Supplementary Information

Title: Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer

Authors: Xiaoyu Jiang¹, Yu Lan^{1,2,3,*}, Yudong Hao¹, Kui Jiang¹, Jing He¹, Jiali Zhu¹, Shiqi Jia¹, Jinshuai Song¹, Shi-Jun Li^{1,2,*} and Linbin Niu^{1,2,*}

Affiliations:

¹College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China.

²State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.

³School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China.

*Corresponding author. E-mail: lanyu@cqu.edu.cn; lishijunzong@zzu.edu.cn; nlb@zzu.edu.cn

Table of Contents

1. Supplementary Methods	
2. Supplementary Discussion	
3. Supplementary Notes	
4. Supplementary References	

1. Supplementary Methods

1.1 General information

All manipulations were carried out by standard Schlenk techniques. Unless otherwise stated, analytical grade solvents and commercially available reagents were used to conduct the reactions. LED irradiation was accomplished using the photochemical reactors (Supplementary Figure 1), whose wavelength is 404 – 499 nm (Supplementary Figure 2). Thin layer chromatography (TLC) employed glass 0.20 - 0.25 mm silica gel plates. Purification of products was accomplished using flash chromatography on silica gel. All the new compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and ESI-HRMS. The known compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR and ESI-HRMS. NMR spectra were recorded on a Bruker 400 instrument operating at 400, 101, and 376 MHz for ¹H NMR, ¹³C NMR and ¹⁹F NMR respectively. Chemical shifts (δ) were reported in ppm, and coupling constants (*J*) are in Hertz (Hz). Data was reported in ppm using CDCl₃ (¹H NMR δ 7.26, ¹³C NMR δ 77.16) or DMSO-*d*₆ (¹H NMR δ 2.50, ¹³C NMR δ 39.52) as solvent unless otherwise specified. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. High-resolution mass data was recorded on mass spectrometers in the ESI-HRMS mode.

Supplementary Figure 1. Photochemical reactors.

Supplementary Figure 2. Wavelength spectrum of photochemical reactors.

1.2 Preparation of substrates and catalysts

Methods of structural synthesis

To a 50 mL Schlenk tube, 4-dimethylaminopyridine (0.5 mmol), Et₃N (10.0 mmol) and alcohol (5.0 mmol) were dissolved in dichloromethane (12.0 mL). Acyl chloride (7.5 mmol) was added dropwise at 0 °C. The solution was stirred for 2 h at room temperature. Sat. NaHCO₃ aq. was poured into the reaction mixture. The organic layer was separated and extracted from water with EtOAc. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography to afford the products¹.

Supplementary Figure 3. Method A for the synthesis of non-activated alkenes.

To a 50 mL Schlenk tube, 4-dimethylaminopyridine (0.5 mmol), Et₃N (10.0 mmol) and alcohol (5.0 mmol) were dissolved in dichloromethane (12.0 mL). Sulfonyl chloride (7.5 mmol) was dropwise added at 0 °C. The reaction mixture was stirred for 2 h at room temperature. Sat. NaHCO₃ aq. was poured into the reaction mixture. The organic layer was separated and extracted from water with EtOAc. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography to afford the products¹.

$$0,0$$

 S Cl + H0 M_n $DMAP, Et_3N$ $0,0$
DCM, 0 °C to rt

Supplementary Figure 4. Method B for the synthesis of non-activated alkenes.

To a 50 mL Schlenk tube, tetrabutylammonium iodide (0.5 mmol), Cs_2CO_3 (6.5 mmol) and phenol (6.0 mmol) were dissolved in dimethylformamide (12.0 mL). Alkenyl halide (5.0 mmol) was added and the mixture was stirred for 16 h at 50 °C. Diluted NaOH aq. was poured into the reaction mixture. The organic layer was separated and extracted from water with *tert*-Butyl methyl ether. The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography to afford the products¹.

Supplementary Figure 5. Method C for the synthesis of non-activated alkenes.

To a 100 mL Schlenk tube, isoindoline-1, 3-dione (10.0 mmol), alkenyl halide (13.0 mmol) and K_2CO_3 (13.0 mmol) were dissolved in dimethylformamide (30.0 mL). The reaction mixture was stirred at room temperature, and the progress of the reaction was monitored by the TLC analysis. After 6 h the reaction was completed, as judged by TLC. The reaction mixture was slowly poured into water (100.0 mL). The aqueous phase was extracted with CH_2Cl_2 (5 × 20.0 mL). The organic extract was washed with water (3 × 40.0 mL), dried over Na₂SO₄, filtered, and concentrated under vacuum. The residue was purified by silica gel column chromatography to afford the products².

Supplementary Figure 6. Method D for the synthesis of non-activated alkenes.

The synthesis of $Fe(CF_3COO)_3$: To a 50 mL Schlenk tube, iron(III) chloride (5.0 mmol) and silver trifluoroacetate (15.0 mmol) were dissolved and reacted in dichloromethane (15.0 mL) for 3 h at room temperature. The precipitate AgCl was filtered and the residue was washed with acetone. The corresponding filtrate was concentrated under reduced pressure and the resulting product was dried

at 80 °C for 1 h. Iron(III) tri-fluoroacetate was obtained as red solid³. **ESI-HRMS** for $C_6F_9FeO_6Na^+$: 417.8793; found: 417.8811.

Supplementary Figure 7. Synthesis of Fe(CF₃COO)₃ and **ESI-HRMS** detection of Fe(CF₃COO)₃.

1.3 Experimental procedures for fluoro-polyhaloalkylation

General procedure for fluoro-polyhaloalkylation of alkenes: A 25 mL Schlenk flask equipped with a magnetic bar was charged with Fe(acac)₃ (7.1 mg, 0.02 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), (C_nX_mCO)₂O (X: F or Cl) (1.0 or 1.4 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 or 24 or 36 h. After completion of the reaction, CO₂ was detected by TCD-GC. Then the reaction system was quenched by triethylamine, diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the products.

Supplementary Figure 8. Brønsted acid-unlocked iron LMCT photocatalysis for radical fluoropolyhaloalkylation of alkenes.

General procedure for gram scale synthesis: A 100 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (0.1766 g, 0.5 mmol) and Selectfluor (2.6570 g, 7.5 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (50.0 mL), alkene (5.0 mmol), TFAA (5.2508 g, 25.0 mmol), oxydibenzene (0.4255 g, 2.5 mmol) and isopropanol (0.6010 g, 10.0 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 72 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product.

General procedure for TON experiment: A 100 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (0.0021 g, 0.006 mmol) and Selectfluor (1.0628 g, 3.0 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (20.0 mL), alkene (2.0 mmol), TFAA (2.1003 g, 10.0 mmol), oxydibenzene (0.1702 g, 1.0 mmol) and isopropanol (0.2406 g, 4.0 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 144 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product.

Supplementary Figure 10. TON experiment.

2. Supplementary Discussion

2.1 Investigation of conditions

Investigation of anisoles

$a \stackrel{O}{\vdash} a a a$		Fe(acac) ₃ (10 mol%) Redox buffer (50 mol%)	o F ∧ ↓ ∧ ∧ ↓ .CF₂
6, 0.2 mmol	TFAA + Selectfluor — 5.0 equiv. 1.5 equiv.	isopropanol (2.0 equiv.) CH ₃ CN (0.1 M), N ₂ , rt blue LEDs, 12 h	
Entry	Redox buffe	r	7, Yield
1	anisole		47%
2	methyl 4-me	thoxybenzoate	43%
3	1-methoxyna	aphthalene	Trace
4	<i>tert</i> -butoxybe	enzene	15%

Supplementary Table 1. Results of investigation of anisoles. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Investigation of iron salts

$a \stackrel{o}{\downarrow} a a a a$			[Fe] (10 mol%) oxydibenzene (50 mol%)	
6, 0.2 mmol	1FAA + 5.0 equiv.	Selectfluor 1.5 equiv.	isopropanol (2.0 equiv.) CH ₃ CN (0.1 M), N ₂ , rt blue LEDs, 12 h	
Entry		[Fe]		7, Yield
1		FeCI	3	53%
2	Fe(CF ₃ COO) ₃		67%	
3		Fe(C	PH)(OAc) ₂	55%
4	Fe(NO ₃) ₃ •9H ₂ O		43%	
5		Fe(a	cac) ₂	64%

Supplementary Table 2. Results of investigation of iron salts. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

	ox	Fe(acac) ₃ (10 mol%) sydibenzene (50 mol%)	\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow
6, 0.2 mmol 5.0 equiv.	+ Selectfluor is	opropanol (2.0 equiv.) Solvent (0.1 M), N ₂ , rt blue LEDs, 12 h	7
Entry	Solvent		7, Yield
1	CH₃CN		70%
2	Acetone		N.D.
3	DCE		N.D.
4	DCM		N.D.
5	EA		42%
6	DMF		N.D.
7	DMSO		N.D.
8	THF		N.D.
9	CCI ₃ CN		N.D.
10	(CH ₃) ₃ C0	CN	16%
11	N-methyl	-2-pyrrolidone	N.D.
12	1,4-Dioxa	ane	N.D.
13	1,2-Dime	thoxyethane	N.D.
14	2-Methov	xy-2-methylpropane	N.D.

Investigation of solvents

Supplementary Table 3. Results of investigation of solvents. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Deviation from standard condition

	+	TFAA +	Selectfluor	Fe(acac) ₃ (10 mol%) oxydibenzene (50 mol%) isopropanol (2.0 equiv.)		.CF ₃
6, 0 	0.2 mmol	5.0 equiv.	1.5 equiv.	blue LEDs, 12 h	×	
_	Entry		Deviation fro	om standard condition	7, Yield	
	1		None		70%	
	2		CF₃COONa	instead of TFAA	N.D.	
	3		TFA instead	of TFAA	31%	
	4		NFSI as [F]	source	28%	
	5		NFPY-OTf a	is [F] source	N.D.	
	6		Green LEDs	5	N.D.	
	7		Heat to 60 °	C or 80 °C (w/o light)	N.D.	

Supplementary Table 4. Results of deviation from standard condition. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

~			Fe(acac) ₃ (10 mol%) oxydibenzene (50 mol%)	o F ↓
	6 , 0.2 mmol	+ TFAA + Selectfluor 5.0 equiv. 1.5 equiv.	isopropanol (2.0 equiv.) CH ₃ CN (0.1 M), N ₂ , rt blue LEDs, 12 h	7
	Entry	Deviation from the standard condit	tion 6 , Recovery	7, Yield
	1	none	trace	70%
	2	w/o light	85%	N.D.
	3	w/o Fe(acac) ₃	65%	N.D.
	4	w/o oxydibenzene	0	15%
	5	w/o light & oxydibenzene	90%	N.D.
	6	w/o Fe(acac) ₃ & oxydibenzene	87%	N.D.

Controlled experiments for the fluorotrifluoromethylation of alkenes

Supplementary Table 5. Results of controlled experiments. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

(TfOH (3.0 equiv.) oxydibenzene (50 mol%)	\circ F \downarrow \sim \sim \downarrow CF_2
	6, 0.2 mmol	+ Fe(CF ₃ CO ₂) ₃ + Selectfluor - 1.0 equiv. 1.5 equiv.	isopropanol (2.0 equiv.) CH ₃ CN (0.1 M), N ₂ , rt blue LEDs, 12 h	7
	Entry	Deviation from the standard condition	s 6, Recovery	7, Yield
	1	1	10%	41%
	2	w/o isopropanol	12%	18%
	3	w/o oxydibenzene	0	21%
	4	w/o oxydibenzene & isopropanol	0	11%
	5	lithium isopropoxide instead of isopro	panol 69%	N.D.

Control experiments for the stoichiometric experiments

Supplementary Table 6. Results of stoichiometric experiments. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

2.2 Mechanistic studies

General procedure for gas experimental analysis: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (7.1 mg, 0.02 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (210.0 mg, 1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 h. After completion of the reaction, CO₂ was detected by TCD-GC.

Supplementary Figure 11. Detection of CO₂.

General procedure for radical trapping experiments: A 25 mL Schlenk flask equipped with a magnetic bar was charged with Fe(acac)₃ (7.1 mg, 0.02 mmol), Selectfluor (106.3 mg, 0.3 mmol) and 2,2,6,6-tetramethyl-1-piperidinyloxy (**TEMPO**) (62.5 mg, 0.4 mmol) or butylated hydroxytoluene (**BHT**) (88.1 mg, 0.4 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (210.0 mg, 1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. The reaction mixture, using biphenyl as an internal standard. No desired product 7 was detected.

Supplementary Figure 12. Radical inhibition experiments.

General Procedure for ¹⁹F NMR experiments: TFAA (0.5 mmol, 105.0 mg), isopropanol (0.4 mmol, 24.0 mg), trifluoroacetophenone (0.1 mmol, 17.4 mg) as internal standard, and CH₃CN (0.5 mL) were added in a vial, which was generated esters 1 and TFA 2, the corresponding product was detected by ¹⁹F NMR.

$$F_{3}C \xrightarrow{O} CF_{3} + \downarrow_{OH} \xrightarrow{O} F_{3}C \xrightarrow{O} + F_{3}C \xrightarrow{O} + F_{3}C \xrightarrow{O} H$$

Supplementary Figure 13. TFAA and alcohol in situ generating Brønsted acid.

Reaction conditions:

- (1) TFAA (0.5 mmol) + internal standard (0.1 mmol) + CH_3CN (0.5 mL).
- (2) TFAA (0.5 mmol) + isopropanol (0.4 mmol) + internal standard (0.1 mmol) + CH₃CN (0.5 mL).
- (3) isopropyl 2,2,2-trifluoroacetate (0.5 mmol) + internal standard (0.1 mmol) + CH₃CN (0.5 mL).
- (4) TFA (0.5 mmol) + internal standard (0.1 mmol) + CH_3CN (0.5 mL).

