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1  Energy Distributions in Hybrid Datasets

0.054 —— FORMAMIDE
0.04 1 —— FORMAMIDE-DIMER
Py
20.03
c
@
S8 0.02-
0.011
0.00 . ) : . , ;
0 20 40 60 80 100 120 140

Relative Energy / k] mol™!
Figure S1.1. Distribution of wavefunction energies present in the datasets for the formamide

monomer (red) and dimer (orange).
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Figure S1.2. Distribution of IQA energies and charges on the C atom(s) in the datasets for the

formamide monomer (red) and dimer (orange).
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Figure S1.3. Distribution of IQA energies and charges on the O atom(s) in the datasets for the
formamide monomer (red) and dimer (orange).
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Figure S1.4. Distribution of the IQA energies and charges on the N atom(s) in the datasets for the

formamide monomer (red) and dimer (orange).
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Figure S1.5. Distribution of IQA energies and charges on the H atom(s) in the datasets for the

formamide monomer (red) and dimer (orange).
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2  Transfer Learnt Models Using Passive Sampling

In the transfer learning implemented in our in-house machine learning engine, FEREBUS,* a
“source” model is constructed from the dataset, with the number of points controlled by the
knowledge compression coefficient, 1 (eq 10 in the main text). These “source” points are a sample
of the training set of the “target” model which, in this case, contains all 5,000 training points. For
the models presented in the main text and Section 3 of the Supporting Information (SI) these points
are chosen using random sampling. Using a random sample means models may not be generated

consistently, and multiple models are possible for a given n and relaxation weight ¢.

One way to generate more consistent models is to use an enhanced sampling technique when
constructing the source model. In this section, we report complementary results obtained using
passive sampling,* which aims to select the most diverse points from the target dataset. A series of
transfer learnt formamide monomer models were generated using both random and passive
sampling to construct the source model. These models used n = 0.01 and n = 0.1, both with { =
0.01. For each of the two sets of n and ¢, 8 transfer learnt models were generated, 4 using random
sampling for generating the source model, and 4 using passive sampling. The root-mean-square-
error (RMSE), mean absolute error (MAE), maximum absolute error (maxAE) and mean absolute
percentage error (MAPE) for each atom in the formamide monomer are given in Table S2.1 (n =

0.01) and Table S2.2 (n = 0.1).

For the models with a lower 1 (0.01), the source models constructed with passive sampling tend
to lead to target models that are more consistent than the random models because the error metrics
for the majority of the atoms show smaller standard deviations. For the models trained with the
larger source models (7 = 0.1), the standard deviations in the model RMSEs and MAEs tend to be
more similar between source models constructed with random and passive sampling models, with
only the maxAE being improved by the use of passive sampling (except for H6). A more detailed
assessment of the impact of the source model sampling on the target model will be performed in

future work.
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Table S2.1. Transfer-learnt formamide monomer models generated usingm = 0.01 and { = 0.01 with source models generated using random and
passive sampling. The RMSE, MAE and maxAE are expressed in k] mol? while the MAPE is given in %. The mean and standard deviation ¢ of each
metric across multiple training runs is also given.

