene+object+action” model since both capture 

information regarding the video’s scene, action, and objects.  

We include these model correlation results in the methods section, with the relevant text reproduced 

below: 

“We compute the correlations (Spearman) between the metadata RDMs to measure the 

similarity of their information content. As expected, the correlations between the individual 

single-word object, scene, and action labels were generally lowest, since these labels highlight 

explicitly different components of the video. The correlations between the individual single-word 

object, scene, and action labels with the text descriptions were generally next highest, also 

expected because the text description likely contains information about each of the single-word 

labels plus extra information. The combined object+scene+action RDM with the text description 

RDM was higher still given even more overlapping information. The highest similarities were 

between the single-word object, scene, and action RDMs and the combined object+scene+action 

RDM because of explicitly overlapping information content (computed using the same 

embedding) but less extra information than the text description. 

[scene, object]: 0.1808 

[scene, action] 0.1133 

[scene, scene+object+action]: 0.6641 

[scene, text description]: 0.1969 

[object, action]: 0.0884 

[object, scene+object+action]: 0.6137 



[object, text description]: 0.2618 

[action, scene+object+action]: 0.5238 

[action, text description]: 0.1560 

[scene+object+action, text description]: 0.3145” 

(8) Figure 7, panel A: At this point in the manuscript it was not clear to me yet what video metadata are. 

Also here, the authors may want to refer to the corresponding methods section. 

Thank you for pointing out the confusion here. We have been using the terms “annotation” and 

“metadata” interchangeably. Thus, the video metadata, or video annotations, are the object, scene, action, 

text description, spoken transcription, memorability score, and memorability decay rate labels. We change 

the uses of the word “annotations” to “metadata” throughout the manuscript to be consistent and avoid 

confusion. We also edit Figure 7 (now panel B, not A) to be more explicit as to what the metadata 

encompasses. We additionally point readers to the corresponding methods section for more details on the 

metadata collection in the text: 

`^ 4C< :JH9DI<; J9E<:ONtN:<I<Nt8:PJIN ;<N:MDKPJI :JI:8O<I8O<N OC< DI;DTD;S8G J9E<:OZ

N:<I<Z 8I; 8:PJI G89<G DI=JMH8PJI OJ N<MT< 8N 8I DIO<MH<;D8O< 9<OU<<I OC< UJM;cG<T<G 8I;

N<IO<I:<cG<T<G ;<N:MDKPJIN eN<< -<OCJ;N N<:PJI `-<O8;8O8a =JM ;<O8DGN JI OC< H<O8;8O8

:JGG<:PJIf]a

(9) Results, page 21, line 447f, RSA: here I was wondering how the neural RDM was constructed. The 

authors may want to provide the reader with a link to the corresponding methods section. 

The neural RDMs for each voxel in a brain mask shared across all subjects were constructed using a 

searchlight method (Kriegeskorte et al., 2006). Specifically, a spherical searchlight with a four voxel radius 

centered at voxel v indexed the response profiles of all voxels (n_voxels) within the searchlight. This 

indexing resulted in a matrix of size 102 x n_voxels for the test set, denoting the responses to the 102 

videos at each of the voxels in the searchlight. The pairwise correlation (Pearson) between video i and 

video j’s response vector (size 1 x n_voxels) was computed, and the distance (1 – Pearson correlation) was 

entered into the RDM at index (i, j). This process repeated for each voxel and subject separately. The RDMs 

at each voxel were of size 102 x 102 (n_videos x n_videos) and symmetrical across the diagonal. 

Subsequent correlations with metadata model RDMs only used the lower (or equivalently upper) triangle of 

the RDM, not including the diagonal. 

We make the following additions to the main text and Figure 7 to make the neural RDM construction more 

clear and additionally point readers to the methods section: 

“We compute a neural representational dissimilarity matrix (RDM) at each voxel by computing 

the pairwise distances between vector embeddings obtained from a searchlight procedure (four 

voxel radius) (Kriegeskorte et al., 2006) (Figure 7A). We compute one RDM for each metadata 

category by calculating the pairwise distances between vector embeddings obtained by feeding 

the text-based labels through natural language processing models (FastText, Bojanowski et al., 

2017, for the single-word object, scene, and action labels, and Sentence-BERT, Reimers & 

Gurevych, 2019, for sentence-level text descriptions) (Figure 7B). We use representational 



similarity analysis (RSA) (Kriegeskorte, 2008) to correlate the metadata representations (Figure 

7C) with neural representations to measure how similarly the different metadata descriptions are 

reflected in brain activity of dynamic videos (see methods section “Metadata RSA Analysis 

Procedure” for more information).” 

(10) Methods, Stimuli, page 27, line 577f: How was the semantic overlap between a pair of videos 

determined? 

Semantic overlap between pairs of videos was determined by manual inspection. In the supplementary 

(Figure S8, reproduced below), we show a t-sne plot of the averaged sentence text description embeddings 

between the train (blue) and test (orange) videos. The lack of clustering in either the train or test videos 

further suggests the semantic coverage of the BMD stimuli is equally diverse in the train and test sets. 

We make the following edits to the methods section “Stimuli” for clarification: 

“Specifically, the testing set videos were chosen randomly from the 1,102 videos, and then 

checked manually to ensure no semantic overlap, in terms of objects plus actions, occurred 

between any pair of testing set videos. If semantic overlap was found between a pair of videos as 

determined by an author, one of these videos was swapped with a video randomly selected from 

the pool of remaining videos and incorporated into the testing set.” 

We additionally include this point about manual inspection in the caption of Supplementary Figure S8 

below: 



Figure S8: Distributions of stimuli metadata between training and testing sets 

The training and testing sets consist of 1,000 and 102 different videos, respectively. An author manually 

inspected the pairs of testing set videos to ensure no high-level semantic overlap, in terms of objects and 

actions. A) Object, scene, and action label frequency of occurrence: The barplot depicts the frequency of 

occurrence, (between 0 and 1) of, from left to right, the single-word object, scene, and action labels of the 

1,102 video stimuli used in the BOLD Moments Dataset. The frequency bars for each label are separated by 

training (blue) and testing (orange) splits to show their similar frequency of distributions. B) Text 

description and spoken transcription t-sne distances. The scatterplot shows the t-sne components (n=2 

components, perplexity=10, number of iterations=1000) of each text description or spoken transcription 

embedding. The 6 sentence descriptions per video (5 text descriptions and 1 spoken transcription) serve as 

a useful proxy for the video’s content. The t-sne plot shows the training and testing set stimuli cover similar 

spaces of video content. C) Memorability distribution. The distribution of the memorability scores and 

memorability decay rates (1 per video) between the training and testing splits are highly similar and 

approximately normal. Note that the positive memorability decay rates, while theoretically implausible, 

reflect the true experimental results detailed in the Memento10k dataset. Users may want to set positive 

values to 0 depending on the analysis.
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(11) Methods, Functional localizers, page 27, line 597f: It would be helpful to provide the reader 

with more details about these videos. Can the authors show some example snapshots? Moreover, I 

was wondering whether the authors can provide a justification regarding the use of videos rather 

than static images, in particular for stimulus categories such as objects and scenes. 

Subjects freely viewed colored, naturalistic blocks of video. Each video block was 18 seconds long, 

composed of showing 6 3-second videos of the same category back-to-back. We also release the 

localizer videos with the rest of our data. Please see Figure 1C for snapshots of the videos used in 

the localizer experiment. 

We chose to use a video-based, as opposed to an image-based, localizer because (1) it more closely 

matches the short video stimuli used in the main experiment, (2) video-based localizers have been 

shown to be more effective in activating ROIs (Fox et al., 2009), and (3) this particular video-based 

localizer has been successfully used in prior studies to localize numerous ROIs, including object and 

scene ROIs (Julian et al., 2012; Lafer-Sousa et al., 2016; Pitcher et al., 2011; Ratan Murty et al., 

2021). 

We edited the paragraph to include a more detail on the videos, reproduced below: 

“Subjects freely viewed colored, I8OSM8GDNP: videos (18s length, composed of 6 3-

second videos) 0?BB2C@?>19>7 D? ?>2 ?3 5F2 0.D27?B92C R3.02CL /?192CL C02>2CL ?/:20DCL

8I; N:M8H9G<; J9E<:ONf DI JM;<M OJ =SI:PJI8GGW GJ:8GDX< <8:C NS9E<:O_N :8O<BJMW

N<G<:PT< M<BDJIN eJulian et al., 2012; Lafer-Sousa et al., 2016; Pitcher et al., 2011; Ratan 

Murty et al., 2021). Subjects viewed the videos freely and performed a one-back 

TDBDG8I:< O8NF OJ <INSM< 8R<IPJI OJ OC< O8NF (videos are available with the dataset 

release).”

(12) Related to the previous point: Was there a fixation cross provided during the functional 

localizer? 

There was no fixation cross provided during the functional localizer. The subjects freely viewed the 

videos according to established protocols from previous work using this dynamic functional localizer 

(Julian et al., 2012; Lafer-Sousa et al., 2016; Pitcher et al., 2011; Ratan Murty et al., 2021). See 

TRLQX || VLIKX <=RaA CRV XKA >K<QIAW XR XKA P<Q_W>VLTX PAQZRQLQI XKLWm

(13) Methods, Main experiment, page 28, line 626f: How were the null events modelled in the 

analysis? 

Thank you for pointing out this oversight. We address this comment in our response to your 

comment #25. In the subsequent section “General linear model” and subsection “Main 

experiment”, we add the sentence: 
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“4C< NPHSGSN KM<N<IO8PJI OMD8GNZ 9SO IJO OC< ISGG M<NKJIN< OMD8GNZ U<M< DI:GS;<; 8N

regressors of interest.”

(14) Methods, Main experiment, page 28, line 632f: I don’t fully get the meaning of the statement 

‘with the restriction of excluding successive repetitions of test runs within one session’. Could the 

authors clarify? 

Within a main experimental scanning session (sessions 2-4), we showed the participant a total of 13 

runs – 10 training runs and 3 testing runs composed of videos only from the training and testing 

sets, respectively. The order of these runs was randomized except for the constraint that two 

testing runs cannot be shown back-to-back. This is what “with the restriction of excluding 

successive repetitions of test runs within one session” refers to. This purpose of this restriction is to 

increase the number of videos between repetitions to reduce potential memory effects. 

The paragraph now reads: 

“The testing and training set videos were presented within training and testing runs, 

where each test run consisted of 113 trials and each train run consisted of 100 trials. The 

order of these runs was randomized except for the constraint that two testing runs cannot 

be shown back-to-back in the same session in order to reduce potential memory effects 

caused by the same stimulus being presented within a short period of time. Each session 

contained 3 test runs and 10 training runs and lasted approximately 100 minutes.” 

(15) Methods, Main experiment and functional localizer: I did not find any information regarding a 

fixation period at the beginning and end of each run – is this simply an omission in the text, or was 

no such fixation period included? 

Thank you for the comment, this indeed was an omission in the text and should be included. 

Each functional localize run began and ended with an 18 second fixation block consisting of a 

blank gray screen (Figure 1C). The ending fixation also contained an additional 19 seconds of 

gray screen that was not used in subsequent modeling. The main experimental runs began with 

4 seconds of fixation with a fixation cross before the first stimulus was presented. The main 

experimental runs ended with 13 or 12.5 seconds (for test and train runs, respectively) of 

fixation after the last stimulus trial ended. The 0.5 second difference in fixation period duration 

between the test and train runs is due to the runs’ different number of trials (113 and 100 

trials) and the 1.75 second acquisition TR not being an even factor of the 4 second trial length. 

We added the following information to the methods section for the functional localizer: 

“Subject accuracy on the one-back task was 0.941 +/- 0.011 (mean ± SD). Each run 

began and ended with a 18 second fixation (null) block. The end of the run contained 

an additional 19 seconds of gray screen (not modeled in the GLM) for a total duration 

of 268 volumes.”

We added the following information to the methods section for the main experiment: 
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“Each session contained 3 test runs and 10 training runs and lasted approximately 100 

minutes. Each run began with 4 seconds of fixation and ended with 13 seconds 

(testing runs) or 12.5 seconds (training runs) of fixation. The 0.5 second difference of 

the duration of the ending fixation period between the testing and training runs is due 

to their different number of trials (113 and 100) and the acquisition TR of 1.75 seconds 

not being an even factor the 4 second trial length. In total, testing and training runs 

consisted of 268 and 238 volumes, respectively.” 

We additionally added information to the total duration of the resting state runs: 

“6DOCDI <8:C MSIZ K8MP:DK8ION U<M< DINOMS:O<; OJ F<<K OC<DM <W<N :GJN<;Z OJ IJO OCDIF

?3 .>ID89>7 C@20950L /ED D? B2=.9> .G.;2M 4C< ;SM8PJI J= M<NPIB NO8O< MSIN DN lkl

volumes.”

(16) Page 29, Metadata, line 638: Do the five annotations refer to each stimulus or each rater (or 

something else)? 

The five annotations (metadata) refer to five different raters assigning labels for a stimulus. We 

agree the language we use is confusing. As described in response to your above “minor comment” 

R1.8, we make consistent our usage of the word “metadata” to increase clarity. The paragraph you 

note now reads: 

“Five object, scene, action, and text descriptions labels were collected for each stimulus to 

ensure comprehensive coverage and form a group consensus.” 

(17) Related to the previous point, on line 640, the authors write that the five annotations were 

collected to ensure comprehensive coverage, and to form a group consensus. I might have 

misunderstood, but this seems to be a bit in conflict with the statement on line 645f, which states 

that the authors did not enforce that all 5 object labels describe the same object. 

We assume there is only one primary interpretation of each BMD video. Thus, each scene label, 

action label, and text description will be describing the same concept. Taking an example of a video 

of someone skiing, among the five human crowd-source workers some may describe the scene as a 

“snowfield” while others may describe the scene as a “mountain”, but there is no ambiguity about 

the concept itself – no one will mistake it for a “ocean”. By collecting five scenes from five different 

human raters per video, we successfully capture a “comprehensive coverage” of different – but 

equally valid – labels. If a researcher wishes to assign simply one label per video, they have the 

option to use the five labels for an accurate “group consensus” – they may take the mode of the 

five labels, top 3 most similar, or some other means. 

In contrast to scene and action labels, a video often contains multiple distinct objects and we 

cannot assume each crowd-source human worker would choose to label the same object. To 

address this nuance for the object labels (new to this revision), each of the five crowd-source 

human workers labelled three visually distinct objects in the video. In this way we can better obtain 

both “comprehensive coverage” and a “group consensus”, depending on the researcher’s analysis. 
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We make this point clearer in the manuscript with the relevant text reproduced below. In the main 

text under section “Semantic and behavior metadata on visual events”, we write: 

Due to most videos clearly containing more than one object, the annotators in the object 

label experiment were instructed to label three different objects for a total of 15 object 

labels per video. 

In the methods section under “Metadata”, we add: 

“Five object, scene, action, and text description labels were collected for each stimulus to 

ensure comprehensive coverage (the five annotators’ labels reflect their unique 

interpretations) and form a group consensus (the five annotators’ labels can be used to 

converge on a single label). Labels for each metadata category were collected in different 

human crowd-sourced experiments. An annotator was allowed to label up to 20 different 

videos but no more than one label per video to encourage a diverse sampling of human 

annotators within videos and throughout the stimulus set. While crowd-source workers 

were not restricted from participating in multiple metadata experiments, this was unlikely 

due to the experiments being collected at different times and the large population pool 

from which the crowd-source workers were drawn.” 

(18) Page 29, Metadata, Action labels: Why did the authors select one action label that best 

described the video, but up to five different object labels (see comment above)? The authors argue 

that this is to reflect the participant’s limited ability to perceive every day action due to limited 

stimulus presentation time and their central fixation. Why would this apply to actions but not to 

objects? 

Thank you for the opportunity to clarify. We ask each of the five human crowd-source workers to 

select only one action label that best describes the video because we believe the three second 

video length is short enough to capture only one action in series. Thus, the vast majority of BMD 

videos can be described by one primary action. We concede, however, that a complex video may 

have multiple actions taking place in parallel. In this edge case, the five labels would likely capture 

the multiple different actions. The five labels can also be used to form a “group consensus” (e.g., 

mode, top 3 most similar vector embeddings, etc.) to identify the most salient action. 