The advantage of using $(CF_3CO)_2O$ and alcohol to *in situ* generate Brønsted acid: A 25 mL Schlenk flask equipped with a magnetic bar was charged with Fe(acac)₃ (7.1 mg, 0.02 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (210.0 mg, 1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard (Supplementary Figure 15 line i). In the absence of isopaopanol under the standard condition (Supplementary Figure 15 line ii). When TFAA and isopropanol was replaced into TFA (Supplementary Figure 15 line ii). We found that line i works better than line ii and line iii.

Supplementary Figure 15. Initial reaction rates with TFAA or TFA as CF₃ source. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

General procedure for aminotrifluoromethylation and fluoroamination of alkenes: A 25 mL Schlenk flask equipped with a magnetic bar was charged with Fe(acac)₃ (7.1 mg, 0.02 mmol) and

Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (1.0 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the product and by-products. Based on previous reports⁴, the role of oxydibenzene thus might serve as the redox buffer to timely quench the electrophilic *N* radical cation from the Selectfluor.

Supplementary Figure 16. Study of aminotrifluoromethylation and fluoroamination products.

The role of the oxydibenzene in the reaction system: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (7.1 mg, 0.02 mmol) and NFSI (94.6 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. After concentrated under vacuum, the resulting residue was purified by silica gel flash column chromatography to give the amination product, detected by NMR.

+ 85 , 0.2 mmol	TFAA + NFSI 5.0 equiv. 1.5 equiv.	Fe(acac) ₃ (oxydibenzene isopropanol (CH ₃ CN, blue LED	10 mol%) (50 mol%) 2.0 equiv.) N ₂ , rt s, 12 h	44	0 5=0 N_5 0 Ph 86, NSI-adduct
Entry	Deviation from standard	conditions	85, Recovery	44, Yield	86, NSI-adduct
1	1		57%	13%	3%
2	w/o oxydibenzene		26%	7%	25%

Supplementary Figure 17. Study of NFSI as fluorine source.

ESI-HRMS detection

ESI-HRMS for $C_{16}H_{10}F_6O_4Na^+$ (3): 403.0375; found: 403.0388.

Supplementary Figure 18. ESI-HRMS detection of 3.

Supplementary Figure 19. ESI-HRMS detection of 4.

Supplementary Figure 20. ESI-HRMS detection of 5.

Supplementary Figure 21. ESI-HRMS detection of 8.

ESI-HRMS for C₂₁H₃₂B₂ClF₉N₂O₂H⁺(**9**): 573.2267; found: 573.2256.

Supplementary Figure 23. ESI-HRMS detection of 86.

The study of the photoactive species (12)

a) Fe(CF₃CO₂)₃ + TFA (1:3) in CH₃CN, detected by **ESI-HRMS**, found: 477.9503, and 591.9427, consistent with theoretically exact mass of **12**: 477.9504, and **12** + $[CF_3CO_2^-] + [H^+]$: 591.9433, respectively.

b) Fe(CF₃CO₂)₃ + TfOH (1:3) in CH₃CN, detected by **ESI-HRMS**, found: 477.9493, and 613.9250, consistent with theoretically exact mass of **12**: 477.9504, and **12** + $[CF_3CO_2^-]$ + $[Na^+]$: 613.9252,

respectively.

c) $Fe(acac)_3 + TFAA + isopropanol (1:5:2)$ in CH₃CN, detected by **ESI-HRMS**, found: 477.9508, and 613.9256, consistent with theoretically exact mass of **12**: 477.9504, and **12** + [CF₃CO₂⁻] + [Na⁺]: 613.9252, respectively.

12: C₁₀H₇F₉FeN₂O₆⁺, Exact mass: 477.9504.

Supplementary Figure 24. Study of the photoactive species.

The study of the Fe-F species (87)

a) Fe(CF₃CO₂)₃ + TFA + TBAF (1:3:3) in CH₃CN, detected by **ESI-HRMS**, found: 383.9360, and 519.9398, consistent with theoretically exact mass of **87**: 383.9638, and **87** + $[CF_3CO_2^-]$ + $[Na^+]$: 519.9386, respectively.

b) Fe(CF₃CO₂)₃ + TfOH + TBAF (1:3:3) in CH₃CN, detected by **ESI-HRMS**, found: 383.9305, and 497.9581, consistent with theoretically exact mass of **87**: 383.9638, and **87** + $[CF_3CO_2^-] + [H^+]$: 497.9567, respectively.

c) $Fe(acac)_3 + TFAA + isopropanol + TBAF (1:5:2:3) in CH_3CN, detected by$ **ESI-HRMS**, found: 519.9399, consistent with theoretically exact mass of**87** $+ <math>[CF_3CO_2^-] + [Na^+]$: 519.9386.

87: C₈H₇F₇FeN₂O₄⁺, Exact mass: 383.9638.

Supplementary Figure 25. Study of the photoactive Fe-F species.

General procedure for UV-vis experiments:

1. (1) FeCl₃:TFAA:isopropanol:dibenzene (1:5:2:0.5).

(2) Fe(CF₃COO)₃ [0.25 mM].

(3) Fe(CF₃COO)₃:TfOH (1:30).

CH₃CN as solvent, the mixture was stirred 30 min in darkness, [iron] salt 0.25 mM.

Supplementary Figure 26. Absorbance profiles of different [iron] salt.

- **2.** (1) Fe(CF₃CO₂)₃ under darkness [0.25 mM].
 - (2) Fe(acac)₃ under darkness [0.25 mM].
 - (3) $Fe(acac)_3$:TFA (1:3) under darkness.
 - (4) $Fe(acac)_3$:TFA (1:3) under blue LEDs.

CH₃CN as solvent, the mixture was stirred 30 min, [iron] salt 0.25 mM.

3. (1) $Fe(CF_3CO_2)_3$ under darkness [0.25 mM].

(2) Fe(CF₃CO₂)₃:CF₃CO₂Na (1:3) under darkness.

- (3) Fe(CF₃CO₂)₃:CF₃CO₂Na:TfOH (1:3:6) under darkness.
- (4) Fe(CF₃CO₂)₃:CF₃CO₂Na:TfOH (1:3:6) under blue LEDs irradiation.

CH₃CN as solvent, the mixture was stirred 30 min, [iron] salt 0.25 mM.

4. The UV-vis monitorization of the oxidation of Fe(II) to Fe(III)

- (1) Fe(CF₃CO₂)₃ [0.25 mM].
- (2) $Fe(CF_3CO_2)_3 + TfOH$ (1:30).

(3) $Fe(CF_3CO_2)_3 + TfOH$ (1:30) under blue LEDs irradiation.

(4) Fe(CF₃CO₂)₃ + TfOH under blue LEDs irradiation, then, Selectfluor (1:30:15) added.

(5) $Fe(CF_3CO_2)_3 + TfOH$ under blue LEDs irradiation, then, Selectfluor + oxydibenzene (1:30:15:5) added.

(6) $Fe(CF_3CO_2)_3 + TfOH$ under blue LEDs irradiation, then, $CF_3CO_2Na + Selectfluor + oxydibenzene (1:30:10:15:5)$ added.

CH₃CN as solvent, the mixture was stirred 30 min, [iron] salt 0.25 mM.

Supplementary Figure 29. UV-vis monitorization of the oxidation of Fe(II) to Fe(III).

General procedure for Brønsted acid loading experiments: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(CF_3CO_2)_3$ (78.8 mg, 0.2 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), oxydibenzene (17.0 mg, 0.1 mmol), isopropanol (24.0 mg, 0.4 mmol) and TfOH (0.2 mmol, 0.4 mmol, 0.6 mmol, 0.8 mmol, 1.0 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Supplementary Figure 30. Brønsted acid loading experiments.

General procedure for light on/off experiments: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (7.1 mg, 0.02 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (210.0 mg, 1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard. Observed product 7 formation occurred only during periods of light irradiation, which ruled out a radical chain mechanism.

General procedure for kinetic curve of Fe(acac)₃: A 25 mL Schlenk flask equipped with a magnetic bar was charged with Fe(acac)₃ (0.001 mmol, 0.002 mmol, 0.003 mmol, 0.004 mmol, 0.005 mmol, 0.006 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and

refilled with N_2 for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (210.0 mg, 1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 1.5 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Supplementary Figure 31. Kinetic studies for Fe(acac)₃.

General procedure for kinetic curve of TFAA: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (7.1 mg, 0.02 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), alkene (0.2 mmol), TFAA (0.4 mmol, 0.45 mmol, 0.5 mmol, 0.55 mmol, 0.6 mmol), oxydibenzene (17.0 mg, 0.1 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 1.5 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Supplementary Figure 32. Kinetic studies for TFAA.

General procedure for acetonitrile loading experiments: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (7.1 mg, 0.02 mmol) and Selectfluor (106.3 mg, 0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged

with extra dry DCE (2.0 mL), alkene (0.2 mmol), TFAA (1.0 mmol), oxydibenzene (17.0 mg, 0.1 mmol), CH₃CN (0 mmol, 0.4 mmol, 0.12 mmol, 2.0 mmol) and isopropanol (24.0 mg, 0.4 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs for 12 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Supplementary Figure 33. Acetonitrile loading experiments

2.3 Density Functionl Theory calculation

Computational Details

All the calculation have been performed using the Gaussian Program (Gaussian 16)⁵. The geometry optimization was conducted with the B3LYP functional and standard 6-31G(d, p) basis set. The solvent effect was considered by IEFPCM^{6,7}. Harmonic vibrational frequency calculations were performed for all stationary points to confirm whether they are local minima or transition state structures and to derive the thermochemical corrections for the enthalpies and free energies. Time-dependent density functional theory (TD-DFT) calculations were conducted at same level within the adiabatic approximation to predict the excitation energies^{8,9}.

The possible light-harvesting species in the reaction

According to the experimental observations, the possible light-harvesting species was calculated by DFT. The free energy for 12 generation is lower than that of other possible structures in Supplementary Figure 34.

89 (1.2 kcal/mol)

12 (0.0 kcal/mol)

90 (11.2 kcal/mol)

91 (7.0 kcal/mol)

93 (7.7 kcal/mol)

95 (12.5 kcal/mol)

94 (7.6 kcal/mol)

96 (3.3 kcal/mol)

0:

Supplementary Figure 34. Computational investigations of iron and CF₃COO⁻-based complexes.

Then, the TD-DFT calculations for the **12** were conducted to reveal the light-induced electron transfer process. As shown in the Supplementary Figure 35, 36, and 37, the absorption peak in 450.02 nm can be excited by our blue LEDs (λ : 404 – 499 nm).

Supplementary Figure 35. UV-vis absorption predicted by the TD-DFT (12).

transition	coefficient
112-Beta→117-Beta	0.10650

113-Beta→116-Beta	-0.50854
113-Beta→118-Beta	0.23940
114-Beta→117-Beta	0.75302
115-Beta→116-Beta	-0.21293
115-Beta→118-Beta	0.10251

Supplementary Figure 36. Major transition modes and coefficients (12).

The orbital analysis shows that the electron in the trifluoroacetate of 12 could be excited to the iron center to achieve LMCT under our blue LEDs irradiation.

Supplementary Figure 37. Mentioned orbitals for the peak in 450.02 nm.

Light-harvesting species without H⁺

Supplementary Figure 38. 3D structure of 12'.

Supplementary Figure 39. UV-vis spectra predicted by the TD-DFT (12').

transition	coefficient
108-Beta→116-Beta	0.10802
112-Beta→116-Beta	-0.12540
113-Beta→116-Beta	0.91231
114-Beta→116-Beta	-0.14856

Supplementary Figure 40. Major transition modes and coefficients (12').

Supplementary Figure 41. Key orbitals of the most possible absorption peak (12').

Supplementary Figure 42. Comparison between the 12 and 12' under blue LEDs irradiation.

Supplementary Figure 43. SET comparison between 12 and 12' without light irradiation.

We also compared the orbital energies of **12** and **12'** (Supplementary Figure 44). In the presence of intramolecular hydrogen bonding, the LUMO energy of iron significantly decreased by 0.86 eV, which is beneficial to the LMCT process.

Species	E (arb. units)	Electron volt (eV)
12 (LUMO)	-0.1892	-5.1462
12' (LUMO)	-0.1575	-4.2840

Supplementary Figure 44. LUMO energy comparison between 12 and 12'.

Species	G (arb. units)	
12 (doublet)	-3108.130262	
12 (quartet)	-3108.137950	
12 (hextet)	-3108.161111	
14 (singlet)	-3108.325434	
14 (triplet)	-3108.350736	
14 (quintet)	-3108.376685	

Supplementary Figure 45. Spin states determination of 12 and 14.

Light-harvesting species involved F

The formation of **87** requires the F^- generation from Selectfluor, while Selectfluor plays the role as an electrophilic fluorination reagent to capture the alkyl radical intermediate **15** in this system. Considering the fact that exogenous F^- shows the suppression effect for alkene fluorotrifluoromethylation (Supplementary Figure 51), we proposed that the concentration of $F^$ under the standard condition should be low. Although **87** was detected by ESI-HRMS spectrometry and DFT calculations also demonstrated its feasibility of generating CF₃ radical under blue light irradiation (Supplementary Figure 46), the low concentration of F^- in the process of reaction may indicate that **87** is not the first choice in comparison to **12**, but alternative. To further understand the role of possible species **87**, this protocol was extended to the trifluoromethylation of arene though directly replacing Selectfluor into sodium persulfate. As shown in Supplementary Figure 50, even in the absence of fluorine source, this protocol is still feasible to produce CF_3 radical, while the exogenous F^- do not promote the trifluoromethylation of arene. It indicates that **87** is not necessary for this protocol and **12** is the first choice for effective iron-based light-harvesting species under this standard condition.

