1 Supplementary Information

Combining advanced analytical methodologies to uncover suspect
PFAS and fluorinated pharmaceutical contributions to extractable
organic fluorine in human serum (Tromsø Study)
Lara Cioni ^{1,2*} , Vladimir Nikiforov ¹ , Jonathan P. Benskin ³ , Ana Carolina M. F. Coêlho ² , Silvia
Dudášova ⁴ , Melanie Z. Lauria ³ , Oliver J. Lechtenfeld ⁴ , Merle M. Plassmann ³ , Thorsten
Reemtsma ⁴ , Torkjel M. Sandanger ^{1,2} , Dorte Herzke ^{1,5}
1. NILU, Fram Centre, Tromsø, NO-9296, Norway
2. UiT – The Arctic University of Norway, Department of Community Medicine, Tromsø, NO-
9037, Norway
3. Stockholm University, Department of Environmental Science, Stockholm, SE-10691,
Sweden
4. Helmholtz Centre for Environmental Research – UFZ, Leipzig, DE-04103 Germany
5. Norwegian Institute for Public Health, Oslo, NO-0213, Norway
*Corresponding authors
Lara Cioni - Institute of Environmental Assessment and Water Research (IDAEA) - CSIC,
Environmental and Water Chemistry for Human Health (ONHEALTH), Barcelona, ES-08034,
Spain
*lara.cioni@idaea.csic.es
Summary: 16 pages, 10 tables

25	The following information is included:
26 27 28 29 30 31	 Pooled serum samples details (page S3) Sample preparation procedure (page S3) LC-Orbitrap-HRMS measurements details (page S4) Fluorine mass balance calculations (page S11) TOP assay on model CF3-pharmaceuticals and agrochemicals details (page S11) Statistical analysis details (page S12)
32	
33	The following tables are included:
34 35 36 37	 Table S1 – Orbitrap Q-Exactive ion source and full scan and ddMS2 acquisition parameters. Table S2 – Orbitrap Exploris 120 ion source and full scan and ddMS2 acquisition parameters.
38	• Table S3 – Target PFAS ppm error in DI-FT-ICR-MS.
39	• Table S4 – patRoon suspect screening workflow parameters.
40	• Table S5– Target PFAS ppm error in LC-Orbitrap-HRMS.
41	• Table S6 – Information about suspects analytical standards.
42 43	• Table S7 – Suspects detected in 20 human serum pools analyzed by DI-FT-ICR-MS with a mass error <0.5 ppm and a similarity score > 70.
44	• Table S8 - Suspect PFAS detected by LC-Orbitrap-HRMS with mass error < 2 ppm.
45 46 47	 Table S9 - Multiple linear regression coefficients estimates and 95% confidence intervals for ln(PFECHS/UPFOS), ln(Σ13PFAS), ln(ΣF-pharmaceuticals) and ln(UEOF) in pooled serum samples from the Tromsø Study.
48 49	• Table S10 – Multiple linear regression (including sex and sampling year interaction terms) coefficients estimates and 95% confidence intervals for ln(PFECHS/UPFOS)

50 $\ln(\Sigma 13 PFAS)$ and $\ln(UEOF)$ in pooled serum samples from the Tromsø Study.

51 **1. Materials and methods**

52 1.1. Pooled serum samples

53 Individual serum samples were pooled based on sampling year, sex, age and T2DM diagnosis. Pools 1 to 7 at each sampling year included the same individuals in 1986, 2007, and 2015. To 54 have the largest possible number of pools including the same individuals, these pools were 55 obtained mixing variable volumes (50, 100, or 150 µL) of individual serum samples but 56 57 keeping the volume per individual constant throughout the sampling years. For the remaining pools, it was not possible to follow the same individuals through time and 15 participants (with 58 59 matching sampling year, sex, age, and type-2 diabetes diagnosis) were included in each pool mixing 50 µL of serum per individual. Detailed information about the serum pools 60 characteristic (number of individuals, age range and mean, and type-2 diabetes status) can be 61 found in our previous study [1]. 62