Because most videos contain multiple, easily identifiable objects, we asked each of the five crowd-

source human workers to label 3 different objects. Using this experimental design to collect action 

labels would multiply costs for little benefit. 

We argue that limited presentation repetitions, short 3 second stimulus duration, and central 

fixation limits the identification multiple actions and not objects because actions must unfold over 

time while objects do not. Actions are a more abstract composition of movement, while objects are 

visually distinct parts of a video with easily identifiable boundaries.  



24

In summary, we are confident that asking each of the five crowd-source workers to label each video 

with one action label and 3 distinct objects was a cost-effective and accurate method to collect this 

metadata. 

We clarify this point in the text, reproduced below in the methods section under “Action labels”: 

“The 5 action labels were selected by workers on the crowd-sourcing platform Prolific. We 

restricted the possible action labels to be from one of 292 possible action labels that 

broadly encompass meaningful human actions (Monfort et al., 2022). The participant 

viewed these 292 possible action labels, watched the video, and selected one action label 

that best described the video. Each of the 5 action labels per video were produced by 

different participants. Given that an action, by definition, unfolds across time and the 

BMD stimuli have a short 3 second duration, the majority of the videos contain one 

primary action. Additionally, the limited number of stimulus repetitions and the central 

fixation further limits the fMRI scanner participant’s ability to perceive a video’s small, 

inconsequential actions if they are present. In the edge case that a complex video 

captures multiple salient actions, the five annotations can capture these multiple actions. 

Note that annotators labeled up to 3 objects in a video (described above) because objects, 

unlike actions, have clear visual boundaries, often occur in multiple instances in a video, 

and have no temporal dimension. Two authors manually reviewed the labels to ensure 

the labels assigned to the video were sensical (i.e., participants were not choosing labels 

at random).” 

(19) Page 30, line 686f, Memorability score and decay rate: how is the memorability decay rate 

defined? 

(Newman et al., 2020) used a crowd-sourced human behavioral experiment where the participant 

viewed videos in a continuous stream and were asked if they had seen this image before. Under this 

paradigm, the memorability score is “the fraction of times that [a] repeated video was correctly 

detected” after controlling for the lag in videos (i.e., the number of videos in between consecutive 

viewings of the same video). A memorability decay rate describes how a video’s memorability score 

changes over time (i.e., lags). Detailed in the same report, the decay rate is an output from an 

Inflated 3D (I3D) Convolutional Neural Network, called SemanticMemNet. The network is trained to 

predict a video’s memorability score and text caption from the video frames and optical flow. The 

model then regresses a memorability decay rate. 

We point readers to (Newman et al., 2020) for detailed descriptions of the memorability decay 

rate’s derivation, and we add text to the methods section to describe the relationship between 

memorability score and memorability decay rate in more detail: 

“The participant’s responses were then used to calculate a video’s memorability score 

from 0 (no recall) to 1 (perfect recall) and memorability decay rate from 0 (no decay) to -

inf (instantaneous decay). Specifically, a video’s memorability score is the fraction of 

correct identifications in the memory game normalized to a lag of 80 videos in between 

consecutive presentations. A video’s memorability decay rate describes how a video’s 
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memorability score changes over different lags. The memorability decay rate was 

regressed from the output of SemanticMemNet (Newman et al., 2020), an Inflated 3D 

(I3D) Convolutional Neural Network trained to predict a video’s memorability score and 

text caption from the video frames and optical flow. A video’s memorability score (m) and 

120.I B.D2 RKS 0.> /2 EC21 D? @B2190D 9DC =2=?B./9<9DI .D .>I D9=2 <.7 D RD82 >E=/2B ?3

videos in between the first and second presentation) according to the following equation 

(Newman et al., 2020): 

%& = %$ ( '*# ) ")

where T is a set lag of 80. The memorability scores given in the stimuli annotations were 

computed at a lag of t=80.” 

(20) Page 32, line 730f: What makes this template asymmetrical? 

The asymmetry in the template is the result of the natural left-right hemisphere asymmetry in the 

template of the human brain used. The 2009c ICBM MNI152 templates are released in both a 

symmetric and asymmetric version. Both templates are essentially averages over 152 subjects, but 

the asymmetric version preserves the left-right hemisphere anatomical asymmetry naturally seen in 

the human brain. The symmetric version undergoes additional processing steps in order to achieve 

left-right hemisphere anatomical symmetry. The asymmetric version is the default template in 

many fMRI analysis pipelines, including fMRIPrep used here. See (Fonov et al., 2009) for more 

details on the construction of these templates. 

We add in the methods under the section “Preprocessing”: 

“All data from all sessions was then preprocessed using the standardized fMRIPrep 

preprocessing pipeline. For all results unless stated otherwise, we use the standard 

MNI152NLin2009cAsym volumetric space for its frequent use in other work and 

KM<N<MT8PJI J= I8OSM8G G<AcMDBCO 8NWHH<OMD<N DI OC< 9M8DI. As recommended by fMRIPrep 

to increase transparency and reproducibility in MRI preprocessing, we copy their 

B<I<M8O<; KM<KMJ:<NNDIB O<VO DI DON <IPM<OW 9<GJU\a

(21) Page 32, line 735f: The authors state that the fieldmap was estimated on the basis of a phase-

difference map using a dual-echo GRE sequence, but I could not find such a sequence among the 

sequences that were listed in the section ‘fMRI data acquisition’ on page 31. 

Thank you for pointing out this oversight. We added the following sentence to the “fMRI data 

acquisition’ section describing the fieldmap sequence: 

“Dual echo fieldmaps (TR = 636 ms, TE1 = 5.72 ms, TE2 = 8.18 ms, flip angle = 60°, FOV 

read = 190 mm, FOV phase = 100%, bandwidth = 260 Hz/Px, resolution = 2.5 × 2.5 × 2.5 

mm, slice gap = 10%, slices = 54, ascending interleaved acquisition) were acquired at the 

beginning of every session to post-hoc correct for spatial distortion of functional scans 

induced by magnetic field inhomogeneities.”

(22) Related to the previous point, the authors state that the fieldmap was co-registered to the 

target EPI reference run. Which run did they use as the target? 
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The target EPI reference volume was not calculated from a specific run, but was calculated using 

fMRIPrep’s custom methodology, explained in detail here 

(https://fmriprep.org/en/stable/workflows.html#bold-ref). The relevant text in this documentation 

states, “This workflow estimates a reference image for a BOLD series. If a single-band reference 

(“sbref”) image associated with the BOLD series is available, then it is used directly. If not, a 

reference image is estimated from the BOLD series as follows: When T1-saturation effects (“dummy 

scans” or non-steady state volumes) are detected, they are averaged and used as reference due to 

their superior tissue contrast. Otherwise, a median of motion corrected subset of volumes is used.” 

In our case, the latter methodology applies - the reference image was estimated from the BOLD 

series using averaged T1-saturation effects. This reference EPI is the one mentioned in the fMRIPrep 

boilerplate text that you cite, reproduced here, “The fieldmap was then co-registered to the target 

EPI (echo-planar imaging) reference run and converted to a displacements field map (amenable to 

registration tools such as ANTs) with FSL’s fugue and other SDCflows tools.”  

(23) Page 33, line 759: Please define DVARS. 

In DVARS, the “D” refers to the temporal derivative of timecourses, and “VARS” refers to the root 

mean square variance over voxels. You can see the code implementation and helper comments 

here: 

https://github.com/nipy/nipype/blob/b066807402ee07d908ce4f1b24ca69fef6b91809/nipype/al

gorithms/confounds.py#L1009C16-L1009C16

FMRIPrep asks its users to faithfully copy their automatically generated boilerplate text in their 

manuscript so the preprocessing details can be completely transparent and reproducible. Hence, 

we hesitate to edit the section of fMRIPrep’s boilerplate text that you are referencing here, but we 

believe the boilerplate text (reproduced below) does a sufficient job of pointing readers to the 

appropriate reference for more information. 

“FD and DVARS are calculated for each functional run, both using their implementations 

in Nipype (following the definitions by Power et al., 2014).” 

(24) Page 33, line 765f: How was the set of physiological regressors extracted? 

Physiological regressors were extracted by masking the timeseries in the cerebrospinal fluid (CF) 

and white matter (WM) ROIs. The theory behind the CompCor component-based noise correction 

used in fMRIPrep is that signals in the CF and WM are non-neuronal and dominated by physiological 

noise, such as cardiac or respiratory rhythms (Behzadi et al., 2007). Identifying similarities between 

the gray matter signal (which contains neuronal signal of interest plus physiological noise) with the 

CF and WM signal will then characterize physiological signals in the gray matter.  

Similar to the above comment, we hesitate to edit the section of fMRIPrep’s boilerplate text that 

this comment is referencing. We believe the boilerplate text (reproduced below) sufficiently points 

readers to the relevant Behzadi and colleagues (2007) publication for more information. 
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“The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for 

component-based noise correction (CompCor, Behzadi et al., 2007).” 

(25) Page 34, line 813f: The authors may want to state more explicitly what were their regressors of 

interest. 

Thank you for the comment, the regressors of interest are important to make explicit. The 

relevant methods text for the Functional Localizer GLM now reads: 

“To model the hemodynamic response to the localizer videos, the preprocessed fMRI 

data, video, and fixation baseline onsets and durations were included in a general 

linear model (GLM). The fixation and five category (faces, objects, scenes, bodies, and 

scrambled objects) blocks were included as regressors of interest. Motion and run 

regressors were included as regressors of no interest. All regressors were convolved 

with a hemodynamic response function (canonical HRF) to calculate beta estimates.” 

The relevant methods text for the Main Experimental GLM now reads: 

“We modeled the BOLD response with respect to each video onset from 1 to 9 

seconds in 1 second steps (corresponding to the resolution of the resampled time 

series). The stimulus presentation trials, but not the null response trials, were 

included as regressors of interest. Within this time interval the voxel-wise time course 

of activation was high-pass filtered (removing signal with f<1/128 Hz) and serial 

correlations due to aliased biorhythms or unmodelled neuronal activity were 

accounted for using an autoregressive AR(1) model.” 

(26) Page 37, line 884f: The reader might be curious to be provided with a few more details 

regarding how the authors used the Glasser atlas, given that there exist a number of different ways 

in which one can extract them. 

The Glasser atlas registered to a template MNI volume was downloaded and then resampled to the 

BMD functional voxel resolution with nearest neighbor interpolation using SPM 12’s reslice 

function. The resampled Glasser atlas was then used to index the voxels in the BMD data belonging 

to the corresponding ROI. We update the manuscript to read: 

“Atlas versions registered in MNI volume space were downloaded and resampled to 

BMD’s functional voxel resolution with nearest neighbor interpolation using SPM 12’s 

“reslice” function. The resampled atlases were then used to index ROIs in the BMD 

volume data.”

(27) Page 37, line 909f: the raw beta values of what? 

We mean to say that we use the FIR beta estimates to the stimulus presentations before any 

additional processing, such as z-scoring or averaging. We clarify the manuscript to read: 
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“For each subject separately, the raw FIR beta <NPH8O<N OJ OC< TD;<J NPHSGD at each 

TJV<G U<M< XcN:JM<; 8:MJNN NPHSGDZ 8T<M8B<; 8:MJNN 42N ocsZ 8I; 8T<M8B<; 8:MJNN

NPHSGD M<K<PPJIN OJ M<NSGO DI 8 eIdNPHSGD V kf T<:OJM J= 9<O8 T8GS<N]a

(28) Page 38, line 918f: Since not all readers might be familiar with voxel-wise upper and lower 

noise ceilings, could the authors provide a reference? 

We agree that the upper and lower noise ceiling procedure would benefit from references. The first 

sentence in the methos section under “Univariate split-half reliability analysis” now reads: 

`4J N<G<:O TJV<GN UDOC CDBC NDBI8GcOJcIJDN< M8PJZ U< ;<?I<; 8 N<G<:PJI :MDO<MD8 98N<;

on split-half trial reliability (Lage-Castellanos et al., 2019; Schrimpf, Kubilius, Hong, et 

al., 2020).”

When introducing the upper and lower noise ceiling estimates in the methods section under 

“Multivariate searchlight-based reliability analysis”, we add the sentence: 

`4C< SKK<M 8I; GJU<M IJDN< :<DGDIBN J= OC< HSGPT8MD8O< N<8M:CGDBCO M<NSGON U<M<

computed (Carlin & Kriegeskorte, 2017; Nili et al., 2014).”

(29) Page 38, line 933f: what is LSEP loss? 

LSEP loss stands for log-sum-exp pairwise loss. It is proposed in (Li et al., 2017) and modified in 

(Monfort et al., 2022) as an appropriate loss function to train on multi-label and class imbalanced 

datasets, such as actions. 

We add the following text to the methods section “Action recognition TSM ResNet50 model 

training”: 

“We trained our model on the M4 (Multi-Moments minus Memento) training dataset for 

120 epochs by using LSEP (log-sum-exp pairwise) loss (Monfort et al., 2022). LSEP loss was 

first proposed in (Li et al., 2017) and modified in (Monfort et al., 2022) as an appropriate 

loss function to train on multi-label and class imbalanced datasets, such as actions.”

(30) Page 38, line 937f: How were some of the details of the analysis determined (e.g. the split of 

the input video into 8 segments, sampling 1 frame from each segment; initialization of the learning 

rate and the weight decay with values of 0.02 and 0.0001, respectively)? 

The hyperparameters for the TSM ResNet50 training, including but not limited to the sampling of 

the input video, learning rate, and weight decay, were chosen to closely follow the original TSM 

paper (Section 5.1 in (Lin et al., 2019) https://arxiv.org/pdf/1811.08383.pdf). We scale up the 

learning rate to 0.02 (0.01 in the TSM paper) because our batch size is 128, which is 2x of the batch 

size 64 in TSM paper. These hyperparameters are well within established practices for DNN training. 

We made the following addition to the manuscript methods section, “Action recognition TSM 

ResNet50 model training”: 
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“We chose the model hyperparameters to closely follow those used in Lin and colleagues 

(2019). Specifically, during the training phase, our model split the input video into 8 

segments and sampled 1 frame from each segment. We used SGD optimizer to optimize 

our model. The learning rate followed the cosine learning rate schedule and was 

initialized as 0.02. The weight decay was set to be 0.0001 and the batch size 128.” 

(31) Page 39, line 951: Please provide a reference for the encoding model procedure. 

We add references for the encoding model procedure in the first sentence of the methods 

section, “DNN block to cortex correspondence procedure.” The sentence now reads: 

“6< SN<; 8I <I:J;DIB HJ;<G KMJ:<;SM< OJ LS8IP=W OC< :JMM<NKJI;<I:< 9<OU<<I %..

Blocks and regions of cortex (Kriegeskorte & Douglas, 2019; Naselaris et al., 2011; 

Schrimpf, Kubilius, Hong, et al., 2020).”

(32) Page 39, line 956: The statement regarding PCA on the DNN activations would profit from a few 

more details. As an example, what does the N refer to – number of components? 

We added more details to the PCA procedure and rearranged text in the paragraph for clarity. The 

paragraph now reads: 

“We ran inference on the TSM ResNet50 model using the 1,102 videos used in the fMRI 

experiment and extracted the activations for each video. The activations for a given block 

were extracted after the nonlinearity. We then used an encoding model procedure. In 

detail, we standardized the DNN activations (using the mean and standard deviation of 

the training videos) and performed principal component analysis (PCA) using the top 100 

components of the DNN activations to ensure fair comparison of activations of different 

embedding sizes. The PCA procedure was fit on the 1,000 training set video activations 

and applied to the 102 testing set video activations. For each voxel v, we fit a linear model 

from the training set DNN activations (size (n_training_videos x n_PCA_components)) to 

the training set fMRI responses (beta values z-scored across stimuli and averaged over TRs 

5-9) averaged over the 3 trial repetitions (size (n_training_videos x n_voxels)). We then 

predicted testing set voxel responses (size (n_testing_videos x n_voxels)) by applying the 

linear fit on the testing set DNN activations (size (n_testing_videos x 

n_PCA_components)). We evaluated the performance of the prediction by correlating 

(Pearson) the predicted testing set voxel responses with the true testing set fMRI 

responses of each of the 10 testing set repetitions (size (n_testing x n_voxels)). The final 

performance of the prediction is the average correlation of the 10 repetitions. The noise-

normalized correlation is this 10-repetition average Pearson correlation divided by the 

voxel’s split-half correlation value (the pearson correlation value before Spearman-

Brown). We only predicted the values of the voxels that met the split-half reliability 

criteria, as described in the “Univariate Split-Half Reliability Analysis” methods section 

above, in order to model meaningful signal.” 
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We additionally realized that this encoding procedure originally used 500 PCA components as 

opposed to 100 components used for analyses presented in Figure 5 and Figure 6. We fixed this 

miscommunication by re-running the same analysis in Figure 4 with 100 PCA components. The 

number of components generally do not affect the trend of the results, but it can affect magnitude. 