Supplementary Figure 46. DFT calculation of 87.

Supplementary Figure 47. UV-vis spectra predicted by the TD-DFT (87).

transition	coefficient	
89-Beta→93-Beta	-0.18964	
90-Beta→93-Beta	-0.15313	
91-Beta→93-Beta	-0.26813	
92-Beta→93-Beta	0.92180	

Supplementary Figure 48. Major transition modes and coefficients (87).

Supplementary Figure 49. Key orbitals of the most possible absorption peak (87).

General procedure for trifluoromethylation of arenes: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (0.02 mmol), $Na_2S_2O_8$ (0.4 mmol) and methyl anisate (102, 0.2 mmol). The flask was evacuated and refilled with N_2 for three times. The vessel was then

charged with extra dry CH₃CN (2.0 mL), oxydibenzene (17.0 mg, 0.1 mmol), isopropanol (24.0 mg, 0.4 mmol), TBAF (0 mmol, 0.08 mmol, 0.2 mmol) and TFAA (2.0 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs 12 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using naphthalene as an internal standard.

Supplementary Table 7. Investigation of exogenous F⁻ effect for trifluoromethylation of arenes.

General procedure for the fluorotrifluoromethylation of alkenes involved fluorion: A 25 mL Schlenk flask equipped with a magnetic bar was charged with $Fe(acac)_3$ (0.02 mmol), Selectfluor (0.3 mmol). The flask was evacuated and refilled with N₂ for three times. The vessel was then charged with extra dry CH₃CN (2.0 mL), oxydibenzene (17.0 mg, 0.1 mmol), isopropanol (24.0 mg, 0.4 mmol), TBAF (0 mmol, 0.1 mmol, 0.2 mmol) and TFAA (1.0 mmol). The reaction mixture was stirred under nitrogen atmosphere and irradiated by blue LEDs 12 h. After completion of the reaction. Then the reaction system was quenched by triethylamine, diluted with EtOAc. Yields were determined by GC analysis of the crude reaction mixture, using biphenyl as an internal standard.

Supplementary Table 8. Investigation of exogenous F^- effect for fluorotrifluoromethylation of alkenes.

Species	E (arb. units)	
Selectfluor	-844.45939	
[Selectfluor]	-844.70564	
Ph ₂ O	-538.53302	
17	-538.31759	
12	-3108.27344	
-3108.48845		

12'	-3107.85594
14'	-3108.02774

Supplementary Figure 50. Calculation for the possible single electron transfer.

Supplementary Figure 51. DFT calculation for SET process.

Supplementary Figure 52. Free energy profile for the generation of the product.

Species	Gibbs free energies (arb. units)	Species	Gibbs free energies (arb. units)
12	-3108.161111	14	-3108.376568
12'	-3107.757221	14'	-3107.935688
87	-2681.839651	104	-2682.16889
88	-3108.160518	89	-3108.159142
90	-3513.783164	91	-3620.063222
92	-3952.512065	93	-3513.788757
94	-3620.062247	95	-3952.509614
96	-2975.409546	97	-2975.410447
98	-2975.406744	99	-2842.58805
100	-2842.64628	101	-3369.04626
CF ₃ CO ₂	-526.333578	13	-526.115524
MeCN	-132.745395	CF ₃ CO ₂ ^{<i>i</i>} Pr	-644.658704
Ph ₂ O	-538.385279	(CF ₃ CO) ₂ O	-977.113857
ts1	-526.118672		

Supplementary Figure 53. Corresponding free energies of the key species.

3. Supplementary Notes

5,7,7,7-Tetrafluoroheptyl 4-methylbenzoate (7): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (42.7 mg) at 70% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.92 (d, *J* = 8.2 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 4.82 (dtt, *J* = 48.7, 8.2, 3.3 Hz, 1H), 4.32 (t, *J* = 6.4 Hz, 2H), 2.62 – 2.19 (m, 2H), 2.40 (s, 3H), 1.88 – 1.48 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.75, 143.73, 129.65, 129.19, 127.64, 125.54 (dq, *J* = 3.4, 276.8 Hz), 87.51 (dq, *J* = 172.4, 3.2 Hz), 64.39, 39.46 (qd, *J* = 28.5, 22.9 Hz), 34.71 (d, *J* = 20.8 Hz), 28.45, 21.71, 21.47 (d, *J* = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 64.12 (d, *J* = 7.6 Hz, 3F), -182.40 (q, *J* = 7.8 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₅H₁₈F₄O₂Na⁺]: 329.1135, found 329.1139.

5,7,7,7-Tetrafluoroheptyl benzoate (**18**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (29.2 mg) at 50% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 – 8.02 (m, 2H), 7.59 – 7.41 (m, 3H), 4.83 (dtt, *J* = 48.8, 8.1, 3.5 Hz, 1H), 4.34 (t, *J* = 6.4 Hz, 2H), 2.63 – 2.20 (m, 2H), 1.88 – 1.54 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 166.71, 133.07, 130.42, 129.65, 128.50, 125.54(dq, *J* = 3.6, 276.8 Hz), 87.53 (dq, *J* = 172.5, 3.2 Hz), 64.60, 39.54 (qd, *J* = 28.5, 23.0 Hz), 34.75 (d, *J* = 20.9 Hz), 28.47, 21.50 (d, *J* = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-d) δ -64.11 (d, *J* = 7.4 Hz, 3F), -182.39 (q, *J* = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₆F₄O₂Na⁺]: 315.0979, found 315.0981.

5,7,7,7-Tetrafluoroheptyl 4-methoxybenzoate (19): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (43.8 mg) at 68% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.95 (m, 2H), 6.93 – 6.80 (m, 2H), 4.82 (dtt, *J* = 49.0, 8.2, 3.5 Hz, 1H), 4.30 (t, *J* = 6.4 Hz, 2H), 3.84 (s, 3H), 2.62 – 2.19 (m, 2H), 1.89 – 1.47 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.40, 163.47, 131.62, 125.55 (dq, *J* = 3.4, 276.8 Hz), 122.80, 113.71, 87.51 (dq, *J* = 172.4, 3.2 Hz), 64.24, 55.47, 39.45 (qd, *J* = 28.5, 22.9 Hz), 34.70 (d, *J* = 20.9 Hz), 28.48, 21.46 (d, *J* = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 64.14 (d, *J* = 7.5 Hz, 3F), -182.44 (q, *J* = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₈F₄O₃Na⁺] :345.1084, found 345.1092.

5,7,7,7-Tetrafluoroheptyl 4-cyanobenzoate (**20**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a colorless liquid (39.3 mg) at 62% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.11 – 7.95 (m, 4H), 4.95 – 4.73 (m, 1H), 4.30 (t, J = 6.4 Hz, 2H), 2.78 – 2.57 (m, 2H), 1.81 – 1.63 (m, 4H), 1.62 – 1.43 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.51, 133.72, 132.75, 129.76, 126.18 (q, J = 277.0 Hz), 118.03, 115.48, 87.90 (dq, J = 169.9, 3.2 Hz), 65.15, 37.91 (qd, J = 27.3, 21.1 Hz), 33.61 (d, J = 20.2 Hz), 27.69, 20.73 (d, J = 4.3 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -62.62 (d, J = 7.6 Hz, 3F), -182.36 (q, J = 7.6 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₅F₄NO₂Na⁺]: 340.0931, found 340.0943.

5,7,7,7-Tetrafluoroheptyl 4-(trifluoromethyl)benzoate (21): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (43.2 mg) at 60% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.17 – 7.85 (m, 4H), 4.94 – 4.73 (m, 1H), 4.32 (t, J = 6.4 Hz, 2H), 2.78 – 2.58 (m, 2H), 1.82 – 1.63 (m, 4H), 1.62 – 1.43 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 164.67, 133.55 (d, J = 0.9 Hz), 132.86 (q, J = 32.0 Hz), 129.96, 126.19 (q, J = 277.0 Hz), 125.73 (q, J = 3.7 Hz), 123.72 (q, J = 272.7 Hz), 87.91 (dq, J = 169.8, 3.3 Hz), 65.03, 37.90 (qd, J = 27.3, 21.0 Hz), 33.60 (d, J = 20.0 Hz), 27.71, 20.73 (d, J = 4.2 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -61.84 (s, 3F), -62.61 (d, J = 7.7 Hz, 3F), -182.40 (q, J = 7.6 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₅H₁₅F₇O₂Na⁺]: 383.0852, found 383.0859.

5,7,7,7-Tetrafluoroheptyl 2-methoxybenzoate (22): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (43.8 mg) at 68% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.75 (m, 1H), 7.5 – 7.43 (m, 1H), 7.01 – 6.94 (m, 2H), 4.92 – 4.72 (m, 1H), 4.31 (t, *J* = 6.3 Hz, 2H), 3.89 (s, 3H), 2.61 – 2.21 (m, 2H), 1.88 – 1.51 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.44, 159.26, 133.60, 131.63, 125.55 (dq, *J* = 3.5, 276.9 Hz), 120.39, 120.26, 112.16, 87.57 (dq, *J* = 172.4, 3.2 Hz), 64.41, 56.04, 39.54 (qd, *J* = 28.7, 23.3 Hz), 34.73 (d, *J* = 20.8 Hz), 28.44, 21.46 (d, *J* = 4.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.13 (d, *J* = 7.6 Hz, 3F), -182.23 – -182.41 (m, 1F). ESI-HRMS exact mass calculated for [C₁₅H₁₈F₄O₃Na⁺]: 345.1084, found 345.1081.

5,7,7,7-Tetrafluoroheptyl 3-methoxybenzoate (23): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (42.5 mg) at 66% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.64 – 7.53 (m, 2H), 7.36 – 7.30 (m, 1H), 7.11 – 7.06 (m, 1H), 4.91 – 4.71 (m, 1H), 4.32 (t, *J* = 6.5 Hz, 2H), 3.82 (s, 3H), 2.59 – 2.19 (m, 2H), 1.87 – 1.50 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.45, 159.65, 131.67, 129.45, 125.54 (dq, *J* = 3.3, 276.8 Hz), 121.91, 119.27, 114.23, 87.45 (dq, *J* = 172.5, 3.2 Hz), 64.60, 55.38, 39.36 (qd, *J* = 28.5, 22.8 Hz), 34.62 (d, *J* = 20.9 Hz), 28.35, 21.38 (d, *J* = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.15 (d, *J* = 6.9 Hz, 3F), -182.50 (q, *J* = 7.5 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₈F₄O₃Na⁺]: 345.1084, found 383.1089.

3,5,5,5-Tetrafluoropentyl benzoate (24): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (27.5 mg) at 52% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.98 (d, *J* = 7.4 Hz, 2H), 7.69 – 7.62 (m, 1H), 7.56 – 7.50 (m, 2H), 5.16 – 4.94 (m, 1H), 4.48 – 4.34 (m, 2H), 2.92 – 2.69 (m, 2H), 2.22 – 2.07 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 165.65, 133.41, 129.66, 129.19, 128.78, 126.15 (q, *J* = 277.0 Hz), 85.76 (dq, *J* = 170.4, 3.4 Hz), 60.49 (d, *J* = 4.7 Hz), 37.85 (qd, *J* = 27.5, 20.6 Hz), 33.25 (d, *J* = 20.2 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -62.54 (d, *J* = 7.8 Hz, 3F), -184.51 (q, *J* = 8.2 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₂H₁₂F₄O₂Na⁺]: 287.0666, found 287.0661.

3,5,5,5-Tetrafluoropentyl 4-methoxybenzoate (25): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (41.2 mg) at 70% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.01 – 7.95 (m, 2H), 6.95 – 6.90 (m, 2H), 5.15 – 4.94 (m, 1H), 4.54 – 4.37 (m, 2H), 3.85 (s, 3H), 2.72 – 2.29 (m, 2H), 2.21 – 2.01 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.17, 163.69, 131.73, 125.37 (dq, *J* = 3.6, 276.8 Hz), 122.36, 113.85, 85.02 (dq, *J* = 173.3, 3.3 Hz), 59.98 (d, *J* = 4.8 Hz), 55.56, 39.57 (qd, *J* = 28.8, 22.7 Hz), 34.44 (d, *J* = 20.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.02 (d, *J* = 7.4 Hz, 3F), -184.46 (q, *J* = 7.4 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₃H₁₄F₄O₃Na⁺]: 317.0771, found 317.0775.

3,5,5,5-Tetrafluoropentyl 4-phenoxybenzoate (26): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (58.4 mg) at 82% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.00 (d, J = 8.8 Hz, 2H), 7.42 – 7.36 (m, 2H), 7.23 – 6.97 (m, 5H), 5.04 (dtt, J = 48.8, 8.2, 3.6 Hz, 1H), 4.54 – 4.41 (m, 2H), 2.71 – 2.31 (m, 2H), 2.20 – 2.03 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.91, 162.21, 155.64, 131.81, 130.17, 125.35 (dq, J = 3.6, 276.8 Hz), 124.72, 124.19, 120.27, 117.45, 84.98 (dq, J = 173.5, 3.3 Hz), 60.16 (d, J = 4.7 Hz), 39.56 (qd, J = 28.8, 22.7 Hz), 34.40 (d, J = 20.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.98 (d, J = 7.5 Hz, 3F), -184.48 (q, J = 7.7 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₈H₁₆F₄O₃H⁺]: 357.1108, found 357.1111.