63 **1.2.** Sample preparation

The extracts analysed for suspect screening (Figure 1) using DI-FT-ICR-MS and LC-Orbitrap-64 HRMS were the same used for EOF analysis with CIC in our previous fluorine mass-balance 65 study [1]. The EOF extracts were obtained extracting 500 μ L of serum with 1 mL of ACN. 66 Samples were vortexed and sonicated (10 min) 3 times, and after centrifugation at 10,000 rpm 67 for 10 min, supernatants were transferred to 2 mL glass vials. To confirm/discard suspect 68 assignments samples after TOP assay from our previous fluorine mass-balance study [1] were 69 70 also run by LC-Orbitrap-HRMS (Figure 1). The TOP assay was performed on a portion of serum pools ACN extract. Prior to oxidation, ACN was removed by evaporation, and the dry 71 extracts were reconstituted with 0.8 M Na2S2O8 and 10 M NaOH. Post oxidation, the samples 72 were acidified and extracted with MTBE. Aliquots of the organic phase were transferred to 73 vials with insert and spiked with recovery standard and 2% ammonia in methanol. The MTBE 74 was evaporated prior analyses. 75

76 **1.2. LC-Orbitrap-HRMS measurements**

All 46 serum pools were first analyzed using a Dionex UltiMate 3000 Ultrahigh performance 77 liquid chromatograph coupled to a Q Exactive HF hybrid Quadrupole-Orbitrap mass 78 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) in full scan with data dependent 79 MS2 (ddMS2) acquisition. The LC column was a Waters BEH C18 column (2.1x50 mm, 1.7 80 µm) and analytes were separated with the LC gradient described by Miaz et al. using 2mM 81 82 NH₄OAc in 90:10 water: acetonitrile (A) and 2mM NH₄OAc in 99:1 acetonitrile: water (B) as mobile phases. The injection volume was 5 µl and the LC gradient was the following: start 83 84 (90% A, flow: 0.4 mL/min), 0.5 min (90% A, flow: 0.4 mL/min), 8.0 min (20% A, flow: 0.4 mL/min), 8.1 min (0% A, flow: 0.4 mL/min), 11.0 min (0% A, flow: 0.4 mL/min), 11.1 min 85 (90% A, flow: 0.4 mL/min), 13 min (90% A, flow: 0.4 mL/min) The MS acquisition parameters 86 87 are reported in Table S1.

Thereafter, serum pools were re-analyzed on a different LC-Orbitrap-HRMS system, a Vanquish UHPLC coupled with an Orbitrap Exploris 120 (Thermo Fisher Scientific, Waltham, MA, USA). The LC was operated with an Acquity UPLC HSS T3 column (2.1×100 mm, 1,8 µm) equipped with a Waters Van guard HSS T3 guard column (2.1×5 mm, 1.8 µm). The LC gradient described by Hanssen et al. [2] using 2mM NH₄OAc in 90:10 water:acetonitrile (A) and 2mM NH₄OAc in 99:1 acetonitrile:water (B) as mobile phases. The MS acquisition parameters are reported in Table S2.

95

97	Table S1 – Orbitrap	Q-Exactive ion	source and full	scan and ddMS2 a	equisition parameters.
•		X			

Ion source parameters						
Ion source type	H-ESI					
Spray voltage (V)	3700					
Sheath gas (arb)	30					
Aux gas (arb)	10					
Spare gas (arb)	0					
Capillary temperature (°C)	350					
Aux gas heater temperature (°C)	350					
S-lens RF level (arb)	50					
Full scan parameters						
Orbitrap resolution	120000					
Scan range (m/z)	200-1800					
AGC target	3e6					
Maximum injection time (ms)	250					
Microscans	1					
Data type	Profile					
Polarity	Negative					
ddMS2 parameters						
Orbitrap resolution	15000					
AGC target	2e5					
Maximum injection time (ms)	30					
Loop count	5					
MSX count	1					
TopN	5					
Isolation window (m/z)	0.4					
Isolation offset (m/z)	0.0					
NCE	35					
Microscans	1					
Minimum AGC target	2e3					
Intensity threshold	6.7e4					
Apex trigger (s)	1 to 5					
Exclude isotopes	on					
Dynamic exclusion (s)	5.0					