Hence, we see in Figure 4C that V1v was no longer statistically significant, and hV4 and V3ab are 

now significant, but the hierarchical results remain. We reproduce Figure 4 and Supplementary 

Figure S7 (see panel A for the TSM ResNet50 model, the other models in panel B and C were added 

in response to a comment from Reviewer 2 comment #2) with captions below for convenience: 

Figure 4: Evaluation of biologically-similar video-based encoding model  

(A) Voxelwise encoding model procedure: All videos are shown to both a TSM ResNet50 DNN and a 

human. Training set video embeddings are extracted from a block b of the DNN and used to learn a 

voxelwise mapping function to the human responses. This mapping is then applied to the testing set 

video embeddings to predict the brain response at each voxel. (B) Whole-brain encoding accuracy 

across blocks: We use the encoding model procedure with each of the four blocks of a TSM ResNet50 

model trained to recognize actions in videos to predict the neural response at each voxel in the whole 

brain. The brain figures show the subject-average noise-normalized predictive correlation (divided by 

the voxel’s upper noise ceiling) at each voxel. (C) ROI-based encoding accuracy difference: Difference in 

predictive performance between block 1 and block 4 at each of the 22 ROIs. Predictive performance at 
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each voxel is measured as the noise-normalized correlation between the brain responses and the 

predicted responses, averaged over all reliable voxels in each ROI. Significant ROIs are denoted with an 

asterisk and a color (blue for Block 1, red for Block 4, gray is not significant) corresponding to the 

significant layer (one sample two-sided t-test against a population mean of 0, Bonferroni corrected 

across 22 ROIs, p < 0.05). The box plot encompasses the first and third data quartiles and the median 

(horizontal line). The whiskers extend to the minimum and maximum values within 1.5 times the 

interquartile range, and values falling outside that range are considered outliers (denoted by a 

diamond). The overlaid points show the value at each observation (n=10 for all ROIs except TOS (n=8) 

RSC (n=9)). 

Figure S7: Encoding model performance on BMD 

A) TSM ResNet50 trained on M4: Features were extracted after block’s 1 (blue), 2 

(orange), 3 (green), and 4 (red) in the ResNet 50 architecture. B) TSM MobileNetV2 

trained on Kinetics-400: Features were extracted after the first bottleneck layer (blue), 
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third bottleneck layer (orange), sixth bottleneck layer (green), and last 2D convolutional 

layer before the average pool (red) in the MobileNetV2 architecture. C) TimeSformer S+T 

trained on HowTo100M: Of the model’s twelve layers, features were extracted after the 

first (blue), fourth (orange), eighth (green), and twelfth (red) layers. The box plot on the 

left side in each panel shows the noise-normalized predictivity of four of each

architecture’s features at each of the 22 ROIs. The features were extracted at early (blue), 

intermediate (orange and green), and late (red) processing stages in each architecture to 

capture increasingly high-level degrees of transformations. The box plot on the right side 

in each panel shows the brain prediction difference between each architecture’s latest 

and earliest layers for each subject and ROI. For the box plots on the right, a blue or red 

colored box plot denotes a significant difference in correlations from 0 (p<0.05, two-sided 

one-sample t-test, Bonferroni corrected for n=22 comparisons), and gray denotes no 

significance. The box plots encompass the first and third data quartiles and the median 

(horizontal line). The whiskers extend to the minimum and maximum values within 1.5 

times the interquartile range, and values falling outside that range are considered outliers 

(denoted by a diamond). The overlaid points show the value at each observation (n=10 for 

all ROIs except TOS (n=8) RSC (n=9)).

(33) Page 40, line 993f: What is the justification to extract the top 100 components for each block? 

The top 100 components were extracted from each block’s activations to reduce the number of 

features, make all blocks have the same number of features, and capture a sufficient amount of 

variance. We make the following edits to the manuscript: 

“Then we performed PCA to extract the top 100 components of each block’s 

8:PT8PJIN OJ M<;S:< OC< ISH9<M J= =<8OSM<N 8I; <LS8O< OC<DM ;DH<INDJI8GDOW UCDG<

KM<N<MTDIB OC< T8MD8I:< DI OC< 8:PT8PJIN.”

(34) Page 40, line 997f: What was the reasoning behind averaging beta values across TRs 5-9 (i.e., 

why these specific TRs)? 

TRs 5-9 (representing seconds 5-9 after stimulus onset) reflect the peak of a typical BOLD response. 

During FIR modeling, modeling TRs 5-9 together empirically gave reasonable estimates. 

We add the following text to section you mention: 

`"N 9M8DI M<NKJIN<NZ U< SN<; 9<O8 T8GS<N XcN:JM<; 8:MJNN NPHSGD 8I; 8T<M8B<; JT<M 42N oc

9 R,+C WQX B2620D D82 @2.; ?3 . DI@90.< #)'$ B2C@?>C2SMP

(35) Page 41, Encoding and variance partitioning analysis procedure: I found the entire first 

paragraph of this section hard to understand. It might be easier to follow if the authors provided 

the reader with a brief statement upfront regarding the purpose of this analysis. The authors also 

may want to double-check the readability of this paragraph (as an example, what exactly do the 

authors mean by ‘feature maps of shape’ (line 1019f?)? 
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We edited this section to make it more readable and used terminology consistent with previous 

sections. The phrase “feature maps of shape” that you point out is intended to be read together 

with its following parenthetical “(1000 training videos × 100 features × 2 video seconds).” We edit 

the text to avoid this confusing use of parentheses. The section now reads: 

“We use an encoding model and variance partitioning analysis to identify any unique 

variance explained by the first and third video seconds in the brain activity. In this way, 

we measure if the brain activity captures temporal content. The encoding algorithm 

involved two steps. In the first step, we fed the first and third video second frames of the 

1000 training and 102 testing videos to an AlexNet architecture (Krizhevsky et al., 2017) 

pre-trained on the ILSVRC-2012 image classification challenge (Russakovsky et al., 2015), 

and we extracted the corresponding activations at each layer. We then applied the 

following operations to the activations of both video seconds (first and third), 

independently: we appended the feature maps of all layers, averaged them across frames, 

standardized them (using the mean and standard deviation of the training videos feature 

maps) and downsampled them to 100 components through principal components analysis 

(PCA) (computed on the training videos feature maps). This resulted in the training 

activations of size 1000 x 100 x 2 and testing activations of size 102 x 100 x 2 (number of 

videos x features x video seconds). In the second step, we linearly mapped the stimuli 

videos feature space onto voxel space, thus predicting the fMRI responses to videos. For 

each combination of subjects (10), fMRI voxels (N), and fMRI TRs (9), we trained the 

weights of a linear regression model to predict the fMRI training data (averaged over the 

three repetitions) using the training activations of both video seconds independently as 

predictors, and then multiplied the learned weights with the test activations. This resulted 

in two synthetic fMRI test data instances (size 10 subjects × 102 test videos × 9 fMRI TRs × 

N fMRI voxels), one for each video second. 

To test our hypothesis that the brain activity captures information unique to the first and 

third video seconds, we ran a variance partitioning analysis between the biological fMRI 

test data and the two instances of synthetic fMRI test data. At each subject, TR, and voxel 

we ran a searchlight (Kriegeskorte et al., 2006) to calculate the portion of the biological 

fMRI test data (averaged over the ten repeats) uniquely explained by, respectively, the 

synthetic fMRI test data of the first or third video seconds. The unique biological fMRI 

variance explained by the first/third video second fMRI synthetic data consisted in the 

adjusted R2 score of a linear regression trained to predict the biological fMRI data using 

both synthetic fMRI data instances as predictors, minus the adjusted R2 score of a linear 

regression trained to predict the biological fMRI data using only the third/first synthetic 

fMRI data instance as predictor.  We then observed at which TRs the unique variance 

explained by the two versions of synthetic test data peaked, and subtracted the peak TR 

of the first video second synthetic data from the peak TR of the third video second 

synthetic data. Next, we created subject wise binary whole brain masks with ones in 

voxels that show TR peak differences in the range 1 to 3 and zeros elsewhere, summed 

the binary masks across subjects, and performed a binomial test with FDR correction to 

remove the non-significant voxels.  
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The variance partitioning analysis for the ROIs was similar but performed on the reliable 

(split-half reliability p<0.05) voxels within each ROI. Again, this results in time courses that 

reveal how well the synthetic fMRI test data from either the first or third video second 

explains the real fMRI data at each of the nine TRs. To quantify this difference, we again 

subtracted the peak TRs of the first and third video second synthetic data.” 

(36) Related to the previous point, on page 41, line 1029, the authors write ‘To test our hypothesis’, 

but at this point I really was not clear about what that might be. 

We edited the section to be clearer about the purpose of the analysis and the hypothesis. We begin 

the section by introducing the purpose: 

“We use an encoding model and variance partitioning analysis to identify any unique 

variance explained by the first and third video seconds in the brain activity. In this way, 

we measure if the brain activity captures temporal content.” 

We also edit the first sentence of the paragraph you cite here to be more explicit in the hypothesis. 

It now reads: 

“To test our hypothesis OC8O OC< 9M8DI 8:PTDOW :8KOSM<N DI=JMH8PJI SIDLS< OJ OC< ?MNO

and third video secondsZ U< M8I 8 T8MD8I:< K8MPPJIDIB 8I8GWNDN 9<OU<<I OC< 9DJGJBD:8G

=-2* O<NO ;8O8 8I; OC< OUJ DINO8I:<N J= NWIOC<P: =-2* O<NO ;8O8]a

(37) Page 42, RSA-based decoding analysis procedure: Also here, a brief statement regarding the 

purpose of the analysis would be helpful. I also didn’t fully follow the reasoning by the statement 

made in the last two sentences of the first paragraph (lines 1060-1663). 

Thank you for the opportunity to clarify and improve the RSA metadata methods. We now 

introduce this section with more motivation: 

“We performed Representational Similarity Analysis (RSA) (Kriegeskorte, 2008) between 

metadata RDMs and neural RDMs to examine the extent that representations defined by 

the semantic metadata of varying information content are reflected in neural activity. The 

analysis broadly consisted of correlating a Representational Dissimilarity Matrix (RDM) 

defined by the metadata (Figure 7B) with a RDM at each voxel in the brain defined by the 

brain responses (Figure 7A).” 

Note that this section underwent large changes to include the new Object label metadata and 

perform an analysis that better targets the conclusions we were previously making. Since we 

included the Object label metadata, the last two sentences of the first paragraph you refer to have 

been deleted. We reproduce the entirety of the “Metadata RSA Analysis Procedure” below: 

“We performed Representational Similarity Analysis (RSA) (Kriegeskorte, 2008) between 

metadata RDMs and neural RDMs to examine the extent that representations defined by 

the semantic metadata of varying information content are reflected in neural activity. The 
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analysis broadly consisted of correlating a Representational Dissimilarity Matrix (RDM) 

defined by the metadata (Figure 7B) with a RDM at each voxel in the brain defined by the 

brain responses (Figure 7A). 

We defined five metadata RDMs – object, scene, action, object+scene+action, and text 

description RDMs - from each of the 102 testing set videos. The object, scene, action, and 

text description RDM was defined by first indexing the annotations from the first five 

annotators (if the video contained annotations from more than five annotators). We then 

feed the 5 object, 5 scene, 5 action, and 5 text caption metadata from each of the 102 

testing set videos into a language model to generate vector embeddings for each label. In 

the case of the object labels, since each annotator labeled up to three different objects, 

we computed the word embedding of each object label individually then averaged them 

(object labels corresponding to “no more objects in video” were skipped) to obtain one 

object embedding per annotator. The object, scene, and action labels were fed into the 

FastText model (Bojanowski et al., 2017) to compute single-word embeddings (length 300) 

and the text descriptions were fed into the Sentence-BERT (Reimers & Gurevych, 2019) 

model to compute sentence-level embeddings (length 512). To minimize the effect of 

noise in the metadata labels, we averaged the 3 most similar vector embeddings together 

to result in a single vector embedding that represents the object, scene, action, or text 

caption for that video. At this step, the object+scene+action embedding was created by 

concatenating the individual object, scene, and action vector embeddings (length 900).

We then computed the pairwise cosine distance between each video’s vector embedding 

to produce a single 102 x 102 Representational Dissimilarity Matrix (RDM) for the object, 

scene, action, object+scene+action, and text caption metadata. Figure 7B shows the rank-

normalized (rank each distance value and divide by the maximum rank) RDM for the 

object, scene, action, object+scene+action, and text description RDMs.  

We compute the correlations (Spearman) between the metadata RDMs to measure the 

similarity of their information content. As expected, the correlations between the 

individual single-word object, scene, and action labels were generally lowest, since these 

labels highlight explicitly different components of the video. The correlations between the 

individual single-word object, scene, and action labels with the text descriptions were 

generally next highest, also expected because the text description likely contains 

information about each of the single-word labels plus extra information. The combined 

object+scene+action RDM with the text description RDM was higher still given even more 

overlapping information. The highest similarities were between the single-word object, 

scene, and action RDMs and the combined object+scene+action RDM because of explicitly 

overlapping information content (computed using the same embedding) but less extra 

information than the text description. 

[scene, object]: 0.1808 

[scene, action] 0.1133 

[scene, scene+object+action]: 0.6641 

[scene, text description]: 0.1969 

[object, action]: 0.0884 

[object, scene+object+action]: 0.6137 
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[object, text description]: 0.2618 

[action, scene+object+action]: 0.5238 

[action, text description]: 0.1560 

[scene+object+action, text description]: 0.3145 

To define the RDMs at each voxel in the brain for each subject, we perform a searchlight 

analysis in the way described in the “multivariate searchlight-based reliability analysis” 

methods section. To summarize, we center a sphere (radius of 4 voxels) around voxel v

and extract the beta values (TRs 5-9 averaged over repetitions and z-scored across 

conditions) for all testing set conditions at all voxels encompassed in the sphere. Each 

stimulus thus has a corresponding vector of beta values, one from each voxel within the 

searchlight sphere. We compute the 1 - Pearson R correlation between all pairs of 

stimulus vectors to obtain an RDM at the centered voxel v. We repeat this process for all 

voxels in the whole brain for each subject (Figure 7A).

We then correlate (Spearman’s R) the metadata RDM (cosine-distance, not rank-

normalized) with the searchlight-based RDMs at each voxel for each of the 10 subjects 

separately. For the whole-brain analysis (Figure 7C), we compute a t-test (1-sample, 2-

sided) against a null hypothesis of a correlation of 0 at each voxel then perform FDR 

correction (q=0.05, assuming positive correlation) on all p-values in the whole brain to 

obtain a set of significant voxels. We compute the noise-normalized correlation by 

dividing the correlation with the voxel’s upper noise ceiling and plot the 10-subject 

average noise-normalized correlation at each significant voxel (Figure 7C). For the ROI-

based analysis (Figure 7D), after we correlate (Spearman’s R) the metadata RDM with the 

searchlight-based RDM at each voxel, we compute the average noise-normalized 

correlation within each ROI. For each ROI, we compute a one-way ANOVA test between 

the average noise-normalized correlations corresponding to the five semantic metadata 

models. If the p-value of the ANOVA test is significant (p<0.05, Bonferroni corrected with 

n=22 ROIs), we perform a pairwise Tukeys Honestly Significant Difference test 

(alpha=0.05). Significant differences between a pair of metadata models are reported with 

the dual-colored bars under the ROI name in Figure 7D.”

(38) Page 43, line 1096: What is the reason to use one-sided t-tests for the Memorability analysis 

procedure, and two-sided t-tests for the RSA-based decoding procedure? 

In the memorability literature, there are clear a-priori hypotheses that relate memorability effects 

to stronger (not weaker) correlations (Bainbridge et al., 2017; Bainbridge & Rissman, 2018; Bylinskii 

et al., 2022; Jaegle et al., 2019). Thus, we perform one sided tests for correlations greater than 0. 