4,6,6,6-Tetrafluorohexyl 2-(trifluoromethyl)benzoate (**27**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (44.5 mg) at 65% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.89 – 7.74 (m, 4H), 5.00 – 4.78 (m, 1H), 4.32 (t, J = 5.5 Hz, 2H), 2.81 – 2.59 (m, 2H), 1.92 – 1.68 (m, 4H). ¹³C NMR (101 MHz, DMSO- d_6) δ 166.27, 132.86, 131.86, 130.86 (q, J = 2.0 Hz), 129.99, 126.74 (q, J = 31.8 Hz), 126.71 (q, J = 5.2 Hz), 126.20 (q, J = 277.8 Hz), 124.85 (q, J = 273.7 Hz), 87.79 (dq, J = 169.9, 3.3 Hz), 65.34, 37.87 (qd, J = 27.4, 21.0 Hz), 30.63 (d, J = 20.4 Hz), 23.45 (d, J = 4.1 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -58.28 (s, 3F), -62.60 (d, J = 7.7 Hz, 3F), -182.74 (q, J = 7.6 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₃F₇O₂H⁺]: 369.0696, found 369.0706.

5,7,7,7-Tetrafluoroheptyl 3-fluoro-4-methoxybenzoate (28): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (41.5 mg) at 61% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.75 (m, 1H), 7.70 – 7.65 (m, 1H), 6.97 – 6.91 (m, 1H), 4.89 – 4.69 (m, 1H), 4.27 (t, *J* = 6.4 Hz, 2H), 3.90 – 3.87 (m, 3H), 2.59 – 2.17 (m, 2H), 1.84 – 1.47 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.57 (d, *J* = 2.8 Hz), 151.83 (d, *J* = 10.7 Hz), 151.80 (d, *J* = 246.8 Hz), 126.75 (d, *J* = 3.4 Hz), 125.52 (dq, *J* = 3.7, 276.8 Hz), 123.13 (d, *J* = 6.3 Hz), 117.27 (d, *J* = 19.6 Hz), 112.45 (d, *J* = 2.0 Hz), 87.52 (dq, *J* = 172.5, 3.1 Hz), 64.68, 56.37, 39.53 (qd, *J* = 28.6, 23.1 Hz), 34.74 (d, *J* = 20.9 Hz), 28.46, 21.48 (d, *J* = 4.1 Hz). ¹⁹F NMR

 $(376 \text{ MHz}, \text{Chloroform-}d) \delta$ -64.10 (d, J = 7.5 Hz, 3F), -134.65 (s, 1F), -182.40 (q, J = 7.9 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₇F₅O₃Na⁺]: 363.0990, found 363.0997.

5,7,7,7-Tetrafluoroheptyl 3-chloro-4-fluorobenzoate (**29**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (39.9 mg) at 58% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.10 – 8.05 (m, 1H), 7.95 – 7.89 (m, 1H), 7.22 – 7.15 (m, 1H), 4.83 (dtt, *J* = 48.7, 8.3, 3.3 Hz, 1H), 4.33 (t, *J* = 6.5 Hz, 2H), 2.62 – 2.20 (m, 2H), 1.89 – 1.50 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 164.67 (d, *J* = 0.5 Hz), 161.16 (d, *J* = 256.1 Hz), 132.42 (d, *J* = 1.1 Hz), 130.05 (d, *J* = 8.6 Hz), 127.61 (d, *J* = 3.9 Hz), 125.52 (dq, *J* = 3.7, 276.8 Hz), 121.55 (d, *J* = 18.3 Hz), 116.75 (d, *J* = 21.8 Hz), 87.48 (dq, *J* = 172.6, 3.5 Hz), 65.15, 39.49 (qd, *J* = 28.8, 22.8 Hz), 34.69 (d, *J* = 21.1 Hz), 28.37, 21.43 (d, *J* = 4.4 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.14 (d, *J* = 7.5 Hz, 3F), -108.13 (s, 1F), -182.54 (q, *J* = 7.8 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₄ClF₅O₂Na⁺]: 367.0495, found 367.0502.

5,7,7,7-Tetrafluoroheptyl 3,4-bis(trifluoromethyl)benzoate (30): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a colorless liquid (52.2 mg) at 61% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.47 (s, 2H), 8.06 (s, 1H), 4.83 (dtt, *J* = 48.9, 8.0, 3.6 Hz, 1H), 4.42 (t, *J* = 6.6 Hz, 2H), 2.63 – 2.22 (m, 2H), 1.94 – 1.54 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.06, 132.57, 132.38 (q, *J* = 34.0 Hz), 129.94 – 129.75 (m), 126.61 – 126.31 (m), 125.49 (dq, *J* = 4.0, 276.7 Hz), 123.02 (q, *J* = 272.9 Hz), 87.46 (dq, *J* = 172.6, 3.1 Hz), 65.90, 39.59 (qd, *J* = 28.6, 23.2 Hz), 34.72 (d, *J* = 20.9 Hz), 28.37, 21.45 (d, *J* = 4.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.03 (s, 3F), -63.04 (s, 3F), -64.16 (t, *J* = 7.1 Hz, 3F), -182.59 (q, *J* = 8.0 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₆H₁₄F₁₀O₂Na⁺]: 451.0726, found 451.0739.

5,7,7,7-Tetrafluoroheptyl nicotinate (**31**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a colorless liquid (41.4 mg) at 74% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.24 – 9.16 (m, 1H), 8.81 – 8.73 (m, 1H), 8.29 – 8.24 (m, 1H), 7.38 (dd, *J* = 8.0, 4.9 Hz, 1H), 4.86 (dtt, *J* = 49.1, 7.9, 3.7, Hz, 1H), 4.48 – 4.33 (m, 2H), 2.64 – 2.22 (m, 2H), 2.07 – 1.70 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.25, 153.62, 150.93, 137.08, 126.07, 125.38 (dq, *J* = 3.9, 276.8 Hz), 123.42, 87.23 (dq, *J* = 173.0, 3.2 Hz), 64.64, 39.49 (qd, *J* = 28.6, 23.0 Hz), 31.74 (d, *J* = 21.2 Hz), 24.24 (d, *J* = 3.9 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.12 (d, *J* = 7.3 Hz, 3F), -182.90 (q, *J* = 7.5 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₂H₁₃F₄NO₂H⁺]: 280.0955, found 280.0956.

4,6,6,6-Tetrafluorohexyl picolinate (**32**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a colorless liquid (40.2 mg) at 72% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.74 (d, *J* = 4.7 Hz, 1H), 8.10 (d, *J* = 7.8 Hz, 1H), 7.86 – 7.79 (m, 1H), 7.49 – 7.44 (m, 1H), 4.86 (dtt, *J* = 49.2, 8.3, 3.6 Hz, 1H), 4.51 – 4.39 (m, 2H), 2.62 – 2.21 (m, 2H), 2.09 – 1.70 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.32, 150.07, 148.07, 137.18, 127.13,

125.44 (dq, J = 3.4, 279.8 Hz), 125.31, 87.31 (dq, J = 173.0, 3.1 Hz), 65.18, 39.55 (qd, J = 28.6, 22.8 Hz), 31.80 (d, J = 21.2 Hz), 24.32 (d, J = 4.0 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ - 64.12 (d, J = 7.5 Hz, 3F), -182.81 (q, J = 7.7 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₂H₁₃F₄NO₂Na⁺]: 302.0775, found 302.0785.

5,7,7,7-Tetrafluoroheptyl-2-chloro-4-nitrobenzoate (**33**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a colorless liquid (23.8 mg) at 32% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.30 – 8.27 (m, 1H), 8.16 – 8.12 (m, 1H), 7.95 – 7.91 (m, 1H), 4.91 – 4.72 (m, 1H), 4.39 (t, *J* = 6.5 Hz, 2H), 2.63 – 2.21 (m, 2H), 1.90 – 1.50 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.38, 149.50, 136.12, 134.70, 132.06, 126.06, 125.48 (dq, *J* = 3.6, 276.8 Hz), 121.58, 87.44 (dq, *J* = 172.5, 3.1 Hz), 66.06, 39.43 (qd, *J* = 28.6, 23.0 Hz), 34.56 (d, *J* = 20.9 Hz), 28.17, 21.38 (d, *J* = 4.0 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.12 (d, *J* = 7.1 Hz, 3F), -182.59 (q, *J* = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₄ClF₄O₄Na⁺]: 394.0440, found 394.0446.

compound 5,7,7,7-Tetrafluoroheptyl-2-naphthoate (34): The was purified bv columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (32.8 mg) at 48% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.62 (s, 1H), 8.10 – 8.04 (m, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.92 - 7.84 (m, 2H), 7.42 - 7.36 (m, 2H), 4.93 - 4.73 (m, 1H), 4.41 (t, J = 6.5 Hz, 2H). 2.64 - 2.22 (m, 2H), 1.92 - 1.55 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 166.81, 135.62, 132.59, 131.07, 129.42, 128.35, 128.26, 127.85, 127.63, 126.76, 125.55 (dq, J = 3.4, 276.8 Hz), 125.27, 87.50 (dq, J = 172.5, 3.2 Hz), 64.72, 39.47 (qd, J = 28.5, 23.0 Hz), 34.71 (d, J = 20.8 Hz), 28.47, 21.48 (d, J = 4.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.04 (d, J = 7.6 Hz, 3F), -182.36 (q, J = 8.0 Hz, 1F). **ESI-HRMS** exact mass calculated for $[C_{18}H_{18}F_4O_2Na^+]$: 365.1135, found 365.1142.

5,7,7,7-Tetrafluoroheptyl thiazole-4-carboxylate (**35**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a white solid (42.5 mg) at 71% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.82 – 8.79 (m, 1H), 8.20 – 8.18 (m, 1H), 4.86 – 4.65 (m, 1H), 4.33 (t, *J* = 6.6 Hz, 2H), 2.56 – 2.14 (m, 2H), 1.85 – 1.44 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 161.26, 153.53, 147.94, 127.35, 125.42 (dq, *J* = 3.2, 276.8 Hz), 87.36 (dq, *J* = 172.4, 3.2 Hz), 64.98, 39.30 (qd, *J* = 28.5, 22.8 Hz), 34.51 (d, *J* = 20.9 Hz), 28.22, 21.24 (d, *J* = 4.2 Hz). ¹⁹**F NMR** (376 MHz, DMSO-*d*₆) δ -62.42 (d, *J* = 8.0 Hz, 3F), -182.31 (q, *J* = 8.1 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₁H₁₃F₄NO₂SNa⁺]: 322.0495, found 322.0498.

5,7,7,7-Tetrafluoroheptyl benzofuran-2-carboxylate (**36**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a colorless liquid (31.2 mg) at 47% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.65 (m, 1H), 7.60 – 7.56 (m, 1H), 7.53 – 7.50 (m, 1H), 7.46 – 7.41 (m, 1H), 7.32 – 7.26 (m, 1H), 4.92 – 4.72 (m, 1H), 4.38 (t, *J* = 6.5 Hz, 2H), 2.62 – 2.20 (m, 2H), 1.88 – 1.50 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.67,
155.85, 145.59, 127.77, 127.03, 125.52 (dq, J = 3.3, 276.6 Hz), 123.92, 122.93, 114.03, 112.45, 87.48 (dq, J = 172.5, 3.2 Hz), 65.05, 39.49 (qd, J = 28.6, 23.0 Hz), 34.66 (d, J = 20.9 Hz), 28.38, 21.37 (d, J = 4.1 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.08 (d, J = 7.5 Hz, 3F), -182.44 (q, J = 7.9 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₆H₁₆F₄O₃Na⁺]: 355.0928, found 355.0930.

5,7,7,7-Tetrafluoroheptyl naphthalene-2-sulfonate (**37**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 10/1), resulting in a colorless liquid (34.0 mg) at 45% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.68 – 8.61 (m, 1H), 8.27 – 8.18 (m, 2H), 8.10 (d, J = 8.1 Hz, 1H), 7.89 – 7.85 (m, 1H), 7.83 – 7.67 (m, 2H), 4.72 (dtt, J = 50.1, 7.9, 4.2 Hz, 1H), 4.09 (t, J = 6.3 Hz, 2H), 2.66 – 2.51 (m, 2H), 1.65 – 1.28 (m, 4H), 1.43 – 1.26 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 135.42, 132.91, 132.08, 129.86, 129.85, 129.57, 129.46, 128.15, 128.03, 125.43 (dq, J = 3.7, 276.9 Hz), 122.62, 87.35 (dq, J = 172.8, 3.2 Hz), 70.38, 39.42 (qd, J = 28.6, 22.9 Hz), 34.34 (d, J = 20.9 Hz), 28.54, 20.91 (d, J = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -57.76 (d, J = 7.5 Hz, 3F), -177.66 (q, J = 7.6 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₇H₁₈F₄O₃SNa⁺]: 401.0805, found 401.0803.

1-Fluoro-4-((**3,5,5,5-tetrafluoropentyl)oxy)benzene** (**38**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (37.1 mg) at 73% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.02 – 6.96 (m, 2H), 6.88 – 6.83 (m, 2H), 5.22 – 5.01 (m, 1H), 4.13 – 4.03 (m, 2H), 2.71 – 2.34 (m, 2H), 2.20 – 2.08 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 157.59 (d, *J* = 238.5 Hz), 154.77 (d, *J* = 2.1 Hz), 125.53 (dq, *J* = 2.9, 276.8 Hz), 116.01 (d, *J* = 23.2 Hz), 115.63 (d, *J* = 8.0 Hz), 84.98 (dq, *J* = 172.5, 3.3 Hz), 63.62 (d, *J* = 4.9 Hz), 39.60 (qd, *J* = 28.7, 22.4 Hz), 34.88 (d, *J* = 20.7 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.08 (d, *J* = 7.6 Hz, 3F), -123.62 (s, 1F), -184.82 (q, *J* = 8.3, 7.5 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₁H₁₁F₅ONa⁺]: 277.0622, found 277.0628.