Ion source parameters	
Ion source type	H-ESI
Spray voltage	Static
Negative ion voltage (V)	2500
Gas mode	Static
Sheath gas (arb)	40
Aux gas (arb)	5
Sweep gas (arb)	0
Ion transfer tube temperature (°C)	200
Vaporizer temperature (°C)	300
Full scan parameters	
Orbitrap resolution	120000
Scan range (m/z)	150-700
RF lens (%)	65
Normalized AGC target (%)	100
Maximum injection time (ms)	100
Microscans	1
Data type	Profile
Polarity	Negative
ddMS2 parameters	
Isolation window (m/z)	0.8
Isolation offset	Off
Collision energy mode	Stepped
Collision energy type	Absolute
HCD collision energies (V)	15,35,60,75
Orbitrap resolution	15000
Scan range mode	Auto
Normalized AGC target (%)	100
Maximum injection time (ms)	100
Microscans	1
Intensity threshold	1.0e4
Apex detection desired window (%)	30

Table S2 – Orbitrap Exploris 120 ion source and full scan and ddMS2 acquisition parameters.

1.3. Suspect screening data processing

		Molecular		
	Compound	formula	Theoretical m/z	ppm error
	PFHpA	$C_7HF_{13}O_2$	362.96962	0.16 ± 0.09
	PFOA	$C_8HF_{15O_2}$	412.96642	0.13 ± 0.05
	PFNA	$C_9HF_{17}O_2$	462.96323	0.44 ± 0.04
	PFDA	$C_{10}HF_{19}O_2$	512.96004	0.18 ± 0.06
	PFUnDA	$C_{11}HF_{21}O_2$	562.95684	0.15 ± 0.10
	PFDoDA	$C_{12}HF_{23}O_2$	612.95365	Not detected
	PFHxS	$C_6HF_{13}O_3S$	398.93660	0.13 ± 0.01
	PFHpS	$C_7HF_{15}O_3S$	448.93341	0.20 ± 0.14
	PFOS	$C_8HF_{17}O_3S$	498.93022	0.15 ± 0.08
	FOSAA	$C_{10}H_4F_{17}NO_4S$	555.95168	Not detected
	Me-FOSAA	$C_{11}H_{6}F_{17}NO_{4}S$	569.96733	Not detected
_	Et-FOSAA	$C_{12}H_8F_{17}NO_4S$	583.98298	0.22 ± 0.10

Table S3 – Target PFAS ppm error in DI-FT-ICR-MS.

Table S4 – patRoon suspect screening workflow parameters.

Feature detection						
Function	findFeatures					
Algorithm	OpenMS (default settings)					
noiseThrInt	1000					
chromSNR	3					
chromFWHM	5					
minFWHM	1					
maxFWHM	30					
Feature retention	n time alignment					
Function	groupFeatures					
Algorithm	OpenMS (default settings)					
Feature	filtering					
Function	filter					
preAbsMinIntensity	100					
absMinIntensity	10000					
relMinReplicateAbundance	0.3 (PFAS), 0 (fluorinated pharmaceuticals)					
maxReplicateIntRSD	1					
blankThreshold	3					
removeBlanks	TRUE					
retentionRange	NULL					
mzRange	NULL					
Suspect s	creening					
Function	screenSuspects					
rtWindow	12					
mzWindow	0.008					
adduct	[M-H]-					
onlyHits	TRUE					
MS2 and	notation					
Function (retrieving MS2 peaks)	generateMSPeakLists					
maxMSRtWindow	5					
precursorMzWindow	4					
avgFeatParams	avgMSListParams					
avgFGroupParams	avgMSListParams					
Function (filtering MS2 peaks)	filter					
absMSIntThr	NULL					
absMSMSIntThr	NULL					
relMSIntThr	NULL					
relMSMSIntThr	0.05					
topMSPeaks	NULL					
topMSMSPeaks	50					
Function (MS2 spectra database annotation)	generateCompounds					
dbRelMzDev	5					
fragRelMzDev	5					
fragAbsMzDev	0.002					
adduct	[M-H]-					
database	Pubchem/Comptox					
maxCandidatesToStop	2500					