We add the following text in the methods section “Memorability analysis procedure”: 

“A one-sided, as opposed to two-sided, test against a correlation of 0 was computed 

because there exists clear a-priori hypotheses that relate memorability effects to 
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larger (not smaller) magnitudes of response (Bainbridge et al., 2017; Bainbridge & 

Rissman, 2018; Bylinskii et al., 2022; Jaegle et al., 2019).” 
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Reviewer #2 (Remarks to the Author):

In this paper, the authors introduce a new repository of data collecting whole-brain fMRI responses 

from 10 subjects to over 1000 short (3s) naturalistic video clips of visual events. They assessed the 

quality of preprocessing and showcased some exploratory results to highlight the potential of BMD 

in addressing temporal events, high-level concepts, and memorability topics using BOLD signals. 

Overall, this dataset is timely for fMRI-based neural encoding research. My comments are as 

follows: 

Thank you for reviewing our manuscript and for acknowledging its relevance to encoding 

research. However, we respectfully disagree with the comment that we showcase “exploratory 

results” and take the comment as an opportunity to clarify the added value of our work. We 

contend that all our results extend multiple lines of computational neuroscience work into the 

video domain while grounding themselves in past literature. This solid grounding is necessary 

for careful and principled advancement of visual neuroscience, out of which exciting 

methodological and computational advancements can likely be made - we detail some of these 

opportunities in the revised manuscript’s introduction:  

`4CDN ;8O8N<O DN U<GGcNSDO<; OJ 8;;M<NN JK<I LS<NPJIN 8N ;DT<MN< 8N ;<T<GJKDIB

methodologies to model rapid event BOLD signals (Misaki et al., 2013; Prince et 

8G]Z ljll[ 6DRFSCI g 3:CS:FZ ljlkfZ :C8M8:O<MDXDIB DIO<M8:PJIN 9<OU<<I TDNS8G

processing pathways (Lingnau & Downing, 2015; Mineault et al., 2021; Pitcher 

& Ungerleider, 2021; Wurm & Caramazza, 2022), and bridging the gap between 

NPGG DH8B< 8I; GJIB=JMH HJTD< K<M:<KPJI e"GDFJ <O 8G]Z ljlj[ "GG<I <O 8G]Z ljll[

Hanke et al., 2016; Hebart et al., 2019). 

Perception of videos does not evoke the same extent (Bartels & Zeki, 2004; Konen & Kastner, 

2008; Press et al., 2001; Schultz & Pilz, 2009; Yildirim et al., 2019) or pattern (Buccino et al., 

2004; Kret et al., 2011; Lingnau & Downing, 2015; Wurm & Caramazza, 2022) of brain responses 

as images throughout the ventral visual, dorsal visual, and parietal cortices, and this manuscript 

lays the crucial groundwork to further understand these differences.  
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8A WLQ>AVAOd XK<QN dR_ CRV dR_V C_VXKAV >VLZ><O dAX >RQWXV_>ZaA >RPPAQXW <W XKAd K<aA T_WKA@

_W <Q@ ILaAQ _W XKA RTTRVX_QLXd XR >O<VLCd XKA QRaAO TRXAQZ<O RC R_V @<X<WAX <Q@ <@@ LQWLIKY_O

analyses.

1. In Figure 1c, the differences between various blocks appear relatively small. How do the authors 

address the influence of previous stimulus blocks, especially considering hemodynamics and 

memory effects? There needs to be a justification for using the canonical HRF approaches to 

mitigate memory impacts. 

5K<QN dR_ CRV XKLW >RPPAQXm :R_ >RVVA>XOd QRZ>A R_V LQXAVXVL<O LQXAVa<O LW WP<OO v| WA>RQ@w

=AXbAAQ aL@ARWm 5KLW WP<OO LQXAVXVL<O LQXAVa<O b<W >KRWAQ XR <>KLAaA < O<VIA Q_P=AV RC WZP_OL

TVAWAQX<ZRQW <>VRWW XAQ W_=MA>XW bKLOA =<O<Q>LQI TV<>Z><O OLPLX<ZRQW RC =_@IAX <Q@ T<VZ>LT<QX

W><QQLQI ZPAm

7< @MNO :H8ME>T OD8O R< ;E; JKO PN< 8 :8JKJE:8H )2' OK IK;<H OD< #0-% M<NLKJN<W 9PO 8 '*2

C_Q>ZRQ XK<X GAcL=Od EXW <>VRWW ZPATRLQXWm 5KLW GAcL=LOLXd AQW_VAW < PRVA <>>_V<XA AWZP<ZRQ

of the hemodynamics in a rapid event related experimental design like BMD and in voxels both 

inside and outside visual cortex where the canonical HRF may be less appropriate.

'_VXKAVPRVA LQ XKLW aAVWLRQ RC XKA P<Q_W>VLTXk bA <@@LZRQ<OOd VAOA<WA < TVATVR>AWWA@ aAVWLRQ

(new to this revision, see Supplementary 2 Figure 1 below and the text in Supplementary 2 for 

TVATVR>AWWLQI @AX<LOWw RC XKA @<X< _WLQI (-.WLQIOA v1VLQ>A AX <Omk }{}}wk < XRRO=Rc XR AWZP<XA

NEJCH< OME8H 9<O8 Q8HP<N NL<:E@:8HHT EJ M8LE; <Q<JOZM<H8O<; ;<NECJNY (-.NEJCH< R8N ;<Q<HKL<; OK

<>>_V<XAOd PR@AO V<TL@ AaAQXsVAO<XA@ @AWLIQWm (-.WLQIOAoW v|w WAOA>ZRQ RC <Q RTZP<O )3' CRV

A<>K aRcAOk <W dR_ W_IIAWX LQ dR_V >RPPAQXk <Q@ v}w CV<>ZRQ<O VL@IA VAIVAWWLRQ CRV >_WXRP

VAI_O<VLe<ZRQ <X A<>K aRcAO PRWX @LVA>XOd TAVX<LQ XR <>>_V<XA =AX< AWZP<XAW RC < V<TL@ AaAQXs

related design like BMD.

'DBSM< k\ /T<MTD<U J= KM<KMJ:<NNDIB KDK<GDI<N] 5<MNDJI " eG<Af J= #-% U8N KM<KMJ:<NN<; UDOC =-2*0M<K

DIOJ 8 NO8I;8M; TJGSH<OMD: JSOKSO NK8:<Z HJ;<G<; UDOC '*2 =SI:PJINZ 8I; NSKKG<H<IO<; UDOC ll 2/*
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;<?IDPJIN] %<O8DGN 8M< KMJTD;<; DI OC< H8DI H8ISN:MDKO] 5<MNDJI # eMDBCOf J= #-% U8N KM<KMJ:<NN<;

UDOC =-2*0M<K DIOJ OUJ TJGSH<c98N<; 8I; OUJ NSM=8:<c98N<; JSOKSO NK8:<N] 3DIBG< OMD8G 9<O8 <NPH8O<N

SNDIB (,-NDIBG< 8I; nq 2/* ;<?IDPJIN U<M< KMJTD;<; DI OC< NO8I;8M; TJGSH<c98N<; NK8:<] %8O8 U8N

OM8IN=JMH<; DIOJ 8 ?AC JSOKSO NK8:< e=N,2mlFf SNDIB OC< $DAD=W OJJG9JV 8I; N:MDKON =MJH OC< )SH8I

Connectome Project preprocessing pipeline.

5R <@@VAWW PAPRVd ADA>XW RC < T<VZ>LT<QX K<aLQI TVAaLR_WOd WAAQ < WZP_O_Wk bA TVAWAQX <OO

P<LQ AcTAVLPAQX<O WZP_OL <>VRWW � WAWWLRQWk A<>K >ROOA>XA@ RQ @LDAVAQX @<dWk XR VA@_>A XKA

>K<Q>AW < W_=MA>X bR_O@ VAPAP=AV < T<VZ>_O<V WZP_O_Wm 8A @A>L@A@Od @L@ QRX APTORd <

PAPRVd X<WN v<W LQ XKA /<X_V<O 4>AQAW %<X<WAX v"OOAQ AX <Omk }{}}wwk WR XKA T<VZ>LT<QXW bAVA QRX

AQ>R_V<IA@ XR VAX<LQ WZP_O_W LQCRVP<ZRQ LQ PAPRVdm 4ZP_O_W TVAWAQX<ZRQ b<W <OWR

V<Q@RPLeA@ <>VRWW V_QW <Q@ WAWWLRQW WR <W XR QRX _QLQXAQZRQ<OOd TVLPA XKA W_=MA>X =<WA@ RQ

>RQXAcX RC TVAaLR_W WZP_OLm 5R <@@VAWW PAPRVd ADA>XW ><_WA@ =d ><VVdsRaAV RC KAPR@dQ<PL>

ADA>XW CVRP RQA XVL<O XR XKA QAcXk XKA '*3 PR@AO <>KLAaAW GAcL=OAk aRcAOsWTA>LE> #0-% AWZP<XAWm

5KA V<Q@RPLe<ZRQ RC WZP_O_W TVAWAQX<ZRQW <Q@ <aAV<ILQI RaAV A<>K WZP_O_WoW P_OZTOA

VATAZZRQW bR_O@ XKARVAZ><OOd <aAV<IA R_X _Qb<QXA@ ADA>XW RC PAPRVdm

You bring up a good point to include in the manuscript, so we add the following main 

P<Q_W>VLTX XAcX _Q@AV XKA WA>ZRQ pvCw.3* @<X< TVR>AWWLQIk VAWTRQWA PR@AOLQIk <Q@ 30*

@AEQLZRQql

`6< HJ;<G<; OC< C<HJ;WI8HD: M<NKJIN< OJ TDNS8G <T<ION SNDIB ;8O8 =MJH kcsN 8A<M

NPHSGSN JIN<O eOJ 8::JSIO =JM OC< C<HJ;WI8HD: G8Bf DI kN NO<KN eD]<] s 9DIN J= kN G<IBOC

each) for each trial separately. 4C< '*2 HJ;<G_N @<VD9G< #/,% <NPH8O<NZ M8I;JHDX8PJI

J= NPHSGSN KM<N<IO8PJIN 8:MJNN MSIN 8I; N<NNDJINZ 8I; 89DGDOW OJ 8T<M8B< JT<M

HSGPKG< M<K<PPJIN M<;S:< KJO<IP8G SIU8IO<; H<HJMW <><:ON]a

2. In relation to Figure 4, the evaluation hinges on the choice of TSM ResNet50. Can the authors 

elucidate the roles of different blocks in TSM ResNet50 from a computer vision standpoint? This 

clarification might help in understanding the alignment between the two network types. Moreover, 

the stationarity of dynamics with the TR remains unclear, making it difficult to discern whether a 

region reconfigures its role or maintains a singular mode corresponding to a TSM ResNet50 block. 

Furthermore, given the plethora of existing research on static image encoding, this section doesn't 

offer new insights. 

Thank you for this comment. In response, we (a) repeat this analysis with two additional models to 

examine the extent the results depend on the specific Temporal Shift Module (TSM) ResNet50, (b) 

elucidate the roles of the different blocks of the TSM ResNet50, especially in regard to TSM, and (c) 

comment on the interpretation of results and its new insights with respect to static image encoding. 

(a) Generalization of results to two additional models 

You make a good point that the results may not generalize beyond the TSM ResNet50 architecture 

used in the main manuscript. We thus perform this same encoding model procedure with a TSM 

MobileNetV2 and TimeSformer model to sample different architectures and training diets (see table 
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R1 below). Compared to the TSM ResNet50 trained on M4 dataset (Multi-Moments in Time Minus 

Memento10k), the TSM MobileNetv2 retains residual connections and TSM frame processing, but it 

is pretrained on the Kinetics-400 dataset and optimized for efficiency with over 5x fewer 

parameters. The TimeSformer uses a very different transformer architecture, no TSM frame 

processing (although frame order is still taken into account), and is pretrained on the HowTo100M 

dataset. 

Architecture Training Dataset Training Objective Increasing Late Layer 

Dominance 

TSM ResNet50 M4 Action classification Yes 

TSM MobileNetV2 Kinetics-400 Action Classification No 

TimeSformer HowTo100M Action Classification Yes 

Table R1 

We run inference on these two models with the 1,102 BMD video stimuli and extract the features 

for the encoding analysis. We plot results in Figure R1 below (now the revised Supplementary 1 

Figure S7). We find that all three models have good prediction performance (> 0.3 noise normalized 

correlation) throughout cortex, including in dorsal visual and parietal ROIs. This result thus does not 

hinge on our initial choice of TSM ResNet50. However, we notice the dominance of the early layers 

(blue) in the low-level visual ROIs and the dominance of the later layers (red) in the high-level ROIs 

layers (blue) only holds true for the TSM ResNet50 model (the model detailed in the manuscript) 

and the TimeSformer. The TSM MobileNetV2 does not show such a pattern, as the high-level 

features (red) all predict each ROI significantly better than low-level features (blue) (see Figure R1 

below). Thus, the dominance of early model layers in early ROIs and later model layers in later ROIs 

is more nuanced than we previously suspected. We edit the Supplementary 1 Figure S7 to include 

encoding results from the two additional models and edit the main manuscript to refer to these 

results: 

“We observe that predictivity of DNN Block 4 becomes significantly greater than DNN 

Block 1 beginning in the ventral visual cortex and extending into dorsal visual cortex and 

parietal cortex (Figure 6C), reflecting the increase of feature complexity in the 

representations across the visual processing hierarchy. We repeat this encoding analysis 

with different architectures and training diets to see how this result generalizes across 

models. Specifically, we extract features from a TSM MobileNetV2 and a TimeSformer 

architecture trained on Kinetics-400 and HowTo100M datasets, respectively. We find that 

both are good predictors of dorsal visual and parietal regions, but the TSM MobileNetV2 

does not show increasing dominance of high-level model features along the cortical 

hierarchy regions (see supplementary Figure S7 for results on all architectures and blocks). 

This result extends previous research demonstrating a hierarchical correspondence 

between DNNs and brains from still image stimuli (Cichy, Pantazis, et al., 2016; Eickenberg 

et al., 2017; Kriegeskorte, 2015; Kubilius et al., 2019; D. L. K. Yamins et al., 2014) to 

dynamic video stimuli, a non-trivial outcome given that many cortical regions in the 

ventral visual and temporal cortex and beyond respond to stimulus features uniquely 

present in videos and not images (e.g., movement kinematics, temporal interactions) 
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(Lingnau & Downing, 2015; Pitcher et al., 2011; Wurm et al., 2017; Wurm & Caramazza, 

2022). The finding that a transformer-based TimeSformer model follows a similar pattern 

to the TSM ResNet50 while the TSM MobileNetV2 does not invites further inquiry into the 

effect of training diet, parameter count, and architecture on visual event understanding. 

Finally, these results also help clarify previously conflicting results about whether or not 

DNNs trained on action recognition tasks accurately predict dorsal stream regions 

(Bakhtiari et al., 2021; Güçlü & van Gerven, 2017; Mineault et al., 2021), showing that all 

three architectures accurately predict responses not only in the dorsal visual stream but 

also in the parietal cortex.” 

Figure S7: Encoding model performance on BMD 

A) TSM ResNet50 trained on M4: Features were extracted after block’s 1 (blue), 2 

(orange), 3 (green), and 4 (red) in the ResNet 50 architecture. B) TSM MobileNetV2 

trained on Kinetics-400: Features were extracted after the first bottleneck layer (blue), 
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third bottleneck layer (orange), sixth bottleneck layer (green), and last 2D convolutional 

layer before the average pool (red) in the MobileNetV2 architecture. C) TimeSformer S+T 

trained on HowTo100M: Of the model’s twelve layers, features were extracted after the 

first (blue), fourth (orange), eighth (green), and twelfth (red) layers. The box plot on the 

left side in each panel shows the noise-normalized predictivity of four of each

architecture’s features at each of the 22 ROIs. The features were extracted at early (blue), 

intermediate (orange and green), and late (red) processing stages in each architecture to 

capture increasingly high-level degrees of transformations. The box plot on the right side 

in each panel shows the brain prediction difference between each architecture’s latest 

and earliest layers for each subject and ROI. For the box plots on the right, a blue or red 

colored box plot denotes a significant difference in correlations from 0 (p<0.05, two-sided 

one-sample t-test, Bonferroni corrected for n=22 comparisons), and gray denotes no 

significance. The box plots encompass the first and third data quartiles and the median 

(horizontal line). The whiskers extend to the minimum and maximum values within 1.5 

times the interquartile range, and values falling outside that range are considered outliers 

(denoted by a diamond). The overlaid points show the value at each observation (n=10 for 

all ROIs except TOS (n=8) RSC (n=9)).