Random Passive
Atom Parameter | Run1 Run 2 Run 3 Run 4 Mean o Run 1 Run 2 Run 3 Run 4 Mean o
C1 RMSE 0.562 0.229 0.237 0.245 0.318 0.163 0.248 0.249 0.235 0.242 0.244 0.007
MAE 0.451 0.182 0.187 0.194 0.254 0.132 0.195 0.195 0.186 0.193 0.192 0.005
maxAE 4.031 0.792 0.928 1.023 1.694 1.561 1.680 1.274 0.895 0.911 1.190 0.371
MAPE 4.5x10% 1.8x10* 1.9x10% 1.9x10* 2.5x10*% 1.3x10* | 2.0x10* 2.0x10* 1.9x10* 1.9x10* 1.9x10* 4.6x10°
02 RMSE 0.014 0.012 0.016 0.022 0.016 0.004 0.033 0.044 0.027 0.014 0.029 0.012
MAE 0.010 0.009 0.011 0.016 0.011 0.003 0.024 0.032 0.019 0.010 0.021 0.009
maxAE 0.078 0.056 0.105 0.104 0.086 0.024 0.334 0.520 0.208 0.120 0.296 0.173
MAPE 5.1x10® 4.5x10°® 5.6x10° 7.9x10°® 5.8x10° 1.5x10° | 1.2x10° 1.6x10> 9.8x10° 5.1x10°® 1.1x10> 4.6x10°
N3 RMSE 0.110 0.092 0.088 0.092 0.095 0.010 0.099 0.222 0.092 0.092 0.126 0.064
MAE 0.087 0.072 0.067 0.072 0.074 0.009 0.078 0.181 0.070 0.072 0.101 0.054
maxAE 0.456 0.346 0.451 0.397 0.413 0.052 0.393 1.144 0.402 0.378 0.579 0.377
MAPE 6.0x10° 5.0x10° 4.6x10° 5.0x10° 5.2x10° 6.0x10° | 5.4x10> 1.3x10* 4.9x10° 5.0x10°> 7.0x10> 3.7x107°
H4 RMSE 0.006 0.006 0.076 0.006 0.024 0.035 0.067 0.050 0.006 0.038 0.040 0.026
MAE 0.004 0.004 0.058 0.004 0.018 0.027 0.051 0.035 0.004 0.027 0.029 0.019
maxAE 0.044 0.078 0.484 0.073 0.170 0.210 0.342 0.392 0.069 0.280 0.271 0.142
MAPE 2.9x10% 2.7x10* 3.8x10° 2.7x10* 1.1x103 1.7x103 | 3.3x10° 2.3x103 2.8x10* 1.8x103 1.9x10° 1.3x103
H5 RMSE 0.008 0.008 0.007 0.052 0.019 0.022 0.008 0.008 0.007 0.026 0.012 0.009
MAE 0.006 0.006 0.005 0.037 0.013 0.016 0.005 0.005 0.005 0.019 0.009 0.007
maxAE 0.054 0.082 0.055 0.286 0.119 0.112 0.088 0.053 0.061 0.153 0.089 0.046
MAPE 4.2x10* 4.1x10* 3.8x10* 2.8x103 1.0x103 1.2x103 | 3.9x10* 4.0x10* 4.0x10* 1.4x103 6.5x10* 5.1x10*
H6 RMSE 0.009 0.031 0.007 0.037 0.021 0.015 0.007 0.007 0.008 0.007 0.008 0.001
MAE 0.006 0.024 0.005 0.029 0.016 0.012 0.005 0.005 0.006 0.005 0.005 0.001
maxAE 0.057 0.184 0.041 0.277 0.140 0.112 0.046 0.033 0.046 0.034 0.040 0.007
MAPE 4.7x10% 1.7x103 3.8x10% 2.2x103 1.2x103 9.0x10* | 3.9x10* 3.9x10* 4.7x10* 3.8x10* 4.0x10* 4.1x10°
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Table S2.2. Transfer-learnt formamide monomer models generated using = 0.1 and { = 0.01 with source models generated using random and
passive sampling. The RMSE, MAE and maxAE are expressed in k] mol? while the MAPE is given in %. The mean and standard deviation ¢ of each
metric across multiple training runs is also given.