	Molecular		
Compound	formula	Theoretical m/z	ppm error
PFHpA	$C_7HF_{13}O_2$	362.9696	0.8 ± 0.3
PFOA	$C_8HF_{15O_2}$	412.9664	0.8 ± 0.2
PFNA	$C_9HF_{17}O_2$	462.9632	1.1 ± 0.2
PFDA	$C_{10}HF_{19}O_2$	512.9600	0.2 ± 0.1
PFUnDA	$C_{11}HF_{21}O_2$	562.9568	0.4 ± 0.2
PFDoDA	$C_{12}HF_{23}O_2$	612.9537	0.6 ± 0.3
PFHxS	$C_6HF_{13}O_3S$	398.9366	0.5 ± 0.3
PFHpS	$C_7HF_{15}O_3S$	448.9334	0.9 ± 0.2
PFOS	$C_8HF_{17}O_3S$	498.9302	0.3 ± 0.2
FOSAA	$C_{10}H_4F_{17}NO_4S$	555.9517	1.0 ± 0.4
Me-FOSAA	$C_{11}H_6F_{17}NO_4S$	569.9673	0.2 ± 0.1
Et-FOSAA	$C_{12}H_8F_{17}NO_4S$	583.9830	0.5 ± 0.2

Table S5– Target PFAS ppm error in LC-Orbitrap-HRMS.

114 **Table S6** – Information about suspects analytical standards.

Compound name	CAS	Structure	Supplier
Perfluoro-4- ethylcyclohexane sulfonate (PFECHS)	646-83-3	F = F = F = F = F = F = F = F = F = F =	Chiron AS
Teriflunomide	163451-81-8		Merck
Lansoprazole	103577-45-3		Merck
Lansoprazole sulfide	103577-40-8		Cymit Quimica
Lansoprazole sulfone	131926-99-3		Cymit Quimica
Pantoprazole sodium	164579-32-2	$H_{0}H$ $H_{0}H$ $H_{0}H$ $F = \sum_{n=1}^{N_{0}+1} \sum_{n=1}^{N_{0}+$	Merck
Pantoprazole sulfone	127780-16-9		Cymit Quimica

115 **1.4. Fluorine mass-balance calculations**

To allow the comparison between the concentrations of EOF and identified suspects, molecular
concentrations (i.e., ng substance per mL of serum) were converted to fluorine equivalents (i.e.,
ng fluorine per mL of serum) using equation S1.

119

$$Concentration \left(\frac{ng F}{mL}\right) = \frac{concentration \left(\frac{ng}{mL}\right) \cdot nF \cdot AW_F}{MW_{SUSPECT}}$$
(S1)

120

where nF is the number of fluorine atoms in the suspect structure, A_F is the atomic weight of fluorine and $MW_{SUSPECT}$ is the molecular weight of the suspect which concentration is being converted.

124

125 1.5. TOP assay on model CF₃-pharmaceuticals and agrochemicals

126 The samples after oxidation were analyzed for trifluoroacetic acid (TFA) using a quaternary Accela 1250 pump with a PAL Sample Manager coupled to a Vantage TSQ MS/MS (Thermo 127 Fisher Scientific, Waltham, MA, USA) and on the LC-Orbitrap-Exploris system mentioned 128 129 above to check for the presence of the model substances. TFA was analysed with a Raptor Polar X column with a 5 minute isocratic run with 80 % 2mM ammonium acetate in methanol 130 and 20 % 2mM ammonium acetate in 90:10 water:methanol as described by Cioni et al. [1]. 131 The LC-Orbitrap Exploris analysis was performed in full scan with data independent 132 acquisition (DIA) to screen the samples after oxidation for the presence of the model substances 133 and transformation products other than TFA. 134