We note that we performed this analysis in the main manuscript with a ResNet50 model (as 

opposed to a more recent, better performing model) because of its well-established use in both 

computer science and computer vision literature, similarity to the human brain (Kietzmann et al., 

2019; Koivisto et al., 2011; Kubilius et al., 2019; Pascual-Leone & Walsh, 2001; Schrimpf, Kubilius, 

Lee, et al., 2020; Silvanto, Cowey, et al., 2005; Silvanto, Lavie, et al., 2005), 2D architecture to bridge 

knowledge with still image models, and ability to add a temporal shift module (TSM) for analyses 

isolating temporal processing. We expand on these points below in (b). 

(b) The roles of the different blocks of the TSM ResNet50 

Regarding the roles of different blocks in the TSM ResNet50 model from a computer vision 

standpoint, each block does not have a pre-determined, engineered role. The model architecture 

processes the visual input with a series of convolutional operations (and recurrent connections) 

that effectively aggregates spatial information in increasingly large receptive fields. The model is 

trained to optimize a behavioral task – in this case, temporally relevant action classification – and 

updates the weights throughout the network accordingly to achieve increasingly better 

performance at the task. The earlier blocks learn to extract more low-level visual features, such as 

lines and edges, and the higher blocks learn to extract more high-level visual features, such as 

shapes and objects and here, actions. 

The temporal shift module (TSM) (see Figure R2, panel C) merely changes how the information 

between input frames is shared (Lin et al., 2019). The more naïve approach (Figure R2, panel A) 

does not share information between frames. The uni-directional TSM approach (Figure R2 panel C) 

that we employ here shifts activations along the temporal direction so past frame information is 

shared with the current frame. TSM is inserted inside the residual branch of each residual block of 

the ResNet50. This addition of the TSM to the network is computationally free, adding no 

parameters to the network (the cost comes in a slight increase in latency due to shifting the 

activations in memory, but this cost does not concern the question at hand). Additionally, TSM is an 

addition to a 2D ResNet50 (the frames are convolved with 2D kernels), thus further bridging 
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research between still images and videos. TSM is not an architecture in itself, but merely an add-on 

to existing architectures to explicitly control how spatial information is being shared across frames. 

Taken together, TSM is an excellent method to isolate the effect of temporal processing of model 

features and subsequently brain prediction performance. 

Figure R2: This figure is copied in its entirety from Figure 1 of the original Temporal Shift Module 

(TSM) paper (Lin et al., 2019). This figure schematizes differences in data movement between 

tensors with no shift between frames (a), bi-directional shift between frames in both temporal 

dimensions (bi-directional TSM), and (c) uni-directional shift between the past frame and current 

frame in the forward temporal dimension (uni-directional TSM). We use the uni-directional TSM (c) 

in our analyses. 

(c) Interpretation of the results and new insights 

You definitely pose an interesting question about a region reconfiguring its role over time, so we 

add that as a limitation (reproduced below). The brain activity we predict is averaged over TRs 5-9, 

the peak of the BOLD signal, so any reconfiguration of role by a region is smoothed over time. We 

believe the best way to study possible reconfigurations over a short time frame would be to collect 

high temporal resolution M/EEG data and analyze it alongside the fMRI data (EEG data collection 

for this short video stimulus set is currently taking place for a separate project). The added 

paragraph to the methods section, “DNN block to cortex correspondence procedure”, reads: 

“We note that while the temporal dimension in videos invites exciting modeling 

opportunities, it also adds complexities in the fMRI data that may make modeling 

difficult. For example, regions may reconfigure their roles over the duration of the video 

or integrate features over time in a manner that cannot be resolved with fMRI. Thus, the 

extent that models can predict fMRI brain responses to videos may be inherently limited 

by the temporal resolution of fMRI and best be modeled alongside millisecond-level 

temporal resolution neuroimaging data (M/EEG).” 

We respectfully disagree with the comment that this section does not offer new insights. The 

perceptual differences between image and video encoding are pervasive through occipitotemporal, 

dorsal visual, and parietal cortex (Lingnau & Downing, 2015; Pitcher et al., 2011; Pitcher & 

Ungerleider, 2021; Wurm & Caramazza, 2022). It would be empirically and theoretically unjustified 

to assume results from static image encoding would directly translate to video encoding. Thanks to 

this comment, we further found some biologically similar patterns of brain prediction performance 

seem to depend on model training diet and architecture - an important research direction to 

understand visual event understanding. As stated in the main text, we clarify previous conflicting 
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work that the objective of action recognition can highly predict regions in the dorsal visual and 

parietal cortices. This analysis makes the necessary step to extend results into the video domain 

while being bound back to previous work. 

3. For Figure 5, I'm primarily concerned about the extent to which the results hinge on the choice of 

TSM. What kind of temporal dynamics is encoded by frame order? For instance, even when the 

order is shuffled, the variance—potentially another form of dynamics—remains unchanged. Given 

the temporal resolution of BOLD and the brain's processing speed for image sequences, the concept 

of "dynamics" requires further elucidation and discussion. 

Similar to the previous comment #2, thank you for challenging us to test the generalizability of our 

results to different architectures. In response to this comment we (a) repeat this frame shuffling 

analysis using a non-TSM architecture and (b) perform another analysis isolating temporal 

integration to add to the discussion around the concept of “dynamics.” 

(a) Frame-shuffling using non-RSM architecture 

We recognize the value in determining the influence of the TSM component on the results, so we 

repeat this analysis on a TSM MobileNetV2 model trained on the Kinetics-400 dataset and a more 

recent (non-TSM) TimeSformer model trained on the HowTo100M dataset. The TSM MobileNetV2 

has the TSM component and residual connections in common with the TSM ResNet50, but contains 

over 5x fewer parameters and is less accurate. The TimeSformer, on the other hand, has about 5x 

more parameters than a ResNet50 and leverages a transformer-based architecture for spatial and 

temporal video processing (but does not use TSM). These two models are a good test to determine 

if the results found with the TSM ResNet50 can generalize to distinct video-computable models. 

We show the results in the new Supplementary 1 Figure S10 (reproduced below). The TSM 

ResNet50 is the only model of the three that shows a decrease in brain prediction accuracy when 

the input frames are shuffled (see the color-coded asterisks along the x-axis as indicator of 

significance). 
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“Figure S10: The effect of frame shuffling on brain prediction performance across different 

architectures 

We compute the difference in the correlation between the shuffled frame prediction 

accuracy and unshuffled frame prediction accuracy at all 22 ROIs and four layers of a (A) 
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TSM ResNet50, (B) TSM MobileNetV2, and (C) TimeSformer model. Features were 

extracted at increasing levels of depth in each model (blue, orange, green, red) that reflect 

higher levels of model processing stages. Only the TSM ResNet50 architecture trained on 

the M4 dataset (Multi-moments Minus Memento10k) showed evidence of robust 

differences across cortex between shuffled and unshuffled input. Colored asterisks along 

the x-axis plot indicates significant difference between the unshuffled and shuffled 

prediction accuracy at that DNN block (one sample two-sided t-test against a population 

mean of 0, FDR correction across 22 ROIs x 4 blocks = 88 comparisons, p < 0.05). The box 

plot encompasses the first and third data quartiles and the median (horizontal line). The 

whiskers extend to the minimum and maximum values within 1.5 times the interquartile 

range, and values falling outside that range are considered outliers (denoted by a 

diamond). The overlaid points show the value at each observation (n=10 for all ROIs 

except TOS (n=8) RSC (n=9)).” 

While we find this result intriguing, we are not concerned that the TSM MobileNetV2 and 

TimeSformer models are not as strongly impacted by frame shuffling for two reasons. First, the TSM 

ResNet50 was specifically chosen for its biologically similarity to computations in the human visual 

system (Kietzmann et al., 2019; Koivisto et al., 2011; Kubilius et al., 2019; Pascual-Leone & Walsh, 

2001; Schrimpf, Kubilius, Lee, et al., 2020; Silvanto, Cowey, et al., 2005; Silvanto, Lavie, et al., 2005), 

and thus it can be expected to suffer from shuffled inputs like a human would. The other two 

models are notably different in their biological similarity. The TSM MobileNetV2 is engineered for 

low latency (fast) and lightweight (few parameters) usage, not task accuracy, and the TimeSformer’s 

transformer architecture and high parameter count may lessen the impact of frame shuffling. 

Second, a null result in different architectures does not change the fact we see robust effects 

throughout most other ROIs and blocks in the TSM ResNet50 experiment. This analysis definitely 

brings up multiple interesting research avenues to explore biological similarities of models and 

humans through a temporal lens. 

We add discussion of this result to the main text section, “fMRI responses capture temporal event 

structure”: 

“Lastly, we repeat this frame shuffling analysis on a TSM MobileNetV2 (Lin et al., 2019; 

Sandler et al., 2018) and TimeSformer (Bertasius et al., 2021) architecture trained on 

Kinetics-400 (W. Kay et al., 2017) and HowTo100M (Miech et al., 2019) datasets, 

respectively, to see if the frame-shuffling results generalize to models of varying 

architectures, training diets, parameter counts, and task performance. We find that the 

TSM ResNet50 is the only model of the three that sees robust effects in most ROIs and 

DNN blocks (see Supplementary 1 Figure S10 for all results), implying that biological 

similarity of the model may be closely tied to the effects of frame shuffling.” 

(b) Additional frame-shuffling analysis to determine dynamics 

We agree that relating the word “dynamics” specifically to the frame shuffling analysis is vague and 

inexact. Some temporal dynamics of the brain that this frame shuffling analysis is affecting may be 

related to temporal integration across frames, next frame prediction, residual feedback 

connections, or some other mechanism. While this fMRI dataset is not well suited to disentangle 

the exact nature of temporal dynamics we observe here, we do have the opportunity to isolate the 
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effect of temporal integration (Fairhall et al., 2014; Hasson, Yang, et al., 2008) by leveraging our 

TSM model. This analysis is complementary to the frame shuffling analysis and further elucidates 

the temporal dynamics at play here.  

We compare the brain prediction performance of a Temporal Shift Module (TSM) ResNet50 (Lin et 

al., 2019) and a Temporal Segment Network (TSN) ResNet50 (Wang et al., 2016) to isolate the 

dynamic of temporal integration. The difference between these two architectures lies in how 

information between frames is shared. In Figure R2 above (reproduced from (Lin et al., 2019)), 

panel A describes a TSN implementation where information is not shared between frames. Figure 

R2 panel C describes a uni-directional TSM implementation, used here, where information from the 

past frame is shared with the current frame. The backbone ResNet50 architecture, number of 

model parameters, objective function, learning algorithm, unshuffled input frame order, and 

training diet are all held constant. We train both a TSM ResNet50 model and a TSN ResNet50 model 

on a 10,000-video subset of the 1 million+ M4 dataset that the model presented in the manuscript 

was trained on. This smaller scale was necessary as training on the full dataset took over three 

months and 16 V100 GPUs – resources we did not have for this revision. 

We first note that our TSM network outperforms our TSN network in action classification accuracy 

(mean average precision = 0.281 and 0.268, respectively). This result is in line with the abundance 

of networks that benefit from TSM (Lin et al., 2019) – and hence TSM’s popularity - but this fact is 

still worth mentioning given how few differences exist between our TSM and TSN networks. 

Now we ask: does the TSM model’s superior task performance translate to superior brain prediction 

performance? We reason that if the TSM achieves superior brain prediction performance over its 

TSN counterpart then the brain activity is capturing information related to temporal integration, as 

this is the only difference between the TSM and TSN architectures.  

Using the same encoding model procedure in the analyses presented in Figures 4 and 5, we 

compute the difference in brain prediction accuracy for each subject at each ResNet50 Block and 

ROI (Supplementary Figure S9, new to this revision, reproduced below). We find that early visual 

regions being predicted by late Blocks 3 and 4 experience the strongest affect. However, this trend 

does not follow an equivalent pattern observed in the frame shuffling analysis, where significant 

differences were seen in early visual ROIs from all DNN blocks and late visual ROIs from primarily 

late model blocks. We conclude that the TSM vs TSN analysis and the frame shuffling analysis are 

perturbing different temporal dynamics. 
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“Figure S9: The effect of Temporal Shift Module (TSM) on brain prediction performance  

(A) TSM vs TSN prediction performance: The difference in subject brain prediction 

performance of a TSM ResNet50 and Temporal Segment Network (TSN) ResNet50 each 

trained on a 10,000-video subset of the M4 dataset (Multi-moments Minus Memento) 

was computed at each of the four Blocks for each ROI. TSM results in increased brain 

prediction performance most prominently in early visual ROIs. In both panels, colored 

asterisks along the x-axis plot indicates significant difference between the unshuffled and 

shuffled prediction accuracy at that DNN block (one sample two-sided t-test against a 

population mean of 0, FDR correction across 22 ROIs x 4 blocks = 88 comparisons, p < 

0.05). The box plot encompasses the first and third data quartiles and the median 

(horizontal line). The whiskers extend to the minimum and maximum values within 1.5 

times the interquartile range, and values falling outside that range are considered outliers 

(denoted by a diamond). The overlaid points show the value at each observation (n=10 for 

all ROIs except TOS (n=8) RSC (n=9)).” 

We add this figure to Supplementary 1 and add text to the main manuscript section, “fMRI 

responses capture temporal event structure”, to further discuss temporal dynamics: 

“In order to further elucidate the type of temporal dynamics in the brain that this frame 

shuffling analysis is affecting, we perform an additional small-scale experiment comparing 

the difference in prediction accuracy between a Temporal Shift Module (TSM) (Lin et al., 

2019) ResNet50  and a Temporal Segment Network (TSN) (L. Wang et al., 2016) ResNet50. 

Since the only difference between the two models is how spatial information is shared 

between frames, this analysis effectively isolates temporal integration. We find that 

implementation of TSM significantly improves encoding accuracy in early visual ROIs 

primarily from DNN blocks 3 and 4 (see Supplementary 1 Figure S9 for results). This 
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pattern is different from the one observed from the frame shuffling analysis (Figure 5C), 

suggesting that the brain activity is capturing various forms of temporal dynamics.” 

Your comment here gave us the opportunity to explore the rich temporal dynamics that BMD 

captured and the intriguing limitations of these effects. We believe these additional analyses 

and discussion spurred by this comment adds a lot of value to the manuscript and will be of a 

lot of interest to the researchers interested in using this dataset. 

4. Pertaining to Figure 6, how reliable are the TR peak estimations? Given the size of the unique 

variance, I'm skeptical about the validity of the claims presented. Additionally, it seems the only 

definitive conclusion is that BOLD signals can differentiate between images with a 1-2TR delay. 

Contrasting experiments using the same stimuli might be beneficial. 

Thank you for the comment. Regarding the reliability of the TR peak estimations (Figure 6E, upper 

ROI panel blue and orange boxplots and supplementary Figure 6, reproduced below), we provide 

box and whisker plots overlaid with individual data points to be transparent about the observed 

effect’s reliability. The peak TR for first (blue star) and third epoch (orange star) is the TR with the 

highest subject averaged unique variance and that reached statistical significance (difference in 

unique variance against 0, p<0.05, one-sample two-sided t-test, FDR corrected for 9TRs x 2 video 

epochs = 18 comparisons). All ROI plots are additionally provided in the supplementary material 

(reproduced below). 
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Figure S6: Encoding the temporal dynamics of the BOLD signal. 