Random Passive
Atom Parameter | Run1 Run 2 Run 3 Run 4 Mean o Run 1 Run 2 Run 3 Run 4 Mean o
Cc1 RMSE 0.243 0.264 0.244 0.248 0.250 0.010 0.237 0.275 0.243 0.244 0.250 0.017
MAE 0.191 0.214 0.193 0.195 0.198 0.011 0.191 0.223 0.193 0.192 0.200 0.016
maxAE 1.112 0.926 1.039 1.442 1.130 0.222 0.766 1.091 1.166 1.198 1.055 0.198
MAPE 1.9x10* 2.1x10* 1.9x10*% 2.0x10* 2.0x10* 1.1x10° |1.9x10* 2.2x10* 1.9x10* 1.9x10* 2.0x10* 1.6x10°
02 RMSE 0.014 0.019 0.018 0.013 0.016 0.003 0.015 0.019 0.014 0.015 0.016 0.002
MAE 0.011 0.014 0.013 0.009 0.012 0.002 0.011 0.014 0.011 0.011 0.012 0.001
maxAE 0.065 0.197 0.108 0.052 0.105 0.066 0.063 0.160 0.073 0.097 0.098 0.044
MAPE 5.3x10® 6.9x10° 6.6x10° 4.6x10°® 5.9x10° 1.1x10° | 5.7x10® 7.0x10® 5.3x10°® 5.6x10® 5.9x10°® 7.3x10”
N3 RMSE 0.127 0.106 0.101 0.103 0.109 0.012 0.109 0.088 0.084 0.103 0.096 0.012
MAE 0.102 0.080 0.080 0.078 0.085 0.011 0.086 0.067 0.065 0.077 0.074 0.010
maxAE 0.534 0.627 0.371 0.763 0.574 0.165 0.457 0.464 0.399 0.545 0.466 0.060
MAPE 7.0x10° 5.5x10° 5.5x10° 5.4x10° 5.9x10° 7.8x10° | 5.9x10> 4.6x10° 4.5x10° 5.3x10° 5.1x10° 6.7x10°
H4 RMSE 0.006 0.005 0.005 0.008 0.006 0.001 0.005 0.005 0.005 0.005 0.005 0.000
MAE 0.004 0.004 0.004 0.006 0.004 0.001 0.004 0.004 0.004 0.004 0.004 0.000
maxAE 0.058 0.021 0.037 0.047 0.041 0.015 0.025 0.040 0.025 0.026 0.029 0.007
MAPE 2.8x10% 2.3x10* 2.4x10“* 3.6x10* 2.8x10* 6.0x10° | 2.4x10* 2.4x10* 2.5x10* 2.5x10* 2.4x10* 7.6x10°
H5 RMSE 0.007 0.007 0.006 0.007 0.007 0.000 0.008 0.008 0.008 0.007 0.008 0.000
MAE 0.005 0.005 0.005 0.005 0.005 0.000 0.006 0.006 0.006 0.005 0.006 0.000
maxAE 0.039 0.031 0.041 0.050 0.040 0.008 0.051 0.047 0.060 0.052 0.053 0.005
MAPE 3.6x10* 3.5x10* 3.4x10* 3.5x10“% 3.5x10* 8.2x10° | 4.5x10* 4.1x10* 4.2x10* 3.8x10* 4.2x10* 2.9x10°
H6 RMSE 0.007 0.007 0.007 0.008 0.007 0.000 0.007 0.006 0.007 0.007 0.007 0.000
MAE 0.005 0.005 0.005 0.006 0.005 0.000 0.005 0.005 0.005 0.005 0.005 0.000
maxAE 0.038 0.031 0.032 0.036 0.035 0.003 0.028 0.028 0.036 0.035 0.032 0.005
MAPE 4.0x10* 3.8x10*% 3.6x10* 4.2x10* 3.9x10* 2.6x10° | 3.5x10* 3.4x10* 3.6x10* 3.6x10* 3.5x10* 8.1x10°
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3 Evaluation of Monomer Model

As described in Section 3.1.1 of the main text, the dataset for the monomer model was
generated by performing a 1 ns simulation (with 1 fs timestep) at 300 K using the GAFF2 force field
in AMBER18>. This dataset was down-sampled to 15,000 points by selecting evenly spaced points
throughout the trajectory. Wavefunctions for each sample point were calculated by GAUSSIAN16°
at the B3LYP/6-31+G(d,p) level of theory. Energy decomposition was then performed using the
Interacting Quantum Atoms (IQA) energy partitioning implemented in AIMAII’. Generation of the
data was performed using our in-house Python pipeline named ICHORS.

Uncertainty-enhanced stratified sampling (UESS) was employed to generate a training set and
internal and external validation sets comprising 5,000, 750 and 1,500 points, respectively. A
description of these sets is given in Section 3.1.2 of the main text. Models were trained in FEREBUS
using both direct and transfer learning. In the implementation in FEREBUS, the training of the source
model in the transfer learning process is controlled by a knowledge compression coefficient 7, and
a relaxation weight . The knowledge compression coefficient is the proportion of the training set
used to generate the source model. The hyperparameters obtained by training the source model
are then used to guide the optimisation of hyperparameters for the whole training set, and the
relaxation weight represents the proportion of the optimisation steps used to optimise the source
model hyperparameters during training. In this section, we compare transfer-learnt models with n
representing 0.1, 1 and 10 % of the training set and various { to a direct-learnt model, which serves
as a reference. The accuracy of these models for reproducing molecular energies and charges across
the 1,500-point external validation set is shown in Figure S3.1 together with the training times for
each model and the root-mean-square-error (RMSE) in the atomic energies.

