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S1 iMetaD from the general time-dependent rate theory
Let simulation i have a history-dependent bias Vi(t) which scales the rate for that simulation as

fi(t) = eβVi(t) , (S1)

where the “rate for a simulation” is the inverse of the mean observed transition time we would expect for a set of
simulations experiencing the same bias potential. Substituting this into Eqs. 7 and 11 yields

S i(ti) = e−k0
∫ ti

0 eβVi(t
′) dt′ , (S2)

with
k∗0 =

M∑N
i=1

∫ ti
0 eβVi(t′) dt′

. (S3)

If all simulations transition and we define the acceleration factor αi to be

αi =
1
ti

∫ ti

0
eβVi(t′) dt′ , (S4)

we can reinterpret the scaling of the rate constant as a scaling of time by αi

S (ti) = e−k0αiti = e−k0trescaled
i , (S5)

with
k∗0 =

N∑N
i=1 αiti

=
1〈

trescaled
i

〉 , (S6)

which are the survival function and rate estimator for iMetaD, respectively.

S2 Adding γ directly to the iMetaD rate scaling function
Consider if we had simply added γ to Eq. S1 to form a new rate theory. This would yield the rate scaling function

fi(t) = eβγVi(t) , (S7)

which, when substituted into Eq. 11, gives the LM estimate for the rate constant

k∗0(γ) =
M∑N

i=1

∫ ti
0 eβγVi(t′) dt′

, (S8)

which can be substituted along with Eq. S7 into Eq. 10 to get a likelihood function which could in principle be
maximized. However, if we do this and take the derivative with respect to γ, we find

d(log L )
dγ

=

M∑
i=1

βVi(ti) − k0

N∑
i=1

∫ ti

0
βVi(t′)eβγVi(t′)dt′. (S9)

The first term is guaranteed to be zero if no bias is deposited at the barrier, since the system is at or past the barrier
when it transitions at time ti, and the second term is strictly less than zero. Therefore, there is no maximum in the
likelihood function, so no LM estimate for the rate exists.
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S3 Results for a matched harmonic potential where γ is fit rather than
being restricted to γ = 1
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Figure S1: (a) γ obtained from the KTR and EATR methods, where the maximum likelihood estimates are represented
by open symbols and the least-squares CDF fits are represented by filled symbols. (b) The rate constants obtained from
the iMetaD, KTR, and EATR methods. iMetaD provides better rate estimates in this case because this is a perfect CV,
which iMetaD assumes while KTR and EATR do not. (c) The best-fit EATR CDFs for each value of deposition time, ∆ dt.

S4 ShapeGMM and Position-LDA clustering analysis

Figure S2: (a) Log-likelihoods of data coming from a shapeGMM model trained on K clusters as described in Sec. 5.4.2.
The agreement between training and cross-validation prediction suggests that the data is not over-fit for any of these
numbers of clusters. (b) 2D scatter plot of sampled conformations colored according to their cluster assignments from
ShapeGMM using a K = 5 model. Based on the position of each cluster in (Q,RMSD) space, we assign the 0 to be the
folded state and 1 the unfolded state (colors defined in c). (c) 1D PMF profile (solid black) along the LD1 coordinate.
Histograms of LD1 corresponding to separate clusters, normalized individually and colored according to cluster id are
shown in transparent colors.
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S5 PMFs calculated for Gō-like model of Protein G from an unbiased tra-
jectory
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Figure S3: PMFs of the Gō-like model of Protein G computed along each of the five CVs presented in the Computational
Methods section.

S6 Rate estimates using untempered MetaD
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Figure S4: (a) The rate constants obtained from the four CVs biased using untempered MetaD using the iMetaD, KTR,
and EATR methods. These methods provide accurate results in this biasing scheme. (b) The values of γ obtained from
the KTR and EATR methods for each of the CVs.