4-Bromo-2-chloro-1-((5,7,7,7-tetrafluoroheptyl)oxy)benzene (39): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (45.8 mg) at 61% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.51 – 7.48 (m, 1H), 7.33 – 7.28 (m, 1H), 6.77 (d, J = 8.8 Hz, 1H), 4.84 (dtt, J = 48.3, 7.9, 3.2 Hz, 1H), 4.01 (t, J = 6.1 Hz, 2H), 2.56 – 2.13 (m, 2H), 1.85 – 1.50 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 153.90, 132.82, 130.63, 125.57 (dq, J = 3.4, 276.8 Hz), 124.21, 114.62, 112.67, 87.59 (dq, J = 172.4, 3.2 Hz), 69.08, 39.52 (qd, J = 28.5, 22.9 Hz), 34.76 (d, J = 20.8 Hz), 28.67, 21.55 (d, J = 4.3 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.09 (d, J = 7.5 Hz, 3F), -182.33 (q, J = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₃H₁₄BrClF₄ONa⁺]: 398.9745, found 3989.9756.

2-(5,7,7,7-Tetrafluoroheptyl)-2H-benzo[d][1,2,3]triazole (**40**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 20/1), resulting in a colorless liquid (28.3 mg) at 49% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.32 (m, 4H), 4.77 (dtt, *J* = 12.1, 8.0, 3.5 Hz, 1H), 4.75 (t, *J* = 6.9 Hz, 2H), 2.65 – 2.08 (m, 2H), 2.22 – 2.12 (m, 2H), 1.87 – 1.38 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.43, 126.43, 125.45 (dq, *J* = 3.6, 276.9 Hz), 118.06, 87.34

(dq, J = 172.7, 3.2 Hz), 56.21, 39.43 (qd, J = 28.6, 22.9 Hz), 34.41 (d, J = 20.9 Hz), 29.58, 21.90 (d, J = 4.1 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.12 (d, J = 7.4 Hz, 3F), -182.43 (q, J = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₃H₁₅F₄N₃Na⁺]: 312.1094, found 312.1100.

2-(1,3,3,3-Tetrafluoropropyl)isoindoline-1,3-dione (41): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a white solid (31.9 mg) at 58% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.70 (m, 4H), 7.72 (dd, *J* = 5.5, 3.1 Hz, 2H), 5.08 (dtt, *J* = 48.7, 7.3, 3.7 Hz, 1H), 4.08 – 3.96 (m, 1H), 3.92 – 3.77 (m, 1H), 2.65 – 2.38 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.92, 134.44, 131.77, 125.17 (dq, *J* = 2.0, 276.8, Hz), 123.66, 84.83 (dq, *J* = 179.0, 3.2 Hz), 41.02 (d, *J* = 23.7 Hz), 37.49 (qd, *J* = 29.4, 21.7 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.95 (d, *J* = 7.3 Hz, 3F), -187.53 (q, *J* = 7.2 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₂H₉F₄NO₂Na⁺]: 298.0462, found 298.0469.

2-(5,7,7,7-Tetrafluoroheptyl)isoindoline-1,3-dione (42): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a white solid (34.7 mg) at 55% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.66 (m, 4H), 7.68 (dd, *J* = 5.5, 3.0 Hz, 2H), 4.76 (dtt, *J* = 49.1, 8.1, 3.6 Hz, 1H), 3.67 (t, *J* = 7.1 Hz, 2H), 2.57 – 2.19 (m, 2H), 1.78 – 1.38 (m, 6H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 167.94, 134.34, 131.61, 126.19 (q, *J* = 277.0 Hz), 122.98, 87.87 (dq, *J* = 169.8, 3.3 Hz), 37.83 (qd, *J* = 27.2, 21.0 Hz), 37.17, 33.52 (d, *J* = 20.2 Hz), 27.57, 21.44 (d, *J* = 4.3 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -62.49 (d, *J* = 7.5 Hz, 3F), -182.16 (q, *J* = 7.6 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₅F₄NO₂Na⁺]: 340.0931, found 340.0938.

2-(2,4,4,4-Tetrafluorobutyl)phenyl benzoate (43): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (35.7 mg) at 55% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 8.17 (m, 2H), 7.68 – 7.62 (m, 1H), 7.55 – 7.49 (m, 2H), 7.38 – 7.31 (m, 2H), 7.28 – 7.18 (m, 2H), 5.17 – 4.16 (m, 1H), 3.08 – 2.88 (m, 2H), 2.57 – 2.19 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.07, 149.57, 134.06, 131.57, 130.24, 129.13, 128.91, 128.80, 127.88 (d, *J* = 4.5 Hz), 126.57, 125.45 (dq, *J* = 3.1, 276.9 Hz), 123.01, 87.11 (dq, *J* = 175.8, 3.0 Hz), 38.93 (qd, *J* = 28.7, 22.6 Hz), 35.81 (d, *J* = 22.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.98 (d, *J* = 7.5 Hz, 3F), -179.35 (q, *J* = 8.0 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₇H₁₄F₄O₂Na⁺]: 349.0822, found 349.0827.

1,1,1,3-Tetrafluorooctane (44): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (40.5 mg) at 65% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.79 (dtt, *J* = 49.0, 8.0, 3.7 Hz, 1H), 2.60 – 2.19 (m, 2H), 1.80 – 1.56 (m, 2H), 1.50 – 1.24 (m, 24H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 127.16 – 124.20 (m), 87.79 (dq, *J* = 172.1, 3.2 Hz), 39.56 (qd, *J* = 28.5, 23.0 Hz), 35.18 (d, *J* = 20.6

Hz), 32.09, 29.85, 29.83, 29.81, 29.81, 29.76, 29.66, 29.58, 29.52, 29.35, 24.73 (d, J = 4.3 Hz), 22.85, 14.27. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.17 (d, J = 7.3 Hz, 3F), -181.69 (q, J = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₇H₃₂F₄H⁺]: 313.2513, found 313.2526.

3,5,5,5-Tetrafluoro-3-methylpentyl 4-methoxybenzoate (**45**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (22.2 mg) at 36% yield. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.00 – 7.94 (m, 2H), 6.94 – 6.90 (m, 2H), 4.52 – 4.41 (m, 2H), 3.85 (s, 3H), 2.68 – 2.50 (m, 2H), 2.32 – 2.12 (m, 2H), 1.57 (d, *J* = 22.1 Hz, 3H). ¹³**C** NMR (101 MHz, Chloroform-*d*) δ 166.19, 163.64, 131.69, 125.20 (dq, *J* = 8.4, 277.5 Hz), 122.43, 113.83, 92.39 (dq, *J* = 172.8, 2.2 Hz), 59.78 (d, *J* = 6.2 Hz), 55.54, 43.28 (qd, *J* = 27.9, 26.1 Hz), 38.74 (dd, *J* = 22.5, 1.6 Hz), 24.80 (dd, *J* = 24.2, 1.8 Hz). ¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -60.78 (d, *J* = 8.9 Hz, 3F), -143.12 (q, *J* = 8.9 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₆F₄O₃Na⁺]: 331.0928, found 331.0938.

5,7,7,7-Tetrafluoroheptyl-2-(3-benzoylphenyl)propanoate (**46**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a colorless liquid (60.2 mg) at 71% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 – 7.75 (m, 3H), 7.69 – 7.41 (m, 6H), 4.83 – 4.63 (m, 1H), 4.16 – 4.04 (m, 2H), 3.80 (q, *J* = 7.2 Hz, 1H), 2.55 – 2.37 (m, 1H), 2.35 – 2.15 (m, 1H), 1.75 – 1.57 (m, 4H), 1.54 (d, *J* = 7.2 Hz, 3H), 1.51 – 1.42 (m, 1H), 1.42 – 1.32 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 196.53, 174.12, 141.07, 114.05, 138.06, 137.59, 132.63, 131.56, 130.15, 129.23, 129.22, 129.13, 128.59, 128.41, 125.51 (dq, *J* = 3.4, 276.8 Hz), 87.43 (dq, *J* = 172.6, 3.0 Hz), 64.52, 45.55, 39.41 (qd, *J* = 28.5, 22.9 Hz), 34.56 (d, *J* = 20.8 Hz), 28.22, 21.20 (d, *J* = 4.1 Hz), 18.47. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.08 (d, *J* = 7.4 Hz, 3F), -182.32 – -182.44 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₃H₂₄F₄O₃Na⁺]: 447.1554, found 447.1565.

3,5,5,5-Tetrafluoropentyl-2-(4-isobutylphenyl)propanoate (47): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (36.9 mg) at 53% yield. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.18 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 4.76 (dtt, *J* = 48.5, 8.1, 4.0 Hz, 1H), 4.34 – 4.09 (m, 2H), 3.70 (q, *J* = 7.2 Hz, 1H), 2.53 – 2.33 (m, 3H), 2.30 – 2.10 (m, 1H), 2.01 – 1.78 (m, 3H), 1.50 (dd, *J* = 7.2, 1.3 Hz, 3H), 0.90 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.57, 174.57, 140.92, 140.91, 137.59, 137.55, 129.56, 129.55, 127.18, 127.17, 125.29 (dq, *J* = 3.1, 277.3 Hz), 85.76 – 83.78 (m), 59.92 – 59.72 (m), 45.30 – 45.17 (m), 45.13, 39.38 (qd, *J* = 28.8, 23.0 Hz), 34.12 (dd, *J* = 21.0, 5.0 Hz), 30.29, 22.49, 18.36. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.09 – -64.18 (m, 3F), -184.63 (dq, *J* = 68.4, 7.4 Hz, 1F); **ESI-HRMS** exact mass calculated for [C₁₈H₂₄F₄O₂H⁺]: 349.1785, found 349.1793.

5,7,7,7-Tetrafluoroheptyl-4-([1,1'-biphenyl]-4-yl)-4-oxobutanoate (48): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a solid with color

(36.5 mg) at 43% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.63 – 7.59 (m, 2H), 7.48 – 7.42 (m, 2H), 7.41 – 7.36 (m, 1H), 4.80 (dtt, J = 49.2, 8.1, 3.5 Hz, 1H), 4.13 (t, J = 6.4 Hz, 2H), 3.31 (t, J = 6.5 Hz, 2H), 2.77 (t, J = 6.5 Hz, 2H), 2.57 – 2.22 (m, 2H), 1.80 – 1.41 (m, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 197.56, 172.80, 145.71, 139.67, 135.21, 128.92, 128.56, 128.22, 127.16, 127.13, 125.53 (dq, J = 2.8, 276.9 Hz), 87.39 (dq, J = 172.4, 3.1 Hz), 64.06, 39.16 (qd, J = 28.4, 22.7 Hz), 34.43 (d, J = 20.7 Hz), 33.30, 28.19, 28.14, 21.10 (d, J = 4.3 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -63.99 (d, J = 7.7 Hz, 3F), -182.25 (q, J = 7.9 Hz, 1F); **ESI-HRMS** exact mass calculated for [C₂₃H₂₄F₄O₃Na⁺]: 477.1554, found 477.1561.

Ethyl 4-((4,6,6,6-tetrafluorohexanoyl)oxy)benzoate (**49**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a white solid (26.9 mg) at 40% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.11 – 8.05 (m, 2H), 7.20 – 7.13 (m, 2H), 4.95 (dtt, J = 49.1, 8.1, 4.1 Hz, 1H), 4.38 (q, J = 7.2 Hz, 2H), 2.88 – 2.73 (m, 2H), 2.70 – 2.52 (m, 1H), 2.49 – 2.32 (m, 1H), 2.20 – 2.06 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 170.66, 165.89, 154.12, 131.29, 128.38, 125.29 (dq, J = 4.2, 276.9 Hz), 121.55, 86.73 (dq, J = 173.2, 3.2 Hz), 61.26, 39.61 (qd, J = 28.8, 22.8 Hz), 30.16 (d, J = 20.7 Hz), 29.67 (d, J = 4.1 Hz), 14.45; ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.04 (d, J = 7.4 Hz, 3F), -184.67 (q, J = 7.3 Hz, 1F); **ESI-HRMS** exact mass calculated for [C₁₅H₁₆F₄O₄Na⁺]: 359.0877, found 359.0877.

4,6,6,6-Tetrafluorohexyl-2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2-yl)acetate (**50**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (41.6 mg) at 49% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 2.4 Hz, 1H), 7.91 – 7.86 (m, 1H), 7.59 – 7.34 (m, 4H), 7.06 – 7.01 (m, 1H), 5.19 (s, 2H), 4.81 (dtt, *J* = 49.1, 7.7, 3.7 Hz, 1H), 4.21 – 4.10 (m, 2H), 3.64 (s, 2H), 2.61 – 2.20 (m, 2H), 1.91 – 1.60 (m, 4H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 190.92, 171.43, 160.63, 140.51, 136.40, 135.68, 132.95, 132.52, 129.60, 129.41, 127.97, 127.85, 125.45 (dq, *J* = 3.6, 276.9 Hz), 125.30, 121.23, 87.27 (dq, *J* = 172.9, 3.2 Hz), 73.77, 64.23, 40.38, 39.50 (qd, *J* = 28.6, 22.9 Hz), 31.71 (d, *J* = 21.0 Hz), 24.16 (d, *J* = 4.0 Hz). ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.07 (d, *J* = 7.5 Hz, 3F), -182.91 (q, *J* = 7.9 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₀F₄O₄Na⁺]: 447.1190, found 447.1193.