As highlighted in the main text, transfer-learnt models can be trained almost two orders of
magnitude faster than direct learnt models, depending on the 1 and { parameters used to generate
the models. However, the main text also shows that there is a trade-off between the computational
cost and accuracy, with parameters describing smaller source models and fewer relaxation steps
leading to faster training times but also higher errors relative to the directly-learnt model. For the
monomer models this trade-off is more favourable, with a greater proportion of transfer-learnt
models obtaining sub kJ mol™? accuracy for the atomic energies while still showing a substantial
reduction in training time. This is likely due to the lower dimensionality of the formamide monomer
making the training process easier.

Many of the transfer-learnt models are capable of reproducing the molecular properties
predicted by the direct-learnt model with sub 0.1-kJ mol! and sub 0.1-me accuracy. The transfer-
learnt model trained using = 0.1 and ¢ = 0.01 was chosen for further calculations as this model
was found to accurately reproduce the molecular properties from the direct-learnt model with a
significant reduction in training time. Another candidate was the transfer learnt model withn =0.1
and ¢ = 0, but this was not selected to avoid potential issues with the source model
hyperparameters not being optimised in the “frozen seed” model.

As in the main text, the cumulative error distributions were calculated for both the direct-learnt
and transfer-learnt models. The error distributions in the atomic energies predicted by the direct-
learnt and transfer-learnt models are compared in Figure S3.2. As the monomer model requires
electrostatic interactions to be calculated during simulation of dimers, error distributions for the
multipole moments up to the hexadecapole moment are also compared in Figures S3.3 to S3.27.
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Figure $3.1. (Top) RMSE on the formamide monomer energy (red) and charge (green) from transfer-
learnt models relative to a direct learnt model across a constant 1,500-point external validation set.
(Bottom) Training times for individual atoms, using 20 cores of a single compute node comprising
two Intel “Cascade Lake” Xeon Gold 6230 chips, compared to the RMSE in the atomic energies
across the 1,500-point validation set. The labels indicate the knowledge compression coefficient, 7,
and relaxation weight, ¢, in the form “Transfer-n-{”exhausting the 3 X 7 = 21 possibilities.
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Figure S3.2. S-curves showing the absolute error in the IQA energies predicted by the direct and

transfer-learnt formamide monomer models. Errors in the atomic energies are shown with coloured
lines and the error in the total system energy (i.e. the whole monomer) is shown by the black line.
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Figure S3.3. S-curves showing the absolute error in the atomic charges predicted by the direct and

transfer-learnt formamide monomer models. Errors in the atomic charges are shown with coloured

lines and the error in the total system charge (i.e. the whole monomer) is shown by the black line.
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Figure S3.4. S-curves showing the absolute error in the predicted Q10 component of the atomic
dipole moment from the direct and transfer-learnt formamide monomer models.
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Figure S3.5. S-curves showing the absolute error in the predicted Q11c component of the atomic
dipole moment from the direct and transfer-learnt formamide monomer models.
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Figure S3.6. S-curves showing the absolute error in the predicted Ql1ls component of the atomic
dipole moment from the direct and transfer-learnt formamide monomer models.
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Figure S3.7. S-curves showing the absolute error in the predicted Q20 component of the atomic
guadrupole moment from the direct and transfer-learnt formamide monomer models.
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Figure S3.8. S-curves showing the absolute error in the predicted Q21c component of the atomic
quadrupole moment from the direct and transfer learnt formamide monomer models.
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Figure S3.9. S-curves showing the absolute error in the predicted Q21s component of the atomic
quadrupole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.10. S-curves showing the absolute error in the predicted Q22c component of the atomic
guadrupole moment from the direct and transfer-learnt formamide monomer models.
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Figure S3.11 S-curves showing the absolute error in the predicted Q22s component of the atomic
quadrupole moment from the direct and transfer learnt formamide monomer models.

100
—_— 1 — H4
— 02 — H5
80 N3 —— H6
R
~ 60
@
=
[
o]
5 401
o
20
Direct Model Transfer Mode
odd , L
108 1077

10-¢ 10-5 10-* 10-* 102 10~® 10~ 10-° 105 10~* 10~3 10-2
Absolute Prediction Error / e Bohr? Absolute Prediction Error / e Bohr?

Figure S3.12. S-curves showing the absolute error in the predicted Q30 component of the atomic
octupole moments from the direct and transfer-learnt formamide monomer models.
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Figure S3.13. S-curves showing the absolute error in the predicted Q31c component of the atomic
octupole moments from the direct and transfer-learnt formamide monomer models.
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Figure $3.14. S-curves showing the absolute error in the predicted Q31s component of the atomic
octupole moments from the direct and transfer-learnt formamide monomer models.