135

136

138 **1.6. Statistical analysis**

139 Differences in PFECHS/UPFOS, \sum_{13} PFAS, \sum F-pharmaceuticals and UEOF between 140 sampling years as described by Cioni et al. [1] using multiple linear regression with the 141 following equation:

$$y = \beta_0 + \beta_1 dummy \ 1 + \beta_2 dummy \ 2 + \beta_3 \ sex + \beta_4 \ age \tag{S2}$$

where y is the log transformed concentration; $\beta 0$ is the intercept of the multiple linear regression; β_1 , β_2 , β_3 and β_4 are the regression coefficients for the predictor variables; dummy 143 1 is a dummy variable equal to 1 if sampling year is 1986, equal to 0 if sampling year is 2007 145 or 2015; dummy 2 is a dummy variable equal to 1 if sampling year is 2015, equal to 0 if 146 sampling year is 1986 and 2007; sex is categorical variable equal to 0 for women and equal to 147 1 for men; age is the weighted mean age of the individuals making up each pool expressed in 148 years.

When sex was a significant predictor, differences in concentrations between men and women
at each sampling year were evaluated by adding an interaction term between sex and each
sampling year dummy variable as described by equation S3.

152

$$y = \beta_0 + \beta_1 dummy \ 1 + \beta_2 dummy \ 2 + \beta_3 \ sex + \beta_4 \ age + \beta_5 \ dummy \ 1 \ sex + \beta_6 \ dummy \ 2 \ sex$$
(S3)

153

Statistical significance was set at p <0.05. Post-hoc power calculations were performed using
the pwr package.

157 **2. Results and discussion**

158 Table S7 – Suspects detected in 20 human serum pools analyzed by DI-FT-ICR-MS with a

159 mass error <0.5 ppm and a similarity score > 70.