(A) Whole-brain analysis: Each voxel shows the percentage of subjects with a TR peak difference of 2 TRs at that 

specific voxel. Only significant voxels are plotted (p < 0.05, binomial test, FDR corrected). The effect of interest is 

showing predominantly in the visual cortex. (B) ROI analysis: Unique variance explained by the first and third 

video epoch (second) synthetic fMRI data, at each TR. Red asterisks along the x-axis indicate unique variance 

scores significantly greater than 0 (p<0.05, one-sample one-side t-test, FDR corrected across 9 TRs x 2 video 

epochs = 18 comparisons). Large blue/orange stars indicate the TR with the highest subject averaged unique 

variance for the first/third video epochs, respectively. The box plot encompasses the first and third data 

quartiles and the median (horizontal line). The whiskers extend to the minimum and maximum values within 1.5 

times the interquartile range, and values falling outside that range are considered outliers (denoted by a 

diamond). The overlaid points show the value at each observation (n=10 for all ROIs except TOS (n=8) RSC 

(n=9)). Y-axis and X-axis labels are shared horizontally and vertically, respectively. 
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This procedure to compute a “peak TR” takes into account results from all 10 subjects, and the 

unique variance calculation is a rather robust method of isolating our desired effect. Other potential 

methods to determine a “peak TR”, like an average TR weighted by a difference in unique variance 

magnitude, will result in nonsensical floating point TRs (e.g., TR=3.4) and/or add unnecessary 

complexity to the analysis. We believe the difference between the “peak TRs” at the subject level 

(Figure 6E, bottom panel green boxplots) combined with additional thorough statistical tests (p < 

0.05, one-sample two-sided t-test) is the most accurate way to measure temporal encoding in the 

BOLD signal in an ROI.  

The size of the effect is numerically small, as expected, yet is significant even after a robust set of 

statistical tests. We put our result in the context of a recent breakthrough finding published in 

Nature Communications (Wittkuhn & Schuck, 2021), where the researchers reliably decode the 

sequence and content of five highly distinct and uncorrelated images (cat, chair, face, house, shoe) 

rapidly presented within a few hundred milliseconds and a couple seconds. In contrast, we 

investigated whether a sequence of highly similar and conceptually related video frames totaling 3 

seconds (as in BMD) can be disentangled. We show that yes, early and late TRs of brain responses 

are better explained by early and late video frames. This result both extends results from static 

images to dynamic videos and opens new lines of research to investigate the limits of BOLD’s 

encoding of rapidly presented stimuli. We add this point to the main text: 

Together, these results support the hypothesis that early and late TRs of the BOLD signal 

better code early and late video snapshots, respectively. Previous work showed that the 

content and sequence order of distinct images presented in under a second can be reliably 

decoded in the BOLD signal (Wittkuhn & Schuck, 2021). Here we add to this line of work to 

show that BMD can differentiate between two visually and conceptually similar stimuli of 

one second duration (i.e., first and third video second) separated by another highly similar 

stimulus of one second duration (the second video second) with the most pronounced 

effects focused in the early visual cortex (Fairhall et al., 2014; Kiebel et al., 2008). This 

invites future research to use BMD’s temporally well-defined stimuli to explore how visual 

event information is integrated over shorter time periods, bridging an important gap to 

temporal integration studies of longform movies and BOLD encoding of rapidly presented 

stimuli.

In summary, we agree that the conclusion of this analysis is that the BOLD signal can reliably 

differentiate between “images” 1 second in duration separated by another “image” of 1 second 

duration (i.e., a three second video). However, each “image” is visually and conceptually highly 

similar and presented as a continuous stream. We believe these results go beyond previous 

literature (Wittkuhn & Schuck, 2021) and show that the BOLD response is sensitive to dynamic 

content presented in videos at the level of seconds.  

We agree that conducting another fMRI experiment to compare and contrast brain activity evoked 

from the same movie stimuli and still frames would add more insights into temporal encoding of 

the BOLD signal. However, the feat would be immense: It would effectively double the data and 

thus the amount of information to be conveyed (from 8 to 2*8 main figures). It is thus 
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unfortunately impractical to recruit the same subjects, purchase enough scanner time, and analyze 

as well as succinctly communicate results for this revision. 

5. As for Figure 7, while the findings are intriguing, they aren't novel. A more extensive static 

dataset might provide clearer insights. I recommend the authors explore meta-information that can 

uniquely be derived from the videos. 

Thank you for the excellent suggestion to explore additional metadata and giving us the opportunity 

to clarify the novelty of our findings. In response to your comment, we (a) acquired new meta-

information from human behavior and relate it to the brain to strengthen the analysis presented in 

Figure 7, (b) added motion-energy features of the videos as another crucial meta-information and 

related them to brain responses, and (c) theoretically clarified the relevance of a video vs. a static 

dataset in a supplementary discussion section. We detail the three points below. 

(a) New meta-information from human behavior 

 We collected new meta-information from human behavior and their relationship to the brain in 

order to better support our findings presented in Figure 7. Our previous five object and scene labels 

were based on a neural network model’s top 5 predictions. New to this revision, we ran two 

additional large-scale crowd-sourced experiments to gather human annotated object and scene 

labels that are more accurate and grounded in human truth. We use the THINGS (Hebart et al., 

2023) and Places365 (Zhou et al., 2018) datasets to define the set of possible object and scene 

labels, respectively, further enabling cross-talk between BMD and other computational 

neuroscience work leveraging these datasets. We describe this metadata in detail under the main 

manuscript section, “Semantic and behavioral metadata on visual events”, under the methods 

section, “Metadata”, and in response to Reviewer 1 minor comments 4, 8, 16, 17, and 18. Below we 

reproduce the object and scene metadata outlined in the methods section: 

“Object labels 

For each video, we obtained at least 5 sets of up to three different object labels in a 

human crowd-sourced experiment on Prolific. Each annotator was instructed to select up 

to three different object labels visible in the video. They selected at least one object label, 

and if they believed no more objects were present in the video, they were allowed to 

select a “No more objects in the video” option up to two times. This option thus 

encouraged accurate labels and carried information on the density of objects in the video. 

Each object label was one of 1,854 possible labels from the THINGS dataset (Hebart et al., 

2023) to encourage overlap with computational neuroscience work and leverage the 

additional THINGS metadata on each label (e.g., animacy, size, indoor/outdoor). The 

object label selections can be different or the same across annotators. One author 

manually reviewed the labels to ensure the labels assigned to the video were sensical (i.e. 

participants were not choosing labels at random). 

Scene labels 

For each video, we obtained at least 5 scene labels using a human crowd-sourced 

experiment on Prolific. Each of the five different annotators were instructed to select a 

scene label that best describes the scene of the video. All scene labels came from the 

Places365 dataset (Zhou et al., 2018) for its broad scene coverage and overlap with 
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computer vision resources. The scene label selections can be different or the same across 

videos. One author manually reviewed the labels to ensure the labels assigned to the 

video were sensical (i.e. participants were not choosing labels at random).”

Regarding the analysis in Figure 7 (reproduced below), the new object and scene labels allow us to 

make a more controlled examination of visuo-semantic representations in human cortex. We 

correlate the Representational Dissimilarity Matrices (RDMs) of the object, scene, action, a 

concatenation of “object+scene+action”, and sentence text description labels with the neural 

RDMs. We compute the pairwise significance between means of the metadata categories (using 

one-way ANOVA and Tukey’s HSD tests) in each ROI to better target the conclusions we were 

previously making. 

We better motivate this analysis in the main text, making sure to emphasize the increased 

functional diversity of regions throughout cortex in response to video perception: 

`58MWDIB G<T<GN J= N<H8IP: DI=JMH8PJI :JIO<IOZ =MJH NO8P: J9E<:ON 8I; N:<I<N e<]B]Z

`;S:FaZ `U8O<Maf OJ O<HKJM8G 8:PJIN e<]B]Z `NUDHHDIBaf OJ :JHKG<V M<G8PJIN 9<OU<<I

parts (e.g., “the duck is swimming on the water"), can describe a visual event. It is 

E>0<2.B 8?G D82C2 F.BI9>7 <2F2<C ?3 0?=@<2H9DI .>1 0?>D2>D .B2 B2620D21 9> +)&C G89<2

viewing visual events, especially given that regions throughout the ventral visual, 

;JMN8G TDNS8GZ 8I; K8MD<O8G :JMP:<N C8T< 8GG 9<<I DHKGD:8O<; DI KMJ:<NNDIB O<HKJM8G

aspects of videos (Buccino et al., 2004; Konen & Kastner, 2008; Lingnau & Downing, 

2015; Silver & Kastner, 2009; Wurm & Caramazza, 2022) but also diverse feature 

preferences (Buccino et al., 2004; Kanwisher, 2010; Kanwisher et al., 1997; Konen & 

Kastner, 2008; Lafer-Sousa et al., 2016; Ratan Murty et al., 2021).”

We find that the sentence text description representations best correlate in nearly all ROIs by a 

wide margin. We then ask if the reason for the sentence text description’s higher correlations is due 

to finer granularity of labels (e.g., text descriptions were collected free form, while category labels 

were constrained by a vocabulary). The higher (or equally high) correlations of the concatenated 

“object+scene+action” representation compared to the individual object, scene, or action 

representation suggests that the text description’s high correlations are driven by cortex’s objective 

of complex scene analysis, not a finer description of labels. We reproduce the description of our 

novel findings below: 

“Overall, the sentence text description results in stronger (or equally strong) correlation 

values than the other four semantic descriptions in all ROIs. Additionally, the three 

concatenated single-word labels (object+scene+action) results in stronger (or equally 

strong) correlation values than the individual single-word labels across all regions, even in 

category-selective regions. Both of these results are consistent with the idea that complex 

scene analysis, rather than simpler tasks such as object recognition, is the objective of the 

visual brain (Doerig et al., 2022). One might suspect that the category-selective ventral

regions would best correlate with their respective metadata (e.g., PPA, RSC, and TOS for 

scene metadata), reasoning that the text description and object+scene+action labels, 

while including the pertinent category information, contain mostly irrelevant and 
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distracting extra-category content (Kosakowski et al., 2022; Ratan Murty et al., 2021, but 

see Bonner & Epstein, 2021). “ 

In summary of point (a), the analysis presented in Figure 7 offers novel insights into visuo-semantic 

representations of the brain that even an extensive static dataset cannot accomplish due to our 

video-evoked brain activity and use of “action”, “object+scene+action”, and “text description” 

temporal metadata. We are able to share similar methodologies to previous image-only work 

(Doerig et al., 2022) to ground our insights in existing literature while presenting new ones. We 

further highlight how the added value of short video fMRI datasets over static image datasets in 

part (c) of this response. 

[redacted] 
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[redacted]   
 

(b) Motion-energy features 

We add more temporally-specific metadata to the dataset release by extracting motion energy 

features from the videos (Adelson & Bergen, 1985; Nishimoto et al., 2011). We use these motion 

energy features to predict brain activity from the additional dataset release (new to this revision, 

detailed in Supplementary 2, reproduced below) since the new dataset release contains a motion-

selective MT ROI definition. This result is detailed in Supplementary 2 and a cropped figure with 

caption highlighting the motion energy results are reproduced below: 
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KM<;D:O<; 9M8DI M<NKJIN<N UDOC OC< OMS< M<NKJIN<N J= OC< O<NPIB N<O SNDIB NPHSGSN =<8OSM<N :JHKSO<;

=MJH 8 HJPJI <I<MBW HJ;<G] 4C< 9JV<N NCJU OC< H<;D8I M<NKJIN< 8:MJNN NS9E<:ON eCJMDXJIO8G GDI<fZ

25th and 75th K<M:<IPG< eGJU<M 8I; SKK<M 9JV 9JSI;8MWfZ 8I; UCDNF<MN <VO<I;DIB OJ H8VDHSH 8I;

HDIDHSH T8GS<N UDOCDI k]o PH<N OC< DIO<MLS8MPG< M8IB<] *I;DTD;S8G NS9E<:O M<NSGON 8M< NCJUI 8N 9G8:F

points, and outliers are shown as diamonds (n=10 subjects for all ROIs).

This result shows the motion energy features best predicted brain activity in motion-selective ROIs 

of hV4, V3ab, IPS0, and MT. This result provides more evidence that BMD captures motion 

information, and we provide the motion energy features as additional metadata. We refer to this 

analysis in the Methods section under “Metadata”, the supplementary 1 discussion (detailed next in 

point (c)), and in greater detail in the supplementary 2. The text in the methods section reads: 

Motion energy features 

We provide video-computable motion features of each video using a motion energy 

model (Adelson & Bergen, 1985; Nishimoto et al., 2011; Watson & Ahumada, 1985). The 

motion energy model uses a set of spatial and temporal Gabor filters to extract a video’s 

motion and direction. We use these features to predict brain activity in motion-selective 

regions of MT (Born & Bradley, 2005; Nishimoto & Gallant, 2011), hV4 (Kamitani & Tong, 

2006; Roe et al., 2012), V3AB (Konen & Kastner, 2008; Smith et al., 1998), and IPS0 (Konen 

& Kastner, 2008). This analysis uses version B of the dataset and is detailed in 

Supplementary 2 section 5, “Motion energy features computation and encoding model.” 

The text in Supplementary 2 describing the motion energy methods reads: 

“5 Motion Energy Features Computation and Encoding Model 

Motion energy features were used to predict brain activity in response to BMD’s 3 second 

naturalistic videos. The motion energy model (Adelson & Bergen, 1985; Nishimoto et al., 

2011; Watson & Ahumada, 1985) consists of a series of spatial and temporal Gabor filters 

intended to capture local motion and direction in a video stimulus, thus making it a highly 

interpretable method to model video dynamics. The motion energy encoding model 

accuracy (Figure 2C) shows highest prediction accuracy in motion selective ROIs, namely 

MT (Born & Bradley, 2005; Nishimoto & Gallant, 2011), hV4 (Kamitani & Tong, 2006; Roe 

et al., 2012), V3AB (Konen & Kastner, 2008; Smith et al., 1998), and IPS0 (Konen & 

Kastner, 2008). These results support that single trial beta estimates of BMD’s 3 second 

naturalistic videos capture motion information. 

Motion energy features for each BMD video stimulus was computed using the MATLAB 

code available here: https://github.com/gallantlab/motion_energy_matlab (Nishimoto et 

al., 2011; Nishimoto & Gallant, 2011). For each 268x268 video, the frames were converted 

from RGB to LAB color space, and only the L (luminance) channel was retained. The 

luminance channel was then passed through a three-dimensional bank of spatiotemporal 

Gabor filters consisting of two spatial dimensions and one temporal dimension. Similar to 

the filter bank used in (Nishimoto et al., 2011) to model naturalistic movies, the three-

dimensional filters are defined at five spatial frequencies (0, 2, 4, 8, 16, and 32 

cycles/image), three temporal frequencies (0, 2, and 4Hz), and eight directions (0, 45, 90, 
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135, 180, 225, 270, and 315 degrees) with the exception that the 0 Hz temporal filter is 

defined at only 0, 45, 90, and 135 degrees directions and the 0 cycles/image spatial filter is 

defined at 0 degree orientation. Local motion-energy features were computed by taking 

the square root of the sum of the squared outputs of each pair of filters with orthogonal 

phases. The logarithm of the output from these filters was computed to scale large values, 

and the temporal dimension of the output was downsampled to 1 second to match the 

fMRI sampling rate (i.e., the interpolated TR of 1 second) of the BOLD time series. The 

output was then z-scored across time. In total, this procedure resulted in a matrix of size 3 

x 6555 (seconds x motion energy features). 

The motion energy features were then used in a voxelwise linear encoding model 

(Naselaris et al., 2011) to predict the brain activity (beta estimates) in 47 regions of 

interest (ROIs) from the version B preprocessed data in MNI152NLin2009cAsym space 

(Figure 2C). Specifically, the motion energy features for each video were concatenated 

along the three seconds and underwent principal component analysis (PCA) to reduce 

dimensionality to the top 100 components. PCA was fit to the training videos and applied 

to both the training and testing videos. A linear model was then fit to the training video 

features to predict the response at the voxel. The learned weights of the linear model 

were then applied to the testing video features. The encoding model accuracy was 

computed as the correlation of the vector of predicted responses of the test set with the 

vector of true responses of the test set.” 

(c) Relevance of the video vs. the static dataset 

We clarify the relevance of a short video vs static image dataset in a new discussion in 

Supplementary 1 titled, “The added value of brain responses to a short video dataset versus a static 

image dataset.” This section explains how videos are different from images, evidence that these 

differences are reflected in fMRI data (from previous work and BMD), and what open questions a 

short video dataset might thus be well-suited to address. It reads: 

The added value of brain responses to a short video dataset versus a static image dataset 

“We emphasize that a short video (e.g., 3 second duration, as in BMD) fMRI dataset is not 

better or worse than a static image fMRI dataset; rather, they are different in terms of 

stimulus features and corresponding brain responses that may make one better suited to 

answer specific research questions. Most obvious, short videos contain a temporal 

dimension that static images do not, allowing the video to communicate crucial 

contextual information about how spatial components in our environment move (or not) 

and spatially relate to each other over time. The benefit of this temporal dimension is 

clear in our everyday lives – we can interpret transitions between states (a door is being 

opened, not closed), direction (a steering wheel is being turned to left, not right or still), 

reactions (the child laughed when shown the picture), motion (the baby is crawling 

slowly, not fast), and more. 