100
— C1 — H4
- 02 — HS
80 N3 —— H6
S
~ 60
2
g
& 0
4
&
20
o !Jarect IIVIodeII Ll | | ITransferrModeI‘______ ; |
109109 1077 107% 10~> 107% 10-% 10210% 1077 10 1t 1kt a0 1

Absolute Prediction Error / e Bohr?

Absolute Prediction Error / e Bohr?

Figure S3.15. S-curves showing the absolute error in the predicted Q32c component of the atomic
octupole moments from the direct and transfer learnt formamide monomer models.
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Figure $3.16. S-curves showing the absolute error in the predicted Q32s component of the atomic
octupole moments from the direct and transfer learnt formamide monomer models.
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Figure $3.17. S-curves showing the absolute error in the predicted Q33c component of the atomic
octupole moments from the direct and transfer learnt formamide monomer models.
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Figure S3.18. S-curves showing the absolute error in the predicted Q33s component of the atomic
octupole moments from the direct and transfer-learnt formamide monomer models.
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Figure $3.19. S-curves showing the absolute error in the predicted Q40 component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.20. S-curves showing the absolute error in the predicted Q41c component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.21. S-curves showing the absolute error in the predicted Q41s component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $S3.22. S-curves showing the absolute error in the predicted Q42c component of the atomic

hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.23. S-curves showing the absolute error in the predicted Q42s component of the atomic
hexadecapole moment from the direct and transfer learnt formamide monomer models.
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Figure $3.24. S-curves showing the absolute error in the predicted Q43c component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.25. S-curves showing the absolute error in the predicted Q43s component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.26. S-curves showing the absolute error in the predicted Q44c component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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Figure $3.27. S-curves showing the absolute error in the predicted Q44s component of the atomic
hexadecapole moment from the direct and transfer-learnt formamide monomer models.
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A further test of the energy models is to perform geometry optimisations to see how well the
optimum geometry is recovered by the FFLUX simulations. To do so, a series of twelve monomer
geometries were generated by distorting the B3LYP/6-31+G(d,p) optimised monomer along the
calculated normal mode coordinates obtained from GAUSSIAN16. Displacement steps were
generated by scaling the normal mode coordinates by a factor of 0.15. The distorted geometries
were then optimised as described in the main text. Because these optimisations are of a single
molecule long-range electrostatic interactions are not required in these calculations. The root-
mean-square deviation (RMSD) of each of the structures compared to the reference B3LYP/6-
31+G(d,p) geometry, and of the average energy across the twelve optimised geometries was
calculated and is presented in Table 1 in the main text, showing that both the direct and transfer-
learnt GPR models recover the energy and geometry from the training level of theory well. It can
therefore be concluded that transfer learning with appropriately chosen parameters can enable
significant reductions in training time with a negligible effect on accuracy.

A further test to see how well the potential energy surface is recovered is to calculate the
vibrational frequencies. Here we use the finite-difference method implemented in the Phonopy
package® with FFLUX as the force calculator to obtain the normal mode coordinates and frequencies.
As outlined in the main text, we used the FFLUX-optimised monomer for each of the models as the
starting point for their respective frequency calculations. Table S3.1 compares the calculated
frequencies to those calculated using the B3LYP/6-31+G(d,p) training level of theory.

Table $3.1. Vibrational frequencies (in cm™) of the formamide monomer calculated using the direct-
and transfer-learnt monomer models. Absolute differences (4) from the reference vibrational
frequencies calculated using B3LYP/6-31+G(d,p) are also given.