2-(2,6-Dioxo-1-(5,7,7,7-tetrafluoroheptyl)piperidin-3-yl)isoindoline-1,3-dione (51): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a solid with color (64.2 mg) at 75% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.86 – 7.77 (m, 2H), 7.76 – 7.67 (m, 2H), 5.02 – 4.93 (m, 1H), 4.86 – 4.63 (m, 1H), 3.81 – 3.74 (m, 2H), 2.97 – 2.86 (m, 1H), 2.80 – 2.66 (m, 2H), 2.54 – 2.16 (m, 2H), 2.14 – 2.03 (m, 1H), 1.79 – 1.30 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.97, 168.73, 167.38, 134.44, 131.68, 129.77 – 121.37 (m), 123.64, 88.40 – 86.49 (m), 50.07, 40.08 – 39.84 (m), 39.70 – 38.40 (m), 34.39 (d, *J* = 22.3 Hz), 31.88, 27.29 (d, *J* = 7.5 Hz), 21.92, 21.61 (d, *J* = 4.2 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.04 – -64.13 (m, 3F), -181.90 (dq, *J* = 65.3, 7.4 Hz, 1F). ESI-HRMS exact mass calculated for [C₂₀H₂₀F₄N₂O₄Na⁺]: 451.1251, found 451.1254.

(1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl 4,6,6,6-tetrafluorohexanoate (52): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (40.4 mg) at 62% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.96 – 4.75 (m, 1H), 4.70 (td, J = 10.9, 4.4 Hz, 1H), 2.63 – 2.42 (m, 2H), 2.42 – 2.23 (m, 2H), 2.06 – 1.92 (m, 3H), 1.88 – 1.78 (m, 1H), 1.71 – 1.63 (m, 2H), 1.55 – 1.41 (m, 1H), 1.41 – 1.32 (m, 1H), 1.11 – 0.84 (m, 9H), 0.75 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.13, 172.11, 125.40 (dq, J = 3.7, 276.8 Hz), 87.81 – 85.90 (m), 74.80, 74.78, 47.15, 41.05, 41.02, 39.59 (qd, J = 28.8, 22.8 Hz), 34.37, 31.54, 30.43 (d, J = 21.0 Hz), 29.88 – 29.65 (m), 26.50, 26.48, 23.60, 23.57, 21.12, 20.86, 16.43, 16.41; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.14 – -64.18 (m, 3F), -184.41 (q, J = 7.8 Hz, 1F); ESI-HRMS exact mass calculated for [C₁₆H₂₆F₄O₂Na⁺]: 349.1761, found 349.1770.

1-Methyl-4-(5,7,7,7-tetrafluoroheptyl) (1*r,4r*)-cyclohexane-1,4-dicarboxylate (53): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a solid with color (22.8 mg) at 32% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 4.78 (dtt, *J* = 48.9, 8.3, 3.5 Hz, 1H), 4.06 (t, *J* = 6.4 Hz, 2H), 3.65 (s, 3H), 2.60 – 2.43 (m, 1H), 2.40 – 2.19 (m, 3H), 2.08 – 1.97 (m, 4H), 1.81 – 1.49 (m, 6H), 1.46 – 1.39 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.98, 175.55, 125.50 (dq, *J* = 3.6, 276.8 Hz), 87.46 (dq, *J* = 172.5, 3.2 Hz), 63.93, 51.69, 42.61, 42.50, 39.49 (qd, *J* = 28.5, 23.1 Hz), 34.66 (q, *J* = 20.9 Hz), 28.32, 28.14, 28.12, 21.31 (d, *J* = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.14 (d, *J* = 7.5 Hz, 3F), -182.45 (q, *J* = 7.8 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₆H₂₄F₄O₄Na⁺]: 379.1503, found 379.1512.

54

((3aS,5aR,8aR,8bS)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-

d]pyran-3a-yl)methyl 4,6,6,6-tetrafluorohexanoate (**54**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 10/1), resulting in a colorless liquid (38.7 mg) at 45% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 4.95 – 4.75 (m, 1H), 4.58 (dd, *J* = 7.9, 2.6 Hz, 1H), 4.42 (dd, *J* = 11.6, 2.0 Hz, 1H), 4.28 – 4.25 (m, 1H), 4.23 – 4.20 (m, 1H), 4.05 – 4.00 (m, 1H), 3.91 – 3.85 (m, 1H), 3.77 – 3.71 (m, 1H), 2.62 – 2.22 (m, 4H), 2.11 – 1.92 (m, 2H), 1.51 (s, 3H), 1.45 (s, 3H), 1.37 (s, 3H), 1.32 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.85, 125.33 (dq, *J* = 3.4, 276.8 Hz), 109.22, 108.86, 108.84, 101.53, 86.63 (dq, *J* = 173.0, 3.2 Hz), 70.83, 70.71, 70.13, 65.70, 65.65, 61.35, 40.10 – 38.86 (m), 30.08 (d, *J* = 20.9 Hz), 29.21 – 29.08 (m), 26.50, 25.95, 25.23, 24.11. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.06 – -64.12 (m, 3F), -184.85 (q, *J* = 7.9 Hz, 1F); **ESI-HRMS** exact mass calculated for [C₁₈H₂₆F₄O₇Na⁺]: 453.1507, found 453.1514.

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-17-oxo-7, 8, 9, 11, 12, 13, 14, 15, 16, 17-decahydro-6Hcyclopenta[a]phen-anthren-3-yl 5,7,7,7-tetra-fluoroheptanoate (55): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a white solid (44.2 mg) at 50% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.29 (d, J = 8.5 Hz, 1H), 6.85 (d, J = 2.5Hz, 1H), 6.81 (s, 1H), 5.06 – 4.84 (m, 1H), 2.94 – 2.86 (m, 2H), 2.79 – 2.72 (m, 2H), 2.66 – 2.21 (m, 5H), 2.20 – 1.93 (m, 6H), 1.69 – 1.38 (m, 6H), 0.90 (s, 3H). ¹³C NMR (101 MHz, Chloroform*d*) δ 171.43, 148.45, 138.20, 137.66, 126.55, 125.31 (dq, J = 3.7, 276.8 Hz), 121.53, 118.69, 86.73 (dq, J = 173.2, 3.3 Hz), 50.49, 48.02, 44.23, 39.52 (qd, J = 28.9, 22.7 Hz), 38.06, 35.94, 31.63, 30.21 (d, J = 20.9 Hz), 29.55, 29.51, 29.49, 26.40, 25.83, 21.67, 13.90. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.03 (d, J = 7.6 Hz, 3F), -184.61 (q, J = 7.6 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₄H₂₈F₄O₃Na⁺]: 463.1867, found 463.1862.

2-(5,7,7,7-Tetrafluoroheptyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide (56): The compound was purified by columnchromatography (petroleum ether/EtOAc = 30/1), resulting in a liquid with color (38.8 mg) at 55% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 – 8.03 (m, 1H), 7.94 – 7.90 (m, 1H), 7.89 – 7.79 (m, 2H), 4.81 (dtt, *J* = 48.8, 8.2, 3.5 Hz, 1H), 3.79 (t, *J* = 7.3 Hz, 2H), 2.62 – 2.20 (m, 2H), 1.96 – 1.87 (m, 2H), 1.84 – 1.45 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.12, 137.79, 134.90, 134.48, 127.46, 125.53 (dq, *J* = 3.4, 276.8 Hz), 125.30, 121.05, 87.44 (dq, *J* = 172.6, 3.2 Hz), 39.46 (qd, *J* = 28.5, 22.9 Hz), 39.04, 34.47 (d, *J* = 20.9 Hz), 28.07, 21.99 (d, *J* = 4.2 Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -64.10 (d, *J* = 7.5 Hz, 3F), -182.30 (q, *J* = 7.3 Hz, 1F); ESI-HRMS exact mass calculated for [C₁₄H₁₅F₄NO₃SNa⁺]: 376.0601, found 376.0604.

2,6-Dibromo-4-(2-ethylbenzofuran-3-carbonyl)phenyl 4,6,6,6-tetrafluorohexanoate (57): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a liquid with color (53.2 mg) at 45% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.03 (s, 2H), 7.51 (d, *J* = 8.1 Hz, 1H), 7.41 (d, *J* = 7.7 Hz, 1H), 7.36 – 7.22 (m, 2H), 5.10 – 4.90 (m, 1H), 3.01 – 2.87 (m, 4H), 2.69 – 2.32 (m, 2H), 2.28 – 2.11 (m, 2H), 1.37 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 187.84, 168.58, 167.52, 153.82, 149.35, 139.22, 133.19, 126.34, 125.28 (dq, *J* = 3.8, 276.9 Hz), 124.95, 124.14, 121.12, 118.20, 115.31, 111.34, 86.45 (dq, *J* = 173.6, 3.2 Hz), 39.58 (qd, *J* = 28.9, 22.7 Hz), 30.02 (d, *J* = 21.0 Hz), 29.19 (d, *J* = 4.3 Hz), 22.20, 12.32. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.95 (d, *J* = 7.3 Hz, 3F), -184.91 (q, *J* = 7.4 Hz, 1F); **ESI-HRMS** exact mass calculated for [C₂₃H₁₈Br₂F₄O₄Na⁺]: 614.9400, found 614.9404.

5,7,7,7-Tetrafluoroheptyl 4-(N,N-dipropylsulfamoyl)benzoate (58): The compound was purified by columnchromatography (petroleum ether/EtOAc = 10/1), resulting in a colorless liquid (54.6 mg) at 60% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 7.78 (m, 4H), 4.77 (dtt, *J* = 49.1, 8.2, 3.4 Hz, 1H), 4.31 (t, *J* = 6.4 Hz, 2H), 3.04 (t, *J* = 8.0 Hz, 4H), 2.57 – 2.18 (m, 2H), 1.83 – 1.43 (m, 10H), 0.80 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.14, 144.19, 133.55, 130.13, 126.95, 125.45 (dq, *J* = 3.0, 276.8 Hz), 87.39 (dq, *J* = 172.4, 3.1 Hz), 65.11, 49.90, 39.25 (qd, *J* = 28.4, 22.7 Hz), 34.47 (d, *J* = 20.7 Hz), 28.18, 21.88, 21.28 (d, *J* = 4.1 Hz), 11.04. ¹⁹F NMR

(376 MHz, Chloroform-*d*) δ -64.14 (d, J = 7.1 Hz, 3F), -182.74 (q, J = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₀H₂₉F₄NO₄SNa⁺]: 478.1646, found 478.1653.

3,5,5,5-Tetrafluoropentyl 2-acetoxybenzoate (**59**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (31.5 mg) at 49% yield. ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.98 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.63 – 7.52 (m, 1H), 7.35 – 7.29 (m, 1H), 7.15 – 7.05 (m, 1H), 5.12 – 4.90 (m, 1H), 4.54 – 4.34 (m, 2H), 2.68 – 2.28 (m, 5H), 2.18 – 1.99 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.74, 164.28, 150.84, 134.20, 131.62, 126.18, 125.30 (dq, *J* = 3.4, 276.8 Hz), 123.97, 123.08, 84.84 (dq, *J* = 173.3, 3.3 Hz), 60.39 (d, *J* = 4.7 Hz), 39.47 (qd, *J* = 28.8, 22.5 Hz), 34.22 (d, *J* = 20.8 Hz), 21.04. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -63.97 (d, *J* = 7.4 Hz, 3F), -184.90 (q, *J* = 7.4 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₁₄H₁₄F₄O₄Na⁺]: 345.0720, found 345.0726.

3,5,5,5-Tetrafluoropentyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (**60**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (45.3 mg) at 59% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.3 Hz, 2H), 7.50 – 7.35 (m, 4H), 7.20 – 7.10 (m, 2H), 4.96 – 4.73 (m, 1H), 4.36 – 4.20 (m, 2H), 3.79 (q, *J* = 7.1 Hz, 1H), 2.61 – 2.16 (m, 2H), 2.08 – 1.85 (m, 2H), 1.60 – 1.52 (m, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 173.77, 159.82 (d, *J* = 248.5 Hz), 141.68 (d, *J* = 4.0 Hz), 141.60 (d, *J* = 4.0 Hz), 135.50, 131.02 (d, *J* = 3.8 Hz), 129.03 (d, *J* = 2.9 Hz), 128.56, 128.11 (d, *J* = 13.5 Hz), 127.81, 125.29 (dq, *J* = 3.5, 277.0 Hz), 123.57 (d, *J* = 3.3 Hz), 85.74 – 83.75 (m), 60.30 – 60.10 (m), 45.12 – 45.00 (m), 39.35 (qd, *J* = 28.7, 22.8 Hz), 34.04 (dd, *J* = 21.0, 5.1 Hz), 18.25. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.08 – -64.14 (m, 3F), -117.43 – -117.49 (m, 1F), -184.34 – -184.68 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₀H₁₉F₅O₂H⁺]: 387.1378, found 387.1385.

5,7,7,7-Tetrafluoroheptyl 2-(2-fluoro-[1,1'-biphenyl]-4-yl)propanoate (**61**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (57.9 mg) at 70% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.58 – 7.50 (m, 2H), 7.48 – 7.34 (m, 4H), 7.19 – 7.10 (m, 2H), 4.77 (dtt, *J* = 48.9, 7.6, 3.2 Hz, 1H), 4.13 (t, *J* = 6.4 Hz, 2H), 3.77 (q, *J* = 7.1 Hz, 1H), 2.58 – 2.15 (m, 2H), 1.78 – 1.57 (m, 4H), 1.55 (d, *J* = 7.2 Hz, 3H), 1.53 – 1.34 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 174.07, 161.01, 158.55, 141.98 (d, *J* = 7.7 Hz), 135.54, 130.90 (d, *J* = 3.9 Hz), 129.02 (d, *J* = 3.0 Hz), 128.56, 127.93 (d, *J* = 13.5 Hz), 127.79, 125.51 (dq, *J* = 3.5, 276.9 Hz), 123.64 (d, *J* = 3.3 Hz), 87.44 (dq, *J* = 172.7, 3.3 Hz), 64.57, 45.17 (d, *J* = 1.2 Hz), 39.41 (qd, *J* = 28.5, 23.0 Hz), 34.57 (d, *J* = 20.8 Hz), 28.21, 21.22 (d, *J* = 4.1 Hz), 18.38. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -64.09 (d, *J* = 7.7 Hz, 3F), -117.66 (s, 1F), -182.41 (q, *J* = 7.7 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₃F₅O₂H⁺]: 415.1691, found 415.1688.

