Supporting Information - Polypeptoid monomer sequence and chemical composition as independent controls of interfacial tension and elasticity at air/fluid interfaces

Michal Roguski^{1†}, Michael L. Davidson^{1†}, Audra J. DeStefano², Rachel A. Segalman^{2,3}, and Lynn M. Walker*⁴

- ¹ Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213
- ² Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106
- ³ Department of Materials, University of California, Santa Barbara, CA, 93106
- ⁴ Department of Chemical Engineering & Materials Science, University of Minnesota, Minneapolis, MN, 55455

Details:

This supporting information contains 2 pages and 1 figure.

[†] shared first authorship, these authors contributed equally.

^{*}corresponding author: lmwalker@umn.edu

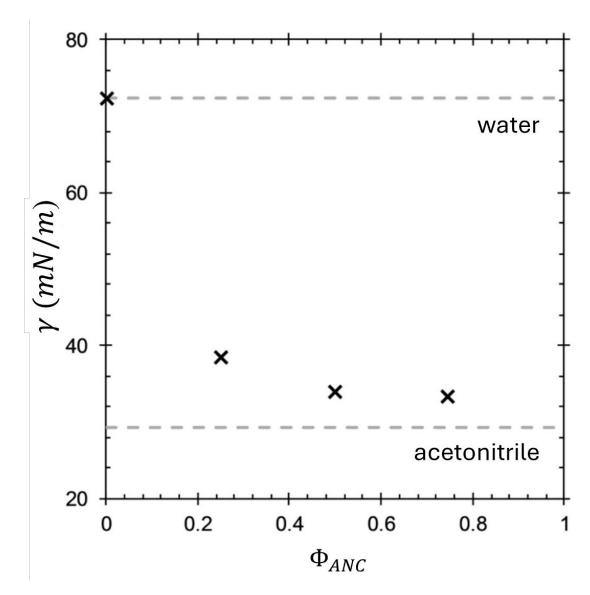


Figure S1. Surface tension of acetonitrile/water mixtures measured with the microtensiometer. Dashed lines are the surface tensions of the pure solvents.¹

Figure S1 shows the results of measurements of the interfacial tension between air and mixtures of acetonitrile and water of different volume fractions of acetonitrile (ϕ_{ACN}). The dashed lines show values of the interfacial tension of pure components (72.2 mN/m for pure water, and 29.3 mN/m for pure acetonitrile).

References:

1. Tahery, R.; Modarress, H.; Satherley, J. J. Chem. Eng. Data 2006, 51 (3), 1039–1042