Mode | Assignment B3LYP FFLUX Direct A FFLUX Transfer A
1 NH; wagging 256.79 235.2 21.59 243.39 13.40
2 NCO scissoring 565.43 563.56 1.87 568.74 331
3 NH, torsional twist 636.8 632.72 4.08 634.45 2.35
4 CH out-of-plane bend 1035.41 1034.48 0.93 1032.32 3.09
5 NH; rocking 1054.27 1072.72 18.45 1069.64 15.37
6 CN stretch 1270.31 1301.68 31.37 1294.26 23.95
7 OCH scissoring 1417.8 1417.68 0.12 1430.36 12.56
8 NH; scissoring 1621.48 1634.46 12.98 1637.77 16.29
9 C=0 stretch 1797.05 1811.78 14.73 1809.55 12.50
10 | CH Stretch 2976.79 3014.41 37.62 2981.35 4.56
11 [ Symmetric NH; stretch | 3588.47 3595.21 6.74 3601.8 13.33
12 Asymmetric NH; Stretch | 3733.06 3745.65 12.59 3728.94 4,12
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The vibrational frequencies are recovered relatively well by the monomer models, with mean
absolute errors respectively equating to 0.16 and 0.12 kJ mol? for the direct- and transfer-learnt
models. The maximum errors in the vibrational frequencies also equate to energetic errors that are
sub-kJ mol? and, therefore, firmly within the realm of chemical accuracy (approximately 4.2 kJ mol
1). These values again show that direct and transfer learning can produce models of similar accuracy.

Infrared (IR) spectra were also calculated using the two models and are compared to the
reference B3LYP/6-31+G(d,p) spectrum in Figure S3.28. The spectra were calculated as described in
the main text, with the final spectrum obtained by averaging spectra from 25 MD runs.

Both models reproduce the training level of theory reasonably well, with good agreement in the
relative intensities of the peaks between 1000 and 3000 cm™ and with only two significant
deviations outside of this range: (1) the NH, wagging at approximately 250 cm™ is incorrectly
predicted to have zero intensity, and (2) the (relative) intensities of the peaks associated with the
symmetric and asymmetric NH stretches between 3500 and 4000 cm™ are significantly
overestimated.

—— B3LYP/6-31+G(d,p) —— Direct Monomer Model —— Transfer Monomer Model

N TV N A

g / AU

DV SV, L

0 500 1000 1500 2000 2500 3000 3500 4000
Frequency / cm™!

Figure S3.28. IR spectra calculated using the direct-learnt monomer model (red) and the transfer-
learnt model (orange) compared to the B3LYP/6-31+G(d,p) spectrum (black).
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The absence of the NH; wagging peak in the simulated spectra could be due either to inadequate
sampling in the MD simulations or to errors in the calculated intensities due to the GPR model. To
investigate further, we calculated the spectral density from the Fourier transform of the velocity
autocorrelation function, VAF (t), given by

(v;(to) - v;(2))

VAF(t) = (v;(ty) - v;(ty))

(S3.1)

where v;(t) is the velocity of the i-th atom at time t and angular brackets indicate averages over
atoms and the time origin t,. The spectral density is shown in Figure S3.29.
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Figure $3.29. Spectral density of the formamide monomer calculated from the Fourier transform of
the velocity autocorrelation function. The FFLUX spectrum (red) was averaged over five simulations.
Black dotted lines indicate the harmonic frequencies obtained from a calculation at the B3LYP/6-
31+G(d,p) training level of theory.

There is generally good agreement between features in the spectral density obtained from the
FFLUX simulations and the frequencies predicted by B3LYP, albeit with notably larger errors in the
higher-frequency modes. The spectral density shows a peak at approximately 250 cm™ where the
NH, wagging should be found in the IR spectrum. This indicates that the vibration is sampled in the
simulations, and hence that the change in polarisation must be poorly captured by the GPR model.
We note that, despite removing the average velocity autocorrelation function before applying the
Fourier transform, the spectrum retains a large component centred around w=0 cm™. Since no
vibrations with such low frequencies were found in the finite-difference calculations, we attribute
these to drift. The fact that this features does not appear in the IR spectrum derived from the total
system dipole moment autocorrelation function is consistent with it being associated with
translational or rotational vibrational modes.

There is generally good agreement between the FFLUX vibrational frequencies calculated using
the finite-difference method and the MD method, with the largest differences for the CH and NH
stretches where MD predicts higher frequencies than the finite-difference method (although the
differences are less than 100 cm™). The frequencies of the stretches between 3000 and 4000 cm™
are also slightly higher than obtained with the training level of theory. Given that the FFLUX finite-
difference and B3LYP frequencies are both calculated within the harmonic approximation, the
higher frequencies predicted by the MD method may be due to partial inclusion of anharmonic shifts
in the MD simulations, despite the low temperature of 50 K at which the MD simulations were
performed. This is examined in Section 7 of the SI.
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4  Assignment of the Formamide Dimer Vibrational Modes

Table S4.1. Assignment of the normal modes of the formamide dimer obtained at the B3LYP/6-
31+G(d,p) level of theory.