			1986		2007		2015			
		DF	ppm error	Similarity	DF	ppm error	Similarity	DF		Similarity
Formula	Exact mass	n pools	Mean \pm SD [*]	score Mean \pm SD [*]	n pools	Mean \pm SD [*]	score Mean \pm SD [*]	n pools	ppm error Mean ± SD [*]	score Mean \pm SD [*]
$C_4F_6O_1H_3N_1$	195.0119	6	0.37 ± 0.02	100 ± 0	2	0.35 ± 0.00	NC	0	-	-
$C_5F_6O_1H_5N_1$	209.0275	11	0.35 ± 0.00	97 ± 3	4	0.35 ± 0.00	97 ± 3	5	0.36 ± 0.02	100 ± 0
$C_4F_6O_1Cl_1H_3$	215.9777	7	0.30 ± 0.05	93 ± 13	2	0.33 ± 0.03	100 ± 0	1	0.3	100
$C_9F_4H_6N_2$	218.0467	11	0.24 ± 0.02	91 ± 0	4	0.26 ± 0.00	91 ± 0	5	0.25 ± 0.02	91 ± 0
$C_5F_6O_3H_6$	228.0221	2	0.41 ± 0.00	100 ± 0	0	-	-	0	-	-
$C_6F_6O_3H_2$	235.9908	9	0.35 ± 0.00	100 ± 0	4	0.35 ± 0.00	100 ± 0	4	0.35 ± 0.00	100 ± 0
$C_9F_6H_7N_1$	243.0483	10	0.34 ± 0.05	94 ± 5	4	0.36 ± 0.00	NC	5	0.33 ± 0.02	100 ± 0
$C_6F_7O_2H_7$	244.0334	9	0.40 ± 0.04	86 ± 14	4	0.43 ± 0.02	75 ± 5	4	0.39 ± 0.04	91 ± 9
$C_7 F_6 O_2 H_{11} N_1$	255.0694	10	0.40 ±0.03	94 ± 0	4	0.38 ± 0.03	96 ± 0	5	0.36 ± 0.02	100 ± 0
$C_6F_6O_2Cl_1H_7\\$	260.0039	10	0.39 ± 0.04	98 ± 8	4	0.41 ± 0.05	100 ± 0	5	0.38 ± 0.04	99 ± 2
$C_5F_8O_3H_2$	261.9876	11	0.36 ± 0.04	100 ± 0	4	0.33 ± 0.04	NC	5	0.31 ± 0.04	NC
$C_{10}F_{5}O_{2}H_{7}N_{2} \\$	282.0428	1	0.14	90	0	-	-	0	-	-
$C_{10}F_7O_2H_5$	290.0178	8	0.34 ± 0.02	100 ± 0	3	0.31 ± 0.00	100 ± 0	5	0.31 ± 0.00	96 ± 5
$C_9F_4O_4H_{10}S_1$	290.0236	2	0.36 ± 0.17	86 ± 0	0	-	-	0	-	-
$C_9F_7O_1H_5N_2$	290.0290	9	0.21 ± 0.08	94 ± 5	4	0.20 ± 0.03	100 ± 0	5	0.29 ± 0.03	NC
$C_{11}F_6O_2H_{12}$	290.0741	1	0.30	100	0	-	-	0	-	-
$C_9F_7O_2H_4N_1$	291.0130	8	0.19 ± 0.08	98 ± 4	4	0.25 ± 0.03	97 ± 5	5	0.27 ± 0.02	96 ± 5
$C_7F_9O_2H_5$	292.0146	1	0.25	100	0	-	-	0	-	-
$C_{12}F_6O_2H_{12}$	302.0741	11	0.16 ± 0.03	92 ± 5	4	0.13 ± 0.04	89 ± 0	5	0.18 ± 0.03	89 ± 0
$C_{11}F_7O_1H_8N_1$	303.0494	4	0.42 ± 0.03	81 ± 0	1	0.48	NC	1	0.44	NC
, $C_7F_9O_2H_6N_1$	307.0255	11	0.45 ± 0.02	93 ± 0	4	0.45 ± 0.02	93 ± 0	5	0.46 ± 0.02	93 ± 0
$C_{11}F_6O_3H_{14}$	308.0847	5	0.05 ± 0.03	89 ± 0	0	-	-	1	0.40	NC
$C_{10}F_9O_1H_9$	316.0510	7	0.20 ± 0.04	100 ± 0	0	-	-	0	-	-
$C_{13}F_6O_2H_{14}$	316.0898	8	0.30 ± 0.08	70 ± 4	1	0.28	71	1	0.25	NC
$C_5F_9O_1Cl_2H_1$	317.9261	2	0.37 ± 0.02	100	0	-	-	1	0.36	100
$C_7 F_{12} O_1 H_3 N_1$	345.0023	3	0.23 ± 0.09	87 ± 10	2	0.38 ± 0.06	93 ± 0	3	0.15 ± 0.04	93 ±0
$C_{13}F_6O_2Cl_1H_{13}\\$	350.0508	11	0.19 ± 0.07	92 ± 9	4	0.28 ± 0.09	86 ± 14	4	0.17 ± 0.11	90 ± 0
$C_8F_{12}O_2H_2$	357.9863	8	0.41 ± 0.05	97 ± 4	3	0.37 ± 0.09	100 ± 0	4	0.42 ± 0.07	100 ± 0
$C_{12}F_5O_5Cl_1H_6$	359.9824	3	0.37 ± 0.02	85 ± 14	1	0.37	NC	3	0.34 ± 0.02	76 ± 0
$C_{13}F_6O_2Cl_1H_{14}N_1\\$	365.0617	11	0.12 ± 0.09	81 ± 17	4	0.11 ± 0.09	NC	3	0.08 ± 0.06	NC
$C_{12}F_{11}H_5N_2$	386.0277	9	0.38 ± 0.08	92 ± 7	3	0.36 ± 0.02	NC	5	0.38 ± 0.04	NC
$C_7F_{12}O_4Cl_1H_1$	411.9372	2	0.43 ± 0.09	100 ± 0	0	-	-	0	-	-
$C_{10}F_9O_5H_{17}N_2S_1\\$	448.0714	6	0.46 ± 0.02	93 ± 6	1	0.42	NC	4	0.43 ± 0.02	NC
$C_{16}F_{6}O_{3}Cl_{2}H_{8}N_{2} \\$	459.9816	1	0.33	100	0	-	-	0	-	-
$C_8F_{15}O_3H_1S_1$	461.9407	2	0.16 ± 0.05	100	1	0.09	NC	1	0.11	NC
$C_{17}F_6O_5H_{22}P_1N_1\\$	465.1140	1	0.45	100	0	-	-	0	-	-
$C_{11}F_{15}O_2H_8N_1\\$	471.0316	10	0.25 ± 0.04	72 ± 3	2	0.22 ± 0.00	70 ± 0	4	0.26 ± 0.04	71 ± 1