S7 Distribution of bias deposited during MetaD
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Figure S5: The averaged bias as a function of Ree and Q for well-tempered MetaD simulations of protein G unfolding, for
different values of ∆ dt (in ps) shown in the legend. The vertical dashed lines represent the values of these CVs which
were used for the excluded region in OPES fooding. The simulations with smaller ∆ dt show overbiasing.
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S8 Multiple k0 and γ pairs pass the KS test
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Figure S6: Same data as Fig. 3. (a) Shaded regions represent the ranges of rate constants for each of the five CVs
from the iMetaD, KTR, and EATR methods which pass the KS test for some value of γ. (b) Shaded regions represent
the ranges of γ values from the KTR and EATR methods which pass the KS test for some value of the rate constant. (c)
Several EATR CDFs which pass the KS test for the LD1 CV at ∆ dt = 10 ps. (d) Several EATR CDFs which pass the KS
test for the RMSD CV at ∆ dt = 1 ns.

S9 Rate estimation for OPES flooding

S9.1 k0 and γ simultaneous optimization fails for constant bias
Because OPES produces a rough estimation of the free energy very quickly, the biasing potential averaged over
many trajectories is effectively time-independent. While this is excellent for enhanced sampling applications, the
KTR and EATR methods’ k0 and γ simultaneous optimization fails in cases where the rate is not time-dependent.
To see why, consider what would happen if the bias Vi(t) = V(ξ(t)) were a constant function of the CV. Then,
according to KTR, the biased observed rate constant (denoted kobs) can be expressed as

kobs = k0eβγVmax , (S10)

where the survival function is
S (t) = e−k0eβγVmax t . (S11)

Clearly, we cannot fit both k0 and γ, as they ultimately have the same effect on the survival function: changing
the decay constant. Attempting to fit both, even for EATR (where

〈
eβγV(ξ)

〉
is constant instead), often causes unstable

solutions in the optimization, e.g. shown in Fig. 5 where γ tends to 0 or 1. This leads to poor rate estimates.

S9.2 OPES-slope fit
We can overcome the unstable optimization solutions by using the barrier parameter in OPES to determine the
relationship between the amount of bias and the biased observed rate constant in a procedure we call OPES-slope.
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To do this, we ran sets of OPES simulations with different values for the barrier parameter. We measured the
observed rate for each set of simulations as the inverse of the biased mean residence time for the simulations. We
assume that the observed rate constant is given by

kobs = k0eγg({Vi(t)}) , (S12)

where {·} denotes all values in a set of simulations, and the bias measure g({Vi(t)}) is given by the rate scaling
functions for KTR and EATR (Eqs. 16 and 19, respectively). For KTR g({Vi(t)}) = β ⟨Vmax⟩, and for EATR we
approximate g({Vi(t)}) ≈ log

〈
eβVi(t)

〉
, where ⟨·⟩ is an average over the simulations in a set . Although plugging

the EATR bias measure into Eq. S10 does not exactly lead to Eq. 19, we found that this approximation gave good
results. In OPES, these bias measures are effectively constant, but to obtain a single value we took the time average
for each simulation set. Finally, taking the natural logarithm of Eq. S12, we fit the observed rates as a function of
the bias measures, for the sets of simulations, to

log kobs = log k0 + γg({Vi(t)}) , (S13)

to obtain estimates for k0 and γ. In Fig. S7, we show log(kobs) as a function of g({Vi(t)}) for OPES simulations with
different barrier parameter values for protein G unfolding along Ree and Q. The fit of these points with Eq. S13
results in an accurate estimate of the unbiased rate and γ. The values from fitting are: KTR-slope: k0 = 2.38 µs−1

and γ = 0.51 for Q, k0 = 1.30 µs−1 and γ = 0.29 for Ree; EATR-slope: k0 = 1.44 µs−1 and γ = 0.87 for Q,
k0 = 1.34 µs−1 and γ = 0.37 for Ree. The estimates of the unbiased rate constants are within 5% of the true rate.
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Figure S7: (a) The observed rate (inverse mean residence time in the biased simulation) for each set of simulations as
a function of the bias measure g({Vi(t)}) calculated for KTR and EATR. The black horizontal dashed line marks the true
value of ln k0. (b) A comparison of the rate estimates for MetaD and OPES using the iMetaD estimator. The rates are
plotted against “speedup”, τunbiased/τobs (see also Ref. 35). Both biasing schemes give similar results at any given amount
of speedup. The blue and orange-dashed lines are the KTR and EATR rate estimates from the fit in panel (a).
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S10 2D MetaD on Ree and Rg