5,7,7-Trifluoroheptyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (63): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a white solid (64.6 mg) at 69% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 – 8.12 (m, 1H), 8.08 – 8.03 (m, 1H), 6.99 (d, J = 8.9 Hz, 1H), 5.98 (tdd, J = 56.6, 6.7, 2.8 Hz, 1H), 4.84 – 4.61 (m, 1H), 4.29 (t, J = 6.4 Hz, 2H), 3.88 (d, J = 6.5 Hz, 2H), 2.73 (s, 3H), 2.29 – 1.94 (m, 3H), 1.85 – 1.48 (m, 6H), 1.07 (d, J = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.27, 162.55, 162.04, 161.29, 132.61, 132.08, 126.00, 121.70, 115.44, 115.10 (dt, J = 4.9, 233.8 Hz), 112.70, 102.99, 88.92 – 88.02 (m), 75.75, 64.97, 40.04 (q, J = 21.3 Hz), 34.74 (d, J = 20.5 Hz), 28.38, 28.23, 21.52 (d, J = 4.3 Hz), 19.11, 17.55. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.06 – -118.24 (m, 2F), -183.71 (s, 1F). **ESI-HRMS** exact mass calculated for $[C_{23}H_{27}F_3N_2O_3SNa^+]$: 491.1587, found 491.1592.

7-Chloro-5,7,7-trifluoroheptyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5carboxylate (64): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a white solid (59.2 mg) at 59% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.14 – 8.11 (m, 1H), 8.07 – 8.02 (m, 1H), 6.98 (d, *J* = 8.9 Hz, 1H), 4.87 (dtt, *J* = 49.2, 8.0, 3.4 Hz, 1H), 4.29 (t, *J* = 6.4 Hz, 2H), 3.87 (d, *J* = 6.5 Hz, 2H), 2.73 (d, 3H), 2.82 – 2.40 (m, 2H), 2.23 – 2.11 (m, 1H), 1.86 – 1.45 (m, 6H), 1.07 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.25, 162.54, 162.00 161.28, 132.59, 132.03, 127.76 (dt, *J* = 2.7, 292.6 Hz), 125.97, 121.66, 115.42, 112.69, 102.97, 88.21 (dt, *J* = 173.3, 2.9 Hz), 75.74, 64.89, 47.45 – 46.60 (m), 34.63 (d, *J* = 20.9 Hz), 28.32, 28.21, 21.37 (d, *J* = 4.2 Hz), 19.09, 17.53. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.57 – -50.31 (m, 2F), -181.86 (t, *J* = 9.0 Hz, 1F). **ESI-HRMS** exact mass calculated for [C₂₃H₂₆ClF₃N₂O₃SNa⁺]: 525.1197, found 525.1199.

5,7,7,8,8,8-Hexafluorooctyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-carboxylate (**65**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a white solid (72.3 mg) at 68% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 2.2 Hz, 1H), 8.09 – 8.04 (m, 1H), 7.02 – 6.97 (m, 1H), 4.93 (dtt, *J* = 48.8, 8.0, 3.4 Hz, 1H), 4.31 (t, *J* = 6.4 Hz, 2H), 3.89 (d, *J* = 6.6 Hz, 2H), 2.75 (s, 3H), 2.59 – 2.12 (m, 3H), 1.93 – 1.54 (m, 6H), 1.08 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.35, 162.61, 162.08, 161.39, 132.64, 132.14, 126.05, 121.71, 120.80 – 117.10 (m), 115.46, 114.85 – 114.25 (m), 112.72, 103.07, 86.70 (dt, *J* = 173.2, 3.0 Hz), 75.81, 64.91, 36.45 (dt, *J* = 23.2, 21.4 Hz), 35.16 (d, *J* = 20.9 Hz), 28.36, 28.27, 21.44 (d, *J* = 4.1 Hz), 19.13, 17.58. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -85.79 – 85.85 (m, 3F), -116.95 – -117.02 (m, 2F), -180.70 – -180.78 (m, 1F). ESI-HRMS exact mass calculated for [C₂₄H₂₆F₆N₂O₃SNa⁺]: 559.1461, found 559.1466.

5.7.7.8,8,9,9,9-Octafluorononyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5carboxylate (**66**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a white solid (83.2 mg) at 71% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (d, *J* = 2.0 Hz, 1H), 8.11 – 8.06 (m, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 4.96 (dtt, *J* = 48.9, 7.9, 3.4 Hz, 1H), 4.32 (t, *J* = 6.4 Hz, 2H), 3.90 (d, *J* = 6.5 Hz, 2H), 2.76 (s, 3H), 2.66 – 2.13 (m, 3H), 1.93 – 1.53 (m, 6H), 1.09 (d, *J* = 6.7 Hz, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.18, 162.50, 161.94, 161.22, 132.53, 131.92, 125.91, 122.46 – 105.35 (m, CF₃CF₂CF₂), 121.62, 115.37, 112.64, 102.89, 86.58 (dt, *J* = 173.6, 2.7 Hz), 75.70, 64.84, 36.18 (q, *J* = 21.9 Hz), 35.11 (d, *J* = 20.9 Hz), 28.27, 28.18, 21.36 (d, *J* = 4.1 Hz), 18.99, 17.44. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -80.39 (t, *J* = 11.3 Hz, 3F), -114.00 – -114.24 (m, 2F), -127.80 – -127.92 (m, 2F), -180.48 – -180.57 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₅H₂₆F₈N₂O₃SNa⁺]: 609.1429, found 609.1439.

7,7,7-Trichloro-5-fluoroheptyl-2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazole-5-

carboxylate (67): The compound was purified by columnchromatography (petroleum ether/EtOAc = 50/1), resulting in a white solid (57.7 mg) at 54% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 – 8.13 (m, 1H), 8.09 – 8.04 (m, 1H), 6.99 (d, *J* = 8.9 Hz, 1H), 4.34 – 4.24 (m, 3H), 3.88 (d, *J* = 6.5 Hz, 2H), 3.33 – 3.07 (m, 2H), 2.76 – 2.73 (m, 3H), 2.25 – 2.13 (m, 1H), 2.08 – 1.57 (m, 6H), 1.07 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.31, 162.57, 162.05, 161.34, 132.63, 132.12, 126.02, 121.72, 115.45, 112.71, 103.04, 96.89, 77.55 – 75.72 (m), 64.91, 62.28, 57.46, 38.52, 28.24, 28.04, 22.71, 19.15, 17.61. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -178.46 (s, 1F). **ESI-HRMS** exact mass calculated for [C₂₃H₂₆Cl₃FN₂O₃SH⁺]: 535.0787, found 535.0788.

2-(4-(8,10,10-Trifluoro-3-oxodecan-2-yl)benzyl)cyclopentan-1-one (68): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (34.1 mg) at 45% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.09 (m, 4H), 5.95 (tdd, *J* = 56.5, 6.8, 2.8 Hz, 1H), 4.70 – 4.58 (m, 1H), 4.07 (t, *J* = 6.3 Hz, 2H), 3.68 (q, *J* = 7.1 Hz, 1H), 3.16 – 3.08 (m, 1H), 2.56 – 2.44 (m, 1H), 2.38 – 2.27 (m, 2H), 2.16 – 2.04 (m, 3H), 2.03 – 1.87 (m, 2H), 1.77 – 1.51 (m, 6H), 1.48 (d, *J* = 7.2 Hz, 3H), 1.44 – 1.28 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.30, 174.74, 139.00, 138.50, 129.21, 127.61, 115.13 (dt, *J* = 4.9, 238.6 Hz), 89.94 – 88.08 (m), 64.34, 51.07, 45.27, 40.40 – 39.60 (m), 38.29, 35.29, 34.69 (d, *J* = 20.5 Hz), 29.35, 28.26, 21.29 (d, *J* = 4.5 Hz), 20.65, 18.53. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.00 – -118.41 (m, 2F), -183.54 – -183.61 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₉F₃O₃Na⁺]: 421.1961, found 421.1972.

2-(4-(10-Chloro-8,10,10-trifluoro-3-oxodecan-2-yl)benzyl)cyclopentan-1-one (69): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a

colorless liquid (47.1 mg) at 57% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.09 (m, 4H), 4.78 (dtt, *J* = 49.2, 7.3, 3.1 Hz, 1H), 4.07 (t, *J* = 6.3 Hz, 2H), 3.68 (q, *J* = 7.1 Hz, 1H), 3.16 – 3.06 (m, 1H), 2.75 – 2.59 (m, 1H), 2.54 – 2.27 (m, 4H), 2.16 – 2.01 (m, 2H), 2.00 – 1.89 (m, 1H), 1.79 – 1.31 (m, 11H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.27, 174.73, 139.01, 138.49, 129.21, 127.80 (dt, *J* = 2.8, 292.4 Hz), 127.60, 88.23 (dt, *J* = 173.3, 3.0 Hz), 64.27, 51.06, 47.40 – 46.60 (m), 45.26, 38.28, 35.30, 34.59 (d, *J* = 21.0 Hz), 29.35, 28.20, 21.16 (d, *J* = 4.3 Hz), 20.64, 18.53. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -48.50 – -50.44 (m, 2F), -181.68 – -181.76 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₈ClF₃O₃Na⁺]: 455.1571, found 455.1572.

2-(4-(10,10-Dichloro-8-fluoro-3-oxodecan-2-yl)benzyl)cyclopentan-1-one (70): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (44.6 mg) at 54% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.09 (m, 4H), 5.93 – 5.81 (m, 1H), 4.76 – 4.56 (m, 1H), 4.07 (t, *J* = 6.4 Hz, 2H), 3.68 (q, *J* = 7.1 Hz, 1H), 3.17 – 3.08 (m, 1H), 2.54 – 2.45 (m, 2H), 2.37 – 2.20 (m, 3H), 2.15 – 2.04 (m, 2H), 2.00 – 1.90 (m, 1H), 1.80 – 1.51 (m, 6H), 1.48 (d, *J* = 7.2 Hz, 3H), 1.45 – 1.27 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.25, 174.73, 138.99, 138.49, 129.22, 127.60, 90.54 (d, *J* = 169.7 Hz), 69.69 (d, *J* = 4.5 Hz), 64.33, 51.07, 49.27 (d, *J* = 20.8 Hz), 45.26, 38.29, 35.32, 34.40 – 34.08 (m), 29.35, 28.29, 21.35 (d, *J* = 4.5 Hz), 20.66, 18.54. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -185.17 – -185.27 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₉Cl₂FO₃Na⁺]: 453.1370, found 453.1374.

2-(4-(10,10,10-Trichloro-8-fluoro-3-oxodecan-2-yl)benzyl)cyclopentan-1-one (71): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (41.6 mg) at 46% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.09 (m, 4H), 4.98 – 4.78 (m, 1H), 4.08 (t, *J* = 6.4 Hz, 2H), 3.68 (q, *J* = 7.1 Hz, 1H), 3.17 – 3.04 (m, 2H), 2.89 – 2.78 (m, 1H), 2.55 – 2.45 (m, 1H), 2.38 – 2.28 (m, 2H), 2.16 – 2.02 (m, 2H), 2.01 – 1.90 (m, 1H), 1.79 – 1.68 (m, 2H), 1.65 – 1.50 (m, 4H), 1.48 (d, *J* = 7.2 Hz, 3H), 1.46 – 1.30 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 220.26, 174.73, 139.00, 138.49, 129.22, 127.61, 96.63, 90.29 (d, *J* = 174.4 Hz), 64.32, 59.56 (d, *J* = 22.5 Hz), 51.08, 45.27, 38.29, 35.32, 35.03 (d, *J* = 21.3 Hz), 29.36, 28.24, 21.21 (d, *J* = 4.5 Hz), 20.66, 18.56. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -178.32 – -178.36 (m, 1F). **ESI-HRMS** exact mass calculated for [C₂₂H₂₈Cl₃FO₃Na⁺]: 487.0980, found 487.0988.

5,7,7-Trifluoroheptyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (72): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (28.1 mg) at 30% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 – 7.58 (m, 6H), 6.90 (d, *J* = 8.7 Hz, 2H), 6.18 – 6.06 (m, 1H), 4.68 – 4.54 (m, 1H), 4.13 (t, *J* = 6.3 Hz, 2H), 2.21 – 1.98 (m, 2H), 1.65 – 1.44 (m, 10H), 1.37 – 1.17 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.29, 173.87, 159.78, 138.53, 136.46, 132.16, 131.28, 130.49, 128.67, 117.21, 115.08 (dt, *J* = 4.9, 238.7 Hz), 89.86 – 87.96 (m), 79.52, 65.44, 40.35 – 39.60 (m), 34.68 (d, *J* = 20.4 Hz), 28.18, 25.56 (d, *J* = 4.3 Hz), 21.36 (d, *J* = 4.3 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.96 – -118.38 (m, 2F), -183.71 (s, 1F). **ESI-HRMS** exact mass calculated for [C₂₄H₂₆ClF₃O₄H⁺]: 471.1544, found 471.1542.