The contextual value of a video’s temporal dimension is reflected in BMD’s own action 

and sentence text description metadata. Concerning action labels, images can only be 

labelled with a limited subset of actions or else be highly constrained in order to capture a 
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specific action. For example, the action of a baseball player “hitting” the ball can only be 

captured with an image if the photo were taken at very specific instant in time, otherwise 

the action may be ”standing” or “swinging”. Even a short video like in BMD easily captures 

these actions without heavily constraining the space of possible videos that correspond to 

“hitting”. Concerning text descriptions, short videos can capture temporal sequences of 

events that an image cannot. Examples of such captions sampled from some of BMD’s 

first videos include (emphasis our own): 

� Video 0001: "A mallard is in the water alone swimming around and putting its 

beak in." 

� Video 002: "A man is showing another man how to move feet back and forth." 

� Video 005: "A woman guides a little boy's arms up and down as other kids stretch

around him." 

� Video 006: "a chess tournament is going on this is focused on two players one is 

moving their queen and taking something to put the king in checkmate" 

Static frames of these videos cannot capture the temporal facts that the mallard is 

“putting its beak in”, the man “is showing another man how”, “a woman guides…as other 

kids stretch”, and a chess player “is moving their queen and taking something to put the 

king in checkmate.” This temporal information adds valuable context that often makes 

one’s understanding of the 3s video vastly different compared to any one of its single 

static frames. 

But do these differences in short videos and static images translate to differences in fMRI 

brain responses? Yes, previous work has found that videos evoke a greater extent (Bartels 

& Zeki, 2004; Konen & Kastner, 2008; Press et al., 2001; Schultz & Pilz, 2009; Yildirim et al., 

2019) and pattern (Buccino et al., 2004; Kret et al., 2011; Lingnau & Downing, 2015; Wurm 

& Caramazza, 2022) of cortex responding to videos than images throughout 

occipitotemporal, dorsal visual, and parietal cortex. In this manuscript we describe our 

highly reliable activations throughout cortex (Figure 3) with notably high reliability in 

parietal cortex, a region of the brain that weakly responds to static images. These highly 

reliable brain responses are not just a result of increased participant engagement or 

stimulus saliency; we even show that BMD brain responses capture temporal information 

from the videos (Figure 5, Figure 6, Supplementary 1 Figure 9, Supplementary 2 Figure 2) 

despite the BOLD response’s temporal sluggishness and fMRI’s low sampling rate. 

In the neighboring field of computer vision, researchers have long recognized that videos 

and images demand different modeling approaches (Ahn et al., 2023; Bertasius et al., 

2021; Lin et al., 2019; Tong et al., 2022; Wang et al., 2016) and training datasets (Goyal et 

al., 2017; Kay et al., 2017; Miech et al., 2019; Monfort et al., 2020; Soomro et al., 2012) for 

strong task performance. Videos continue to be at the forefront of ground breaking 

computer vision research due to their creative, cross-domain, and practical applications in 

text-to-video generation (Ho et al., 2022; Singer et al., 2022; Wu et al., 2023), video 

understanding with large language models (Ju et al., 2022; Maaz et al., 2023; Zhang et al., 

2023), and efficient action recognition and pose estimation (Liu et al., 2023; Qing et al., 

2024; Zheng et al., 2023). 
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Taken together, short video fMRI datasets offer unique opportunities to advance the field 

of computational neuroscience where static image fMRI datasets cannot. They can 

advance methodologies around estimating BOLD signals in response to rapid stimulus 

presentations (Misaki et al., 2013; Prince et al., 2022; Wittkuhn & Schuck, 2021), elucidate 

cognitive functions concerning temporal integration (Fairhall et al., 2014; Hasson et al., 

2008; Orlov & Zohary, 2018), test temporally specific cognitive objective functions (Doerig 

et al., 2022; Kanwisher et al., 2023), and detail how multiple visual pathways interact to 

achieve an understanding of an event (Lingnau & Downing, 2015; Mineault et al., 2021; 

Pitcher & Ungerleider, 2021; Wurm & Caramazza, 2022). As neuroscience and computer 

science research become increasingly intertwined (Allen et al., 2022; Chen et al., 2023; 

Cichy et al., 2019, 2021), BMD is well-suited to integrate with state-of-the-art video 

modeling work from the computer vision community. Importantly, a short video dataset 

like BMD can make these scientific advancements while staying connected to the vast 

body of still image work by sharing event-related paradigms, multivariate and univariate 

methodologies, representational similarity analyses, and/or encoding and decoding 

techniques. Short video datasets offer more ecological validity than static images while 

retaining experimental control and offer tremendous potential to advance our 

understanding of the human visual system.” 

In summary, this dataset is crucial and beneficial for the broader research community. Concerning 

the manuscript, if the submission is to Scientific Data, its current content seems apt. However, if 

intended for Nature Communications, the content should emphasize the dynamic aspects and 

condense sections relating to static image stimuli. 

4D8JG TKP 8C8EJ >KM TKPM :KII<JON 8N OD<T D8Q< ;EM<:OHT M<NPHO<; EJ 8 NECJE@:8JOHT EILMKQ<;

P<Q_W>VLTXm 5KA <@@LZRQ<O <Q<OdWAW <Q@ XAcX_<O >O<VLE><ZRQW bA TVRaL@A <W < VAW_OX RC XKLW

review will be valuable to the researchers excited to use this dataset. We hope we have 

>RQaLQ>A@ dR_ RC #.%oW QRaAOXdk LXW XAPTRV<O VL>KQAWWk <Q@ XKA P<Qd RTTRVX_QLZAW LX TVAWAQXW

to further our understanding of the human visual system.
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Reviewer #1 (Remarks to the Author):

In my view the authors have done a great job in addressing the comments I raised in the previous 

round. I believe that the revised version has indeed greatly improved both in terms of readability 

and the embedding into the existing literature, and that it is going to be of interest for the broader 

research community, as also pointed out by R2. I only have a very minor remaining comment 

(which does not require an additional review from my side): on page 15, the authors provide the 

link to a GitHub depository, but that link does not appear to be valid anymore.

Reviewer #2 (Remarks to the Author):

I really appreciate the authors’ effort in addressing my questions. They provide extensively new 

results to support the claims. Overall, the revised manuscript solved has improved a lot and 

addressed most of my concerns. I only have a few additional comments for the response.

1. The authors provide varied results about the “dynamics”. For example, in the response to 

Comment 3 & 5, there are many investigations on identifying significant regions w.r.t the encoded 

dynamics. My questions here are 1) are they consistent? 2) how to link these results together? The 

authors mentioned some meta-information from human behavior and the temporal dynamics of 

the BOLD signal. The relationship between these two parts should be verified.

2. On page 47 in the response letter, the authors state that “We conclude that the TSM vs TSN 

analysis and the frame shuffling analysis are perturbing different temporal dynamics”. What does 

the temporal dynamics mean indeed?

3. On page 49 in the response letter, the authors respond to the reliability of the TR peak 

estimation. The p-value here is not feasible. The p-value only gives that it may exist but it does 

not give how reliable it is. The authors should calculate the confidence interval instead. If it is 

overly wide, the discussion on the position of the TR peak may not be meaningful enough then.

Reviewer #2 (Remarks on code availability):

The codes are accessible under the directory and the codes are organized. Maybe it would be 

better if more instructions are provided within the scripts. However, I didn't install and run the 

application.
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Dear Reviewers, 

Thank you for assessing our previous submission, and we are pleased that we were able to 

address the majority of your comments. Below we address your remaining comments. Revised 

text is tracked in the revised manuscript in red. We also provide a clean version of the 

manuscript without any comments or tracked changes. Any revised text from the manuscript 

reproduced below will also be shown in red bold font. Your reviewer comments are reproduced 

in unbolded green text, and our responses are in black normal font. 

Reviewer #1 (Remarks to the Author): 

In my view the authors have done a great job in addressing the comments I raised in the 

previous round. I believe that the revised version has indeed greatly improved both in terms of 

readability and the embedding into the existing literature, and that it is going to be of interest for 

the broader research community, as also pointed out by R2. I only have a very minor remaining 

comment (which does not require an additional review from my side): on page 15, the authors 

provide the link to a GitHub depository, but that link does not appear to be valid anymore. 

We are glad to hear that you were satisfied with the previous revisions, and thank you again for 

your helpful feedback. Regarding the GitHub repository for the ResNet50 model (GitHub - pbw-

Berwin/M4-pretrained), the link is valid but the repository access settings were set to “private”, 

meaning only us authors have access to it. We have since made the repository “public” so you 

(and anyone) can view it. This repository’s privacy setting slipped our mind, and we apologize 

for not providing you with an alternative way to view the model training code and weights. 

Reviewer #2 (Remarks to the Author): 

I really appreciate the authors’ effort in addressing my questions. They provide extensively new 

results to support the claims. Overall, the revised manuscript solved has improved a lot and 

addressed most of my concerns. I only have a few additional comments for the response. 

1. The authors provide varied results about the “dynamics”. For example, in the response to 

Comment 3 & 5, there are many investigations on identifying significant regions w.r.t the 

encoded dynamics. My questions here are 1) are they consistent? 2) how to link these results 

together? The authors mentioned some meta-information from human behavior and the 

temporal dynamics of the BOLD signal. The relationship between these two parts should be 

verified. 

We respond to your comment in three points regarding our results’ (1) consistency, (2) linking 

the results together, and (3) verifying the relationship between our meta-information and 

temporal dynamics of the BOLD signal. We reproduce the frame shuffling, encoding model, and 

TSM vs TSN figures at the bottom of this comment for you to reference at your convenience. 

(1) Consistency:
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Our results in this manuscript, and more specifically in response to the previous revision 

comments, consistently tell us that BMD’s brain responses capture temporal properties of the 

videos. We introduced a number of experiments (a) constraining the model’s ability to process a 

video’s temporal properties (e.g., TSM vs TSN), (b) perturbing different temporal properties of 

the stimuli themselves (e.g., frame shuffling), and (c) predicting brain activity using different 

modeling architectures and pretraining diets. Since these experiments themselves were not 

intended to be related, their results in terms of significant ROIs and block depth are not related. 

However, within an experiment, we agree that we should expect to observe consistent results.  

Starting with (a) the TSM vs TSN analysis, the results neatly convey early visual ROIs are most 

affected by restricting the sharing of information across frames. We believe this was our most 

controlled experiment as the difference between the TSM and TSN networks only differed in the 

frame sharing aspect.  

(b) In the frame shuffling analyses, we did expect to see the results of the MobileNetV2 trained 

on Kinetics-400 align more closely with the results of the ResNet50 trained on M4. We 

hypothesize that the pretraining dataset’s temporal information content heavily influenced the 

results. Kinetics-400 has notoriously poor temporal information between frames (i.e., a model 

can easily predict the video’s action from a single frame) while the Multi-Moments in Time 

dataset (used in M4) has notably high temporal information content. We expect that the 

TimeSformer results also did not align with the results of the ResNet50 trained on M4 because 

its highly non-linear attention layers reduced the impact of frame shuffling.  

(c) The encoding model analysis showcased the prediction accuracies of the three models 

explained above in (b) and their hierarchical correspondence (first layer minus last layer). The 

results for the ResNet50 model trained on M4 and TimeSformer model trained on HowTo100M 

aligned more closely than that of the MobileNetV2 model. This suggests that the Kinetics-400 

pretraining dataset again influenced MobileNetV2’s performance. However, future large-scale 

experiments that are beyond the scope of this manuscript are needed to confirm this hypothesis 

In sum, our results consistently show that BMD captures temporal information from the video, 

and that predicting this information depends on complex relationships between at least model 

architecture and pretraining datasets. 

We edit a sentence in section “fMRI responses capture temporal event structure” to read: 

We find that the TSM ResNet50 is the only model of the three that sees robust 

effects in most ROIs and DNN blocks (see Supplementary Fig. 10 for all results), 

implying that model architecture and the level of temporal information in the 

model training datasets may be closely tied to the effects of frame shuffling. 

(2) Linking the results together:

Our set of experiments perturbed various aspects of temporal information contained in the 

video. For example, the TSM vs TSN analysis restricted models in how information can be 
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shared between frames, the frame shuffling analysis affected temporal properties of (at least) 

temporal continuity, motion direction, and camera (or head) motion, and the encoding models 

processed videos according to a temporally-based objective (action classification). 

To unify these results, we focus on the results from the TSM ResNet50 model trained on M4 

because the architecture is best motivated to be a model of the visual brain and BMD is a (non-

overlapping) subset of the high temporal information M4 dataset. 

In the highly controlled TSM vs TSN analysis, restricting the model’s ability to share information 

across frames resulted in worse prediction in early visual ROIs by high-level blocks (blocks 3 

and 4). This may have reduced the model’s prediction accuracy in regions that relied on inter-

frame information to parse low-level features like basic edges, for example. In higher-level 

categorically selective regions, such as EBA, information does not necessarily need to be 

shared across frames to accomplish its primary function of body recognition since that goal is 

relatively static. 

The frame shuffling analysis affected a mix of early visual, ventral visual, and parietal cortex 

ROIs. Since frame shuffling affects multiple temporal properties of a video, we would expect it to 

impact more regions. Frame shuffling not only affects which information is shared across frames 

(and thus affects early visual regions, like above), but it also affects higher-level regions’ ability 

to interpret the scene content. In Figure 7, we (and other work) provide evidence that the 

objective of the visual system is likely to be more similar to complex scene analysis than single-

category recognition. A shuffled sequence of frames makes such scene analysis especially 

difficult. 

Lastly, as an encoding model, we observe late (early) blocks are increasingly better (worse) 

brain predictors in hierarchically late ROIs. This result fits nicely with known properties of the 

visual system, such as increasingly large receptive fields that build toward more complex neural 

representations. One novelty in this result is that this trend extends deep into the parietal cortex 

towards an even more complex objective of action recognition.  

In response part (3), we additionally link our metadata to temporal properties captured by BMD. 

We add the following text to the Discussion to summarize the consistency of the results and 

how they link together: 

For example, we perturb various temporal properties of the videos and use DNNs

to predict the corresponding brain activity. We observe how frame shuffling, by 

interrupting (at least) the video’s temporal continuity and motion direction, 

affected a mix of early visual, ventral visual, and parietal cortex ROIs (Fig. 5). 

Comparing the brain prediction performance between the Temporal Shift Module 

(TSM) architecture and the Temporal Shift Network (TSN) architecture 

(Supplementary Fig. 9) isolates the effect of sharing information across frames 

and shows significant differences predominantly in early visual ROIs. Our 
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encoding model optimized with a temporally-based objective function (action 

classification) demonstrates a correspondence in processing stages between 

video-computable DNN model blocks and cortical regions (Fig. 4), thereby both 

extending previous studies that analyzed responses to still images (Kubilius et al., 

2019; Schrimpf, Kubilius, Lee, et al., 2020; D. L. Yamins et al., 2013) and showing

we can accurately predict brain activity in the dorsal visual and parietal regions 

that are largely driven by a stimulus’s dynamic properties (Gazzola & Keysers, 

2009; Heim et al., 2012; Konen & Kastner, 2008; R. Peeters et al., 2009; R. R. 

Peeters et al., 2013). Lastly, we demonstrate that despite the sluggishness of the 

BOLD response, BMD allows tracking of visual information processing at the level 

of seconds (Fig. 6) (Hasson et al., 2004; Hasson, Yang, et al., 2008; Kiebel et al., 

2008; Murray et al., 2014; Orlov & Zohary, 2018; Piasini et al., 2021). These 

analyses consistently demonstrate BMD’s temporal content and thus present a 

unique opportunity to leverage existing models of social expressions (Hu et al., 

2022; Kahou et al., 2016; Tzirakis et al., 2018), action recognition (Carreira & 

Zisserman, 2017; Feichtenhofer et al., 2016; Monfort et al., 2022), integration of 

temporal features (Bertasius et al., 2021; Ji et al., 2013; Y. Wang et al., 2023), and 

object detection (Fan et al., 2021; Shafiee et al., 2017) to study brain function. 