					i			1		
$C_8F_{15}O_4HS$	477.9356	0	-	-	2	0.25 ± 0.00	90 ± 0	0	-	-
$C_{15}F_9O_3H_{21}N_2S_1\\$	480.1129	7	0.40 ± 0.05	84 ± 2	1	0.44	83	4	0.47 ± 0.01	83 ± 0
$C_{12}F_{11}O_{6}H_{4}N_{3} \\$	494.9924	11	0.14 ± 0.11	77 ± 1	3	0.19 ± 0.13	NC	3	0.23 ± 0.15	NC
$C_{11}F_{17}O_3H_5$	507.9967	7	0.03 ± 0.02	100 ± 0	4	0.03 ± 0.02	100 ± 0	3	0.12 ± 0.08	100 ± 0
$C_{19}F_{13}O_1H_{11}N_2$	530.0664	4	0.40 ± 0.07	NC	1	0.47	100	0	-	-
$C_{13}F_{17}O_2H_{12}N_1 \\$	537.0597	6	0.36 ± 0.09	72 ± 0	3	0.30 ± 0.12	72 ± 0	4	0.26 ± 0.12	76 ± 0
$C_{14}F_{17}O_4H_7$	562.0073	3	0.21 ± 0.14	100 ± 0	1	0.03	NC	3	0.15 ± 0.12	91 ± 13
$C_{18}F_{17}O_4H_9$	612.0229	4	0.21 ± 0.07	84 ± 0	1	0.31	100	1	0.17	NC
$C_{15}F_{19}O_2H_{13}N_2$	614.0674	1	0.40	NC	1	0.06	100	1	0.15	86
$C_{14}F_{17}O_4H_{14}N_1S_1\\$	615.0372	2	0.12 ± 0.03	100 ± 0	1	0.14	100	2	0.05 ± 0.01	87 ± 0
$C_{16}F_{17}O_4H_8P_1\\$	617.9889	1	0.04	81	0	-	-	0	-	-
$C_{17}F_{19}O_1H_{19}N_2$	628.1194	0	-	-	1	0.06	80	0	-	-
$C_{13}F_{24}O_1H_4$	631.9879	2	0.29 ± 0.09	NC	1	0.04	88	2	0.36 ± 0.14	88 ± 0
$C_{16}F_{17}O_{3}H_{9}N_{2}S_{1} \\$	632.0062	2	0.26 ± 0.08	NC	1	0.37	100	2	0.26 ± 0.20	100 ± 0
$C_{12}F_{19}O_{1}I_{1}H_{6}$	653.9160	2	0.33 ± 0.18	NC	2	0.24 ± 0.03	NC	2	0.31 ± 0.20	89 ± 0
$C_{14}F_{17}O_{1}I_{1}H_{15}N_{1} \\$	662.9927	2	0.02 ± 0.01	100 ± 0	0	-	-	0	-	-
$C_{18}F_{19}O_4H_{15}N_2$	684.0728	1	0.05	NC	2	0.14 ± 0.1	80 ± 3	0	-	-

160

161

Table S8 - Suspect PFAS detected by LC-Orbitrap-HRMS with mass error < 2 ppm.