We performed MetaD simulations while simultaneously biasing the end-to-end distance Ree and the radius of gy-
ration Rg. For these two CVs, a combined PMF from the long unbiased trajectory is shown in Fig. S8a. The rate
constants obtained from each method are shown in Fig. S8b, and all methods recovered the rate constant equally
well, except for EATR at the fastest bias-deposition time, where the KS test failed. The corresponding CDFs and
EATR fits are shown in Fig. S8c, confirming that the method is able to predict the distribution of transition times.
For intermediate ∆ dt ≥ 102 ps, the value for γ improved in this case over only biasing Ree and improved slightly
over only biasing Rg. This suggests that biasing multiple CVs simultaneously increases the efficiency of biasing
without affecting the rate estimation. This might also be the reason why iMetaD preforms well in this case, while it
failed for the same bias-deposition times when biasing individual CVs (see Fig. 3).
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Figure S8: (a) The potential of mean force projected onto the 2D Rg/Ree space. (b) The rate constants obtained from
each method at various deposition times. The horizontal dashed line represents the true unbiased rate for this system.
(c) The empirical and EATR-fit CDFs for each deposition time. The deposition times in the legend are given in ps. (d)
The γ values obtained for KTR and EATR at various deposition times. In panels b, c, and d, open shapes indicate where
the KS test failed. We performed some simulations with even slower biasing with the result that not every simulation
transitioned; while the resulting rate constant estimate was unaffected, the estimated value of γ dropped significantly.
The effects on the rate and γ are shown in SI Fig. S9.
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S11 Effect of un-transitioned simulations on k0 and γ
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Figure S9: Same as Fig. S8, with additional slower deposition times where not all simulations transitioned. (a) The rate
constants obtained from fitting the CDF for iMetaD, KTR, and EATR for the 2D Ree/Rg CV. The rate constant estimates for
∆ dt = 5 ns and 10 ns are as accurate as the previous points, although only 66% and 50% of the simulations transitioned,
respectively. (b) The values of γ obtained from KTR and EATR. The γ estimates for ∆ dt = 5 ns and 10 ns are significantly
lower than the previous points. (c) The empirical CDF and the best fit EATR CDF for ∆ dt = 100 ps, 1 ns, and 10 ns. The
KS test is not reported for incomplete simulation sets due to how the KS test is implemented in SciPy.

S12 Simulation software and parameters
Simulations were initially performed with the LAMMPS version from 5 May 2020 and PLUMED 2.6.6. We
switched to a newer version of LAMMPS and PLUMED to perform simulations with the LDA coordinate, and due
to an error in how the older version of PLUMED was computing Q, which we corrected in PLUMED 2.8*. The
exact versions used for all of our simulations are given in Tab. S1.

Table S1: The version of each software used in each simulation set.

Simulations LAMMPS PLUMED
Unbiased 1D — v2.8.1

Biased 1D — v2.8.1
Unbiased GB1 5 May 2020 —

Ree 5 May 2020 v2.6.6
Rg 5 May 2020 v2.6.6

LD1 23 Jun 2022 v2.8.3
RMSD 5 May 2020 v2.6.6

Q 23 Jun 2022 v2.8.3
Ree/Rg (2D) 23 Jun 2022 v2.8.3

Q and Ree OPES 23 Jun 2022 v2.8.3

Table S2: The MetaD parameters used for the well-tempered and untempered MetaD simulations for each CV.

Simulations WT HEIGHT WT SIGMA WT BIASFACTOR UT HEIGHT UT SIGMA
1D 1.0 kBT 0.5 2.0 — —
Ree 0.4 kJ/mol 0.06 nm 10.0 0.2 kJ/mol 0.01 nm
Rg 0.4 kJ/mol 0.02 nm 10.0 0.2 kJ/mol 0.01 nm

LD1 1.0 kJ/mol 0.5 6.0 — —
RMSD 0.4 kJ/mol 0.02 nm 10.0 0.2 kJ/mol 0.01 nm

Q 0.6 kJ/mol 0.02 10.0 0.2 kJ/mol 0.01
Ree/Rg (2D) 0.6 kJ/mol 0.06 nm/0.02 nm 10.0 — —

*https://github.com/plumed/plumed2/pull/951
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