Mode Frequency / cm™  Assighment

1 63.61 Intermolecular twist

2 137.39 Intermolecular wag (in-phase)

3 145.83 Intermolecular rocking

4 171.55 O---H stretch (in-phase)

5 178.90 Intermolecular wag (out-of-phase)
6 215.04 O---H stretch (out-of-phase)

7 492.73 NH2 wag (out-of-phase)

8 503.43 NH2 wag (in-phase)

9 609.42 NCO scissoring (in-phase)

10 631.35 NCO scissoring (out-of-phase)

11 825.54 NH2 torsional twist (out-of-phase)
12 864.14 NH2 torsional twist (in-phase)

13 1049.23 CH out of plane bend (out-of-phase)
14 1058.91 CH out of plane bend (in-phase)

15 1096.75 NH2 rocking (out-of-phase)

16 1103.66 NH2 rocking (in-phase)

17 1334.23 CN stretch (out-of-phase)

18 1347.53 CN stretch (in-phase)

19 1422.00 OCH scissoring (in-phase)

20 1422.24 OCH scissoring (out-of-phase)

21 1644.50 NH2 scissoring (in-phase)

22 1651.65 NH2 scissoring (out-of-phase)

23 1750.48 C=0 stretch (in-phase)

24 1780.53 C=0 stretch (out-of-phase)

25 2999.16 CH stretch (out-of-phase)

26 3002.21 CH stretch (in-phase)

27 3293.57 Symmetric NH2 stretch (in-phase)
28 3338.99 Symmetric NH2 stretch (out-of-phase)
29 3683.01 Asymmetric NH2 stretch (in-phase)
30 3683.49 Asymmetric NH2 stretch (out-of-phase)
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5 Transferability of Monomer Multipole Moments

To assess the transferability of multipole moments predicted by the formamide monomer model
to the dimer system, a comparison of the 36 intermolecular atom-atom electrostatic energies in the
dimer was performed.

The formamide dimer was optimised at the training level of theory and its wavefunction
calculated. The wavefunction was then used for an IQA analysis in AIMAII, yielding the electrostatic
energies V48 (see eqns 2-5 in the main text).

Each of the constituent monomers were than taken and the wavefunctions calculated and
analysed using IQA scheme to obtain the atomic multipole moments. The multipole moments were
then used to calculate the intermolecular atom-atom electrostatic energies at different electrostatic
ranks, referred to by the quantity L', for the dimer. (L' denotes the highest multipolar rank present
in a simulation and is described in more detail in the main text.)

The error in the energy of each interaction was then calculated as:
E=|vs® —v4E (55.1)

where VC“}Bis the “true” electrostatic energy between atoms A and B from the IQA partitioning of
the dimer, and VL“}B is the electrostatic energy calculated from the multipole moments of the atoms
in the constituent monomers at a given L'. These errors are presented as heatmaps in Figure S5.1.
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Figure $5.1. Heatmaps showing the errors in the intermolecular atom-atom electrostatic energies
calculated using monomeric multipole moments compared to the “true” electrostatic energies from
an IQA partitioning of the dimer.
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The heatmaps show that as the multipolar rank is increased the monomeric moments are better
able to represent the V4% of the dimer. The errors in the electrostatic energies from low-order
moments indicate that these are not transferable between the monomer to the dimer but, as the
multipolar rank increases, there is some cancellation of errors. For example, at L' = 0 the C-C
interaction exhibits an error of over 90 kJ mol™. However, adding dipoles at L' = 1 reduces this error
to below 20 kJ mol™2. But then again, at the maximum rank of L' = 4, the errors in the electrostatic
interactions are still large, with a mean absolute error of 21.1 kJ mol™? across the 36 interactions.
The largest errors are associated with the hydrogen atoms participating in the hydrogen bonding,
which is due to the multipole moments in the monomer not accounting for the intermolecular
polarisation in the dimer.