Molecular formula	Theoretical m/z	Mass error (ppm)	Retention time (min)
		$Mean \pm SD^*$	$Mean \pm SD^*$
$C_9H_{13}F_7O$	269.0782	0.5 ± 0.1	5.2 ± 0.1
$C_8HF_{15}O_3S$	460.9334	1.0 ± 0.3	6.8 ± 0.1
$C_8HF_{15}O_4S$	476.9283	0.5 ± 0.3	7.0 ± 0.1

*SD=standard deviation

163

- **Table S9 -** Multiple linear regression coefficients estimates and 95% confidence intervals for
- 166 $\ln(PFECHS/UPFOS)$, $\ln(\Sigma 13PFAS)$, $\ln(\Sigma F$ -pharmaceuticals) and $\ln(UEOF)$ in pooled serum

	ln(PFECHS/UPFOS)	ln(∑13PFAS)	In(∑F-pharmaceuticals)	ln(UEOF)
	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)
β_0 (intercept)	-0.90*** (-1.19 to -0.61)	1.63*** (1.19 to 2.08)	1.19 (-7.16 to 9.36)	3.66 (-4.78 to 12.1)
β ₁ (1986-2007)	0.16* (0.04 to 0.27)	0.11 (-0.28 to 0.07)	-4.11* (-7.44 to -0.77)	3.33* (0.07 to 6.74)
β ₂ (2015-2007)	-0.26*** (-0.34 to -0.18)	-0.46*** (-0.59 to -0.34)	5.77*** (3.47 to 8.06)	-1.68 (-4.02 to 0.67)
β_3 (sex)	0.10** (0.03 to 0.16)	0.20*** (0.11 to 0.30)	-0.27 (-2.01 to 1.47)	-1.96* (-3.74 to -0.19)
β_4 (age mean)	0.01*** (0.01 to 0.02)	0.02*** (0.01 to 0.03)	-0.08 (-0.21 to 0.04)	-0.08 (-0.21 to 0.04)
\mathbb{R}^2	0.588	0.766	0.561	0.569
F-test p-value	0.000	0.000	0.000	0.000
*p < 0.05				
**p < 0.01				
*** p < 0.001				

samples from the Tromsø Study.

168

169

- 170 **Table S10** Multiple linear regression (including sex and sampling year interaction terms)
- 171 coefficients estimates and 95% confidence intervals for $\ln(PFECHS/UPFOS)$, $\ln(\sum 13PFAS)$
- and ln(UEOF)in pooled serum samples from the Tromsø Study.

	ln((PFECHS/UPFOS)	ln(∑13PFAS)	ln(UEOF)
	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)
β_0 (intercept)	-0.87*** (-1.15 to -0.58)	1.65*** (1.19 to 2.11)	5.88 (-1.98 to 13.7)
β ₁ (1986-2007)	0.09 (-0.04 to 0.22)	-0.14 (-0.35 to 0.07)	0.75 (-2.91 to 4.42)
β ₂ (2015-2007)	-0.24*** (-0.34 to -0.15)	-0.46*** (-0.62 to -0.30)	-3.78** (-6.49 to -1.07)
β_3 (2007 sex)	0.06 (-0.04 to 0.16)	0.18* (0.02 to 0.34)	-5.33*** (-8.03 to -2.64)
β_4 (age mean)	0.01*** (0.01 to 0.02)	0.02*** (0.01 to 0.03)	-0.09 (-0.21 to 0.02)
β_5 (1986 sex)	0.12 (-0.01 to 0.27)	0.07 (-0.16 to 0.30)	5.35**(1.43 to 9.26)
β_6 (2015 sex)	-0.02 (-0.17 to 0.11)	-0.01 (-0.23 to 0.23)	5.26* (1.26 to 9.26)
\mathbb{R}^2	0.636	0.769	0.657
F-test p-value	0.000	0.000	0.000
*p < 0.05			
**p < 0.01			
*** p < 0.001			

173

174

176 **References**

- Cioni, L., et al., Fluorine Mass Balance, including Total Fluorine, Extractable Organic Fluorine, Oxidizable Precursors, and Target Per- and Polyfluoroalkyl Substances, in Pooled Human Serum from the Tromsø Population in 1986, 2007, and 2015.
 Environmental Science & Technology, 2023. 57(40): p. 14849-14860.
 Hanssen, L., et al., Partition of perfluoroalkyl substances (PFASs) in whole blood and plasma, assessed in maternal and umbilical cord samples from inhabitants of arctic
- *Russia and Uzbekistan.* Sci Total Environ, 2013. 447: p. 430-7.