(3) Relationship between meta-information and temporal dynamics of BOLD signal:

We first note the memorability analysis (Figure 8) exhibits patterns of correlations not seen in 

image-based memorability work, suggesting a relationship between the dynamic information in 

BMD's brain responses and the memorability meta-information. Second, we provide an 

additional supplementary analysis (Supplementary Figure 11, reproduced below) to verify the 

relationship between our semantic meta-information and the temporal dynamics of the BOLD 

signal. Building on the representational similarity analysis presented in Figure 7, we examine 

how well sentence descriptions of a single video frame correlate with the brain data compared 

to the sentence descriptions of the full 3 second video. In other words, we ask if our brain data 

(responses to dynamic videos) contains representations more similar to dynamic video captions

or static frame captions. In brief, we find that the video captions significantly outperform the 

frame captions in high-level ventral and dorsal brain regions (p<0.05, one sample t-test against 

a difference of 0, two-sided, Bonferroni corrected with n=22 ROIs). These results provide further 

evidence that the brain responses are not only capturing dynamic information content, but also 

this information content is reflected in our metadata. If BMD's brain responses were equivalent 

to that of a static image, we would expect the frame-level caption to perform just as well, if not 

better than, the video-level caption.  

In detail, we use the state-of-the-art captioning model GIT (Wang et al., 2022) to generate 5 

different captions of the middle frame of each video. We then feed these frame captions through 

the exact same analysis pipeline used in Figure 7. To exemplify the differences between the 

frame and video captions, we show you examples of the GIT frame captions and our provided 

video captions of the first test set video (video 1001): 
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Frame captions: 

"a red monster truck driving through a parking lot." 

"a red monster truck driving around a parking lot." 

"a red monster truck driving down a track." 

"a red monster truck driving through a parking lot" 

"a red monster truck driving down a road." 

Video captions: 

"Giant monster truck in an open field with an audience reversing" 

"What fun! The crowd has gathered around a fenced area where trucks on huge tires a parading 

around the fenced area." 

"A large monster truck reverses on an outdoor concrete course with a crowd in the background." 

"A large monster truck goes in reverse in front of a crowd" 

"A monster pickup truck rolls backwards across the field at a rally."

We note that it is not immediately clear the video captions would outperform the frame captions. 

On one hand, the frame captions succinctly and accurately relate the object, action (to the best 

extent it can in a single frame), and scene, and the video captions contain potentially irrelevant 

or distracting information (e.g., "What fun!", "parading", "rally"). On the other hand, the video 

captions accurately capture the action (the truck here is "reversing", not "driving") and spatial 

information not immediately available in a frame (e.g., the "crowd" and "fenced area" are difficult 

to parse from the frame). Especially in the context of our results presented in Figure 7, we 

believe we have provided ample evidence our semantic metadata captures various aspects of 

BMD's dynamic brain responses. We additionally make available all GIT frame captions in the 

dataset release. 

We add the following figure and caption to the supplementary 1 document: 
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Figure S11: Representational similarity of frame and video captions to fMRI 

responses. 

A) ROI-based correlation: We correlate (Spearman’s R) a representational 

dissimilarity matrix (RDM) derived from captions of short videos (purple) and 

captions of the middle frame of each video (beige) with an RDM at each voxel in 

the brain. The correlation is normalized by the voxel’s upper noise ceiling. Noise-

normalized correlations are averaged within each ROI and plotted for each 

individual subject. Five frame captions were computed from the image captioning 

GIT model version git-large-coco. The five video captions were human annotated 

and described in the “text descriptions” metadata section. Source data are 

provided as Source Data files. B) Difference in correlations: The difference 

between the video-fMRI normalized correlation and frame-fMRI normalized 

correlation for each subject was computed and plotted. Statistically significant 

ROIs are colored in green and marked with a black asterisk above (p<0.05, one 

sample two-sided t-test against a null correlation of 0, Bonferroni corrected with 

n=22 ROIs). Source data are provided as Source Data files. The box plots in both 

panels encompass the first and third data quartiles and the median (horizontal 

line). The whiskers extend to the minimum and maximum values within 1.5 times 

the interquartile range, and values falling outside that range are considered 
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outliers (denoted by a diamond). The overlaid points show the value at each 

observation (n=10 for all ROIs except TOS (n=8) RSC (n=9)). 

We add the following paragraph to the main text section Semantic metadata reveal strong 

similarity between sentence-level descriptions and visual brain activity: 

Lastly, we assess if a representation of single frame text descriptions (generated 

by GIT (Wang et al., 2022)) would correlate just as strongly as a representation of 

our full video text descriptions (Supplementary Figure 11). Although both sets of 

captions use sentences to describe the core elements of the video, the 

representation of the full video text descriptions correlates with the neural 

representations significantly better primarily throughout ventral visual cortex 

(V3v, hV4, EBA, FFA, OFA, STS, LOC, PPA, and V3ab). These results strongly 

suggest that BMD’s brain responses are not only capturing dynamic information 

content, but also this information content is reflected in the full video text 

descriptions.  

We add a reference to this analysis in the Discussion section: 

For example, the higher correlations between brain activity and complex sentence 

descriptions over word-level labels (see Fig. 7 and Supplementary Fig. 11) 

suggest that the function of these brain regions extends beyond object 

recognition (Doerig et al., 2022). 

We add the Methods section “Metadata RSA analysis procedure”: 

The RSA analysis comparing the sentence text descriptions of the full video with 

the sentence text descriptions of a single frame presented in Supplementary 1 

Figure 11 follow a similar pipeline as above. First, we generate five different 

captions of the middle frame of each video using the captioning model GIT, 

version git-large-coco (Wang et al., 2022) (generation parameters max_length=100, 

num_beams=5, temperature=1, top_k=250, top_p=1). These captions are available 

alongside the human-annotated metadata but in a separate file. 

Following the same pipeline as used for the full video sentence text descriptions 

above, we compute vector embeddings using Sentence-BERT (Reimers & 

Gurevych, 2019) for each of the five frame captions. We average the top 3 most 

similar captions and compute the pairwise cosine distance (1-cosine similarity) 

between each test set video’s averaged embedding to obtain a 102 x 102 RDM. 

The frame text description RDM has the following Spearman correlations with the 

other metadata RDMs: 

[frame text description: object]: 0.2451 

[frame text description: action]: 0.1335 
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[frame text description: scene]: 0.2025 

[frame text description: scene+object+action]: 0.2878 

[frame text description: video text description]: 0.6653 

We correlate (Spearman’s R) the frame text description RDM with the searchlight-

based neural RDMs at each voxel for each subject separately. We then normalize 

the correlation by each voxel’s upper noise-ceiling and average the correlations 

within the ROI (Supplementary 1 Figure 11a). We compute the difference in 

correlation (Supplementary 1 Figure 11b) between the full video text description 

and the frame text description at the subject-level and compute statistical 

significance for each ROI against 0 correlation (p<0.05, one sample two-sided t-

test, Bonferroni corrected with n=22 ROIs). 

We add to the supplementary 1 discussion “The added value of a short video versus a static 

image neuroimaging dataset”: 

Concerning text descriptions, short videos can capture temporal sequences of 

events that an image cannot. We contrast these video captions with captions of 

only each video’s middle frame (frame captions generated by GIT (Wang et al., 

2022)) below (emphasis our own): 

Video 0001: 

·         Video caption: "A mallard is in the water alone swimming around and 

putting its beak in." 

·         Frame caption: "A duck floating on top of a blue body of water.” 

Video 0002: 

·         Video caption: "A man is showing another man how to move feet back and 

forth." 

·         Frame caption: “a couple of men standing in a garage.” 

Video 0005: 

·         Video caption: "A woman guides a little boy's arms up and down as other 

kids stretch around him." 

·         Frame caption: “a group of children standing around a room.” 

Video 0006: 

·         Video caption: "a chess tournament is going on this is focused on two 

players one is moving their queen and taking something to put the king in 

checkmate" 

·         Frame caption: “a group of people sitting at tables playing chess.” 

Static frames of these videos cannot capture the temporal facts that the mallard is 

“putting its beak in”, the man “is showing another man how”, “a woman 

guides…as other kids stretch”, and a chess player “is moving their queen and 

taking something to put the king in checkmate.” This temporal information adds 

valuable context that often makes one’s understanding of the 3s video vastly 

different compared to any one of its single static frames. […] . We further show 
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that the full video captions lead to higher representational similarity with BMD’s 

brain responses than the frame captions through much of the ventral visual cortex 

(Supplementary Fig. 11). 

Supplementary F9: The effect of Temporal Shift Module (TSM) on brain prediction performance  
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Supplementary F7: Encoding model performance on BMD 
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Supplementary F10: The effect of frame shuffling on brain prediction performance across 

different architectures 

2. On page 47 in the response letter, the authors state that “We conclude that the TSM vs TSN 

analysis and the frame shuffling analysis are perturbing different temporal dynamics”. What 

does the temporal dynamics mean indeed? 

In this context we refer to temporal dynamics broadly as a brain process that utilizes some time-

based property of the stimulus. For example, properties like a video’s temporal continuity, 

camera (or head) motion, time-based information content, and motion may be used in 

subsequent brain processes to predict information at a future time point, interpret intentions, 

establish a point of view, navigate the environment, etc. 

The TSM and TSN architectures affect the video property of time-based information content, 

where the TSM model allows information to be shared across time (or frames) while TSN does 

not. We then say this analysis targets brain processes, or temporal dynamics in the brain, that 

rely upon such time-based information content. 

The frame shuffling analysis affects numerous video properties, such as temporal continuity, 

time-based information content, camera/head motion, direction of object motion etc. It follows 

that brain processes that leverage those properties will be affected. 

The results from the TSM vs TSN analysis and frame shuffling analysis show different patterns 

in how the ROI prediction accuracies are affected in different model blocks. Thus, we say that 

these analyses are perturbing different temporal dynamics in the brain, or brain processes that 

leverage various time-based stimulus properties. 

We intentionally refrain from defining the temporal dynamics themselves (e.g., the temporal 

dynamic of “motion prediction”), as BMD is not an ideal dataset to disentangle the exact 

relationship between a stimulus property and brain processes. For this endeavor, we would 

recommend a controlled dataset using more simplistic stimuli that systematically varies these 

time-based properties. However, these analyses make us confident that the brain responses 

captured in BMD are not equivalent to brain responses evoked by static images - by disrupting 

time-based properties of the stimuli (frame shuffling) and constraining how a model can utilize 

these time-based features (TSM vs TSN), we observe better/worse brain prediction 

performance. 

3. On page 49 in the response letter, the authors respond to the reliability of the TR peak 

estimation. The p-value here is not feasible. The p-value only gives that it may exist but it does 

not give how reliable it is. The authors should calculate the confidence interval instead. If it is 

overly wide, the discussion on the position of the TR peak may not be meaningful enough then. 

Thank you for the comment! The peak TRs were estimated at both the subject level (Figure 6d 

and 6e, main panel, reproduced below) and subject-averaged group level (Figure 6e ROI panels 
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and supplementary Figure 6b, reproduced below). Below, we address the reliability of the TR 

peak estimation for both methods and soften some language used in the manuscript describing 

the results. 

(1) Subject-level analysis (Figure 6d and 6e, main panel):  

For each subject individually, the unique variance at each of their 9 TRs and 2 video epochs 

(first and third epoch) was computed, the TR with the maximum unique variance at each of the 

2 video epochs was identified, and the difference between those two peak TRs was calculated. 

Thus, each voxel in the brain (Figure 6d) or ROI (Figure 6e, main panel) corresponded to a total 

of ten ‘TR peak differences’, one for each of the ten subjects. Per your suggestion, we compute 

a 95% confidence interval of these ROI peak differences using the Standard Error of the Mean 

(SEM) and a t-statistic with n-1 degrees of freedom. We display the confidence interval results 

in the table below. In summary, we observe a pattern of higher means and tighter confidence 

intervals in early visual ROIs. The confidence interval’s lower bound is above a peak difference 

of 1 TR in V1v, V1d, V3v, V3d, and LOC, suggesting that in these ROIs we are confident the 

peak TR difference is at least 1 full TR. We add these confidence intervals in the corresponding 

Source Data files.  

ROI Mean Difference in 
Peak TR  

95% Confidence 
Interval (lower, upper) 

Confidence Interval 
Width (upper - lower) 

V1v 2.3 (1.338, 3.262) 1.924 

V1d 2.8 (1.966, 3.634) 1.668 

V2v 1.8 (0.528, 3.072) 2.543 

V2d 2.0 (0.162, 3.838) 3.675 

V3v 2.2 (1.665, 2.735) 1.070 

V3d 2.7 (2.141, 3.259) 1.117 

hV4 0.9 (-0.978, 2.778) 3.755 

EBA 2.2 (0.313, 4.087) 3.774 

FFA 1.6 (0.578, 2.622) 2.043 

OFA 2.1 (0.653, 3.547) 2.893 

STS 1.4 (0.283, 2.517) 2.234 

LOC 2.2 (1.012, 3.388) 2.376 

PPA 1.1 (-0.482, 2.682) 3.163 
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RSC 0.55 (-1.109, 2.220) 3.329 

TOS 1.375 (-1.200, 3.950) 5.149 

V3ab 2.0 (0.720, 3.280) 2.559 

IPS0 2.7 (0.675, 4.725) 4.049 

IPS1-2-3 1.1 (-0.935, 3.135) 3.644 

7AL 1.1 (-0.722, 2.922) 3.644 

BA2 0.1 (-2.566, 2.766) 5.332 

PFt -1.3 (-3.273, 0.673) 3.946 

PFop -1.4 (-3.099, 0.299) 3.397 

(2) Subject-averaged group analysis (Figure 6e ROI panels and supplementary Figure 6b): 

An ROI's peak TR was identified as the TR was the highest subject-averaged unique variance 

for the first (blue star) and third (orange star) video epoch, computed separately. To quantify 

whether the identified peak TRs in an ROI are “reliable”, we compute a 95% confidence interval 

around its average unique variance using the Standard Error of the Mean (SEM) and a t-statistic 

with n-1 degrees of freedom. If another TR's subject-averaged unique variance falls within this 

95% confidence interval, we can say the originally identified peak TR was not reliable. This 

computation was done for each ROI and first/third video epoch independently. We find that in all 

ROIs at least one other TR’s subject-averaged unique variance overlapped with the original 

peak TR’s 95% confidence interval. These results suggest it is inappropriate to confidently 

identify a specific peak TR (e.g., to say, “In ROI V1v, the first video epoch peaks at TR 4”). 

Graphically, we observe a similar trend as the above subject-level analysis where the peak TR 

difference is most pronounced in early visual ROIs. 

In conclusion, the results from Figures 6d and 6e converge to show the early visual cortex has 

statistically significant and highly confident peak TR differences. In light of these reliability 

analyses, we review our text to make sure we do not make any claims about the exact TR the 

first/third video epochs peak. We additionally edit the following text:  

In section “BMD tracks the temporal dynamics unfolding within events”: 

Results highlight significant temporal delays throughout the ventral and dorsal 

cortex, but most pronounced in the early visual cortex. Equivalent ROI-based 

analysis (Figure 6e, upper ROI panels and main panel, see Supplementary Fig. 6 

for all ROIs) yielded a similar result pattern. ROIs in the early and ventral visual 

brain (14 of the 22 total), mostly in the early visual and ventral stream, showed a 

significant timing difference (black asterisks) between the time points at which 
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fMRI responses are most related to the contents of the first and the third epoch of 

video with tighter confidence intervals in early visual regions (See Source Data).  

Supplementary Figure 6: Encoding the temporal dynamics of the BOLD signal. 
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Figure 6: Encoding the temporal dynamics of the BOLD signal. 

Reviewer #2 (Remarks on code availability): 

The codes are accessible under the directory and the codes are organized. Maybe it would be 

better if more instructions are provided within the scripts. However, I didn't install and run the 

application 

We provide additional README files in the code directories with instructions for code execution. 

We also provide a GitHub repository of starter code in heavily commented Jupyter notebooks to 

familiarize the user with downloading the dataset, running basic analyses, and visualizing the 

results [https://github.com/blahner/BOLDMomentsDataset]. Note that we have moved all data 

and manuscript code to a repository in OpenNeuro.org for even greater accessibility 

[https://openneuro.org/datasets/ds005165].  
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