From this analysis, we conclude that the monomeric multipole moments are not transferable to
the dimer, but electrostatic interactions with L' = 4 (multipole moments up to the hexadecapole
moment) nevertheless offer a reasonable representation of the “true” dimer electrostatic energies.
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6  Optimisation of Lennard-Jones Parameters for the Monomer Model

The monomeric Gaussian process regression (GPR) models used in FFLUX simulations are able
to predict atomic multipole moments, which allows the electrostatic interactions between
molecules in a dimer (or other multi-molecule system) to be predicted. However, the monomeric
models are unable to predict dispersive and repulsive intermolecular interactions, nor a suitable
non-bonded potential. There are several different potentials available in DL_POLY, and hence in
DL_FFLUX. In this work a 12-6 Lennard-Jones potential was used, which has the following functional
form:

A.:  B::
U(Tij) = r% — r_.g (S6.1)
i ij

where A;j and B;j are parameters for the interactions between atoms i and j. We initially (i.e.
before optimisation) used the A parameters listed in Table S6.1, which were derived in our previous
work on formamidel®. Only the A parameters, representing repulsive interactions, were used for a
fair comparison to the dimer model, where all information comes from a B3LYP wavefunction that
formally contains no measure of dispersion.

Table S6.1. Initial non-bonded parameters for formamide calculations using FFLUX. Only the A
parameter, representing the repulsive interactions between atoms, was optimised, as the B
parameter was set to zero in the calculations presented in this work.

Atom A/ k) moltA2 B / kl mol"1A®

C 13,534,048 12,606.560
N 10,891,864 11,486.320
0] 3,440,600 3900.368

As described in the S| of Reference 10 the following mixing rules were used to obtain parameters
for the interactions between pairs of atoms of different types:

Ajj = |Ayd;j (S6.2)

Only the initial A parameters in Table S4.1 were optimised for use in L' = 4 simulations in which
monopole, dipole, quadrupole, octupole and hexadecapole moments are used to describe the
intermolecular electrostatic interactions. The parameters were adapted by scaling the A values by
a factor n to obtain scaled parameters A’{j according to:
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The parameters were scaled from 70 % to 130 % (i.e. from 0.70 to 1.30) of the initial values in
steps of 2.5 % (i.e. 0.025), and the formamide dimer was optimised with each parameter set as
described in the main text. The parameter set that minimised the root-mean-square-deviation
(RMSD) of the optimised dimer compared to the B3LYP/6-31+G(d,p) geometry was then selected.
While not necessarily the best way of obtaining non-bonded parameters, this does highlight the
point that non-bonded potentials such as those for a Lennard-Jones potential can in principle be
adjusted to obtain a desired result.

The RMSDs for each parameter set are given in Table S6.2. The best performing set was found
to be the initial parameters scaled by 0.775 (i.e. decreased by 22.5 %), which is highlighted in bold
red text in the table. These parameters differ from those derived in our previous work for two
reasons: (i) in this work the dispersion parameter has been set to zero, effectively resulting in a
different functional form, and (ii) the parameters in this work are derived for L' = 4, which is a
higher electrostatic rank than was used in our previous work (L' = 3).

Table S6.2. RMSD of the formamide dimer obtained from FFLUX geometry optimisations with the
monomer model and scaled Lennard-Jones parameters compared to the B3LYP/6-31+G(d,p)
optimised geometry.

Scaling n RMSD / A Scaling n RMSD / A
0.700 0.065 1.025 0.095
0.725 0.059 1.050 0.101
0.750 0.055 1.075 0.107
0.775 0.053 1.100 0.113
0.800 0.053 1.125 0.117
0.825 0.055 1.150 0.124
0.850 0.058 1.175 0.129
0.875 0.062 1.200 0.134
0.900 0.067 1.225 0.139
0.925 0.072 1.250 0.144
0.950 0.078 1.275 0.149
0.975 0.083 1.300 0.154
1.000 0.090
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7  Anharmonic Infrared Spectra

—— Direct Monomer Model —— Harmonic B3LYP/6-31+G(d,p) Anharmonic B3LYP/6-31+G(d,p)
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Figure $7.1. Harmonic (red) and anharmonic (orange) IR spectra of the formamide monomer
calculated at the training B3LYP/6-31+G(d,p) level of theory and compared to the spectrum
obtained from MD simulations in FFLUX with the direct-learnt monomer model (black). The low

temperature used in the MD simulations results in anharmonic effects not being captured in the
FFLUX spectrum.
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Figure S7.2. Harmonic (red) and anharmonic (orange) IR spectra of the formamide dimer calculated
at the training B3LYP/6-31+G(d,p) level of theory and compared to the spectrum obtained from MD
simulations in FFLUX with the direct learnt dimer model (black). The low temperature of the MD
simulations results in anharmonic effects not being captured in the FFLUX spectrum.
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