7-Chloro-5,7,7-trifluoroheptyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (73): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (41.0 mg) at 41% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.77 – 7.65 (m, 4H), 7.47 – 7.40 (m, 2H), 6.89 – 6.81 (m, 2H), 4.80 – 4.68 (m, 1H), 4.17 (t, *J* = 6.4 Hz, 2H), 2.71-2.60 (m, 1H), 2.53 – 2.30 (m, 1H), 1.67 (s, 6H), 1.68 – 1.26 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 194.26, 173.84, 159.76, 138.51, 136.42, 132.13, 131.26, 130.48, 128.65, 127.72 (dt, *J* = 3.0, 292.5 Hz), 117.19, 88.17 (dt, *J* = 173.3, 3.0 Hz), 79.50, 65.35, 47.70 – 46.50 (m), 34.56 (d, *J* = 20.9 Hz), 28.12, 25.54 (d, *J* = 4.8 Hz), 21.22 (d, *J* = 4.1 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ - 48.63 – -50.33 (m, 2F), -181.92 – -182.00 (m, 1F). ESI-HRMS exact mass calculated for [C₂₄H₂₅Cl₂F₃O₄H⁺]: 505.1155, found 505.1153.

7,7-Dichloro-5-fluoroheptyl 2-(4-(4-chlorobenzoyl)phenoxy)-2-methylpropanoate (**74**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (50.8 mg) at 51% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 – 7.58 (m, 6H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.33 – 6.21 (m, 1H), 4.67 – 4.45 (m, 1H), 4.13 (t, *J* = 6.2 Hz, 2H), 2.47 – 2.27 (m, 2H), 1.54 (m, 10H), 1.26 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 193.18, 172.77, 159.23, 137.07, 136.23, 131.93, 131.18, 129.57, 128.61, 117.05, 90.68 (d, *J* = 168.6 Hz), 79.11, 71.05 (d, *J* = 4.4 Hz), 65.04, 47.80 (d, *J* = 20.6 Hz), 33.26 (d, *J* = 19.8 Hz), 27.56, 25.11, 20.70 (d, *J* = 4.4 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -178.15 (s, 1F). ESI-HRMS exact mass calculated for [C₂₄H₂₆Cl₃FO₄H⁺]: 503.0953, found 503.0953.

2-Acetyl-5-methoxyphenyl 4,6,6-trifluorohexanoate (75): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (19.8 mg) at 31% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.8 Hz, 1H), 6.86 – 6.80 (m, 1H), 6.60 (d, *J* = 2.5 Hz, 1H), 6.07 – 5.96 (m, 1H), 4.99 – 4.79 (m, 1H), 3.86 (s, 3H), 2.90 – 2.75 (m, 2H), 2.50 (s, 3H), 2.36 – 2.07 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.85, 171.37, 163.97, 151.39, 132.84, 122.78, 115.02 (dt, *J* = 5.0, 238.9 Hz), 111.82, 109.53, 89.31 – 87.42 (m), 55.89, 40.45 – 39.75 (m), 30.14 (d, *J* = 20.7 Hz), 29.78 (d, *J* = 4.4 Hz), 28.90. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -115.89 – -118.23 (m, 2F), -185.72 – -185.75 (m, 1F). ESI-HRMS exact mass calculated for [C₁₅H₁₇F₃O₄Na⁺]: 341.0971, found 341.0988.

2-Acetyl-5-methoxyphenyl 6-chloro-4,6,6-trifluorohexanoate (**76**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (36.2 mg) at 51% yield. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.93 (d, *J* = 8.8 Hz, 1H), 6.98 – 6.93 (m, 1H), 6.78 (d, *J* = 2.4 Hz, 1H), 5.11 – 4.91 (m, 1H), 3.82 (s, 3H), 3.05 – 2.87 (m, 2H), 2.76 (t, *J* = 7.5 Hz, 2H), 2.45 (s, 3H), 2.13 – 1.96 (m, 2H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 195.82, 171.26, 163.97, 151.36, 132.86, 127.67 (dt, *J* = 2.6, 293.4 Hz), 122.69, 111.82, 109.52, 87.62 (dt, *J* = 173.5, 3.1 Hz), 55.87, 47.09 (td, *J* = 24.3, 22.2 Hz), 30.06 (d, *J* = 20.9 Hz), 29.61 (d, *J* = 4.2 Hz), 28.85. ¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -48.56 – -50.43 (m, 2F), -183.95 – -184.03 (m, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₆ClF₃O₄Na⁺]: 375.0581, found 375.0587.

2-Acetyl-5-methoxyphenyl 6,6-dichloro-4-fluorohexanoate (77): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (30.1 mg) at 43% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.8 Hz, 1H), 6.87 – 6.79 (m, 1H), 6.60 (d, *J* = 2.5 Hz, 1H), 5.96 – 5.87 (m, 1H), 5.00 – 4.79 (m, 1H), 3.85 (s, 3H), 2.90 – 2.75 (m, 2H), 2.70 – 2.57 (m, 1H), 2.50 (s, 3H), 2.49 – 2.35 (m, 1H), 2.25 – 2.05 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.80, 171.32, 163.94, 151.37, 132.83, 122.73, 111.78, 109.52, 89.91 (d, *J* = 170.4 Hz), 69.46 (d, *J* = 4.5 Hz), 55.87, 49.22 (d, *J* = 20.5 Hz), 29.79, 29.71 (d, *J* = 25.5 Hz), 28.88. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -187.26 (s, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₇Cl₂FO₄Na⁺]: 373.0380, found 373.0384.

2-Acetyl-5-methoxyphenyl 6,6,6-trichloro-4-fluorohexanoate (**78**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (40.8 mg) at 53% yield. ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.8 Hz, 1H), 6.88 – 6.78 (m, 1H), 6.61 (d, *J* = 2.5 Hz, 1H), 5.22 – 5.02 (m, 1H), 3.85 (s, 3H), 3.29 – 3.18 (m, 1H), 3.05 – 2.96 (m, 1H), 2.92 – 2.79 (m, 2H), 2.50 (s, 3H), 2.31 – 2.14 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.79, 171.27, 163.96, 151.37, 132.84, 122.71, 111.81, 109.52, 96.35, 89.64 (d, *J* = 174.7 Hz), 59.54 (d, *J* = 22.2 Hz), 55.87, 30.46 (d, *J* = 21.4 Hz), 29.70 (d, *J* = 4.4 Hz), 28.88. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -180.74 (s, 1F). **ESI-HRMS** exact mass calculated for [C₁₅H₁₆Cl₃FO₄Na⁺]: 406.9990, found 407.0002.

2-Acetyl-5-methoxyphenyl 7-chloro-4,6,6,7,7-pentafluoroheptanoate (**79**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (33.7 mg) at 42% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 (d, *J* = 8.8 Hz, 1H), 6.88 – 6.78 (m, 1H), 6.61 (d, *J* = 2.5 Hz, 1H), 5.20 – 5.00 (m, 1H), 3.86 (s, 3H), 2.94 – 2.78 (m, 2H), 2.69 – 2.53 (m, 1H), 2.50 (s, 3H), 2.47 – 2.28 (m, 1H), 2.27 – 2.11 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.80, 171.24, 163.97, 151.36, 132.85, 123.45 (tt, *J* = 298.9, 37.1 Hz), 122.68, 118.99 – 113.10 (m), 111.81, 109.51, 86.40 (dt, *J* = 173.6, 2.7 Hz), 55.86, 36.70 – 35.95 (m), 30.54 (d, *J* = 20.9 Hz), 29.65 (d, *J* = 4.3 Hz), 28.82. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -71.68 – 71.72

(m, 2F), -112.80 - -113.10 (m, 2F), -182.64 - -182.76 (m, 1F). **ESI-HRMS** exact mass calculated for [C₁₆H₁₆ClF₅O₄Na⁺]: 425.0549, found 425.0551.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 4,6,6-trifluorohexanoate (**80**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (28.5 mg) at 32% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 7.79 – 7.73 (m, 1H), 7.54 – 7.48 (m, 1H), 7.44 – 7.34 (m, 2H), 7.12 (d, J = 8.8 Hz, 1H), 6.97 (d, J = 8.8 Hz, 1H), 6.21 – 6.11 (m, 1H), 4.89 – 4.67 (m, 1H), 2.64 (t, J = 7.5 Hz, 2H), 2.32 – 2.06 (m, 2H), 2.02 – 1.83 (m, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 170.14, 150.65, 146.20, 141.46, 130.08, 128.80, 128.49, 128.27, 127.38, 124.62, 124.55, 121.19, 120.45, 115.78 (dt, J = 4.5, 237.3 Hz), 88.14 (dt, J = 167.5, 6.8 Hz), 38.94 – 38.24 (m), 29.49 (d, J = 20.5 Hz), 28.65 (d, J = 4.6 Hz). ¹⁹F NMR (376 MHz, DMSO- d_6) δ -115.67 – 115.73 (m, 2F), -183.53 (t, J = 3.5 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₈H₁₄Cl₃F₃O₃Na⁺]: 462.9853, found 462.9852.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 6-chloro-4,6,6-trifluorohexanoate (**81**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (55.8 mg) at 59% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.76 – 7.70 (m, 1H), 7.52 – 7.46 (m, 1H), 7.43 – 7.32 (m, 2H), 7.08 (d, *J* = 8.8 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 1H), 5.01 – 4.76 (m, 1H), 2.98 – 2.78 (m, 2H), 2.66 (t, *J* = 7.4 Hz, 2H), 2.06 – 1.83 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.27, 150.72, 146.39, 141.54, 131.49 – 125.60 (m), 130.21, 128.92, 128.71, 128.39, 127.53, 124.85, 124.63, 121.16, 120.67, 87.79 (dt, *J* = 171.6, 3.3 Hz), 45.38 (td, *J* = 23.2, 21.0 Hz), 29.26 (d, *J* = 20.6 Hz), 28.58 (d, *J* = 4.6 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -46.48 – -48.87 (m, 2F), -183.61 (t, *J* = 9.9 Hz, 1F). ESI-HRMS exact mass calculated for [C₁₈H₁₃Cl₄F₃O₃H⁺]: 474.9644, found 474.9652.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 6,6,6-trichloro-4-fluorohexanoate (**82**): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (50.3 mg) at 50% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.43 (m, 1H), 7.23 – 7.14 (m, 3H), 6.92 – 6.80 (m, 2H), 5.11 – 4.92 (m, 1H), 3.23 – 3.13 (m, 1H), 2.97 – 2.86 (m, 1H), 2.73 (t, *J* = 7.1 Hz, 2H), 2.14 – 2.00 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.10, 150.92, 146.67, 141.59, 130.56, 129.74, 129.36, 128.31, 127.25, 126.02, 124.41, 120.51, 120.17, 96.12, 89.30 (d, *J* = 175.3 Hz), 59.41 (d, *J* = 22.4 Hz), 30.52 (d, *J* = 21.4 Hz), 29.18 (d, *J* = 4.4 Hz).

¹⁹**F** NMR (376 MHz, Chloroform-*d*) δ -180.68 (s, 1F). **ESI-HRMS** exact mass calculated for $[C_{18}H_{13}Cl_6FO_3Na^+]$: 528.8872, found 528.8871.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 7-chloro-4,6,6,7,7-pentafluoroheptanoate (83): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (68.5 mg) at 65% yield. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.77 – 7.71 (m, 1H), 7.53 – 7.47 (m, 1H), 7.44 – 7.33 (m, 2H), 7.09 (d, *J* = 8.8 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 5.09 – 4.86 (m, 1H), 2.79 – 2.53 (m, 4H), 2.13 – 1.88 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 170.11, 150.61, 146.28, 141.44, 130.06, 128.76, 128.56, 128.24, 127.35, 126.50 – 119.66 (m), 124.73, 124.51, 121.02, 120.54, 119.35 – 113.48 (m), 87.46 – 85.55 (m), 34.69 (q, *J* = 21.0 Hz), 29.56 (d, *J* = 20.4 Hz), 28.54 (d, *J* = 4.4 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -71.28 – 71.34 (m, 2F), -110.53 – -113.46 (m, 2F), -182.25 – -182.40 (m, 1F). ESI-HRMS exact mass calculated for [C₁₉H₁₃Cl₄F₅O₃H⁺]: 524.9612, found 524.9628.

5-Chloro-2-(2,4-dichlorophenoxy)phenyl 6,6-dichloro-4-fluorohexanoate (84): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a colorless liquid (36.8 mg) at 39% yield. ¹**H NMR** (400 MHz, DMSO- d_6) δ 7.79 – 7.73 (m, 1H), 7.53 – 7.47 (m, 1H), 7.42.7.44 (m, 2H), 7.10 (d, *J* = 8.8 Hz, 1H), 6.98 (d, *J* = 8.8 Hz, 1H), 6.33 – 6.27 (m, 1H), 4.86 – 4.63 (m, 1H), 2.65 (t, *J* = 7.4 Hz, 2H), 2.61 – 2.39 (m, 2H), 2.04 – 1.82 (m, 2H). ¹³**C NMR** (101 MHz, DMSO- d_6) δ 170.13, 150.62, 146.27, 141.41, 130.07, 128.80, 128.53, 128.21, 127.36, 124.72, 124.49, 121.06, 120.57, 89.78 (d, *J* = 169.2 Hz), 70.87 (d, *J* = 4.4 Hz), 47.56 (d, *J* = 20.2 Hz), 29.04 (d, *J* = 20.4 Hz), 28.63 (d, *J* = 4.6 Hz). ¹⁹**F NMR** (376 MHz, DMSO- d_6) δ -184.75 (s, 1F). **ESI-HRMS** exact mass calculated for [C₁₈H₁₄Cl₅FO₃Na⁺]: 494.9262, found 494.9261.

2-(**phenylsulfonyl**)-4-Tetradecyl-3,4-dihydro-2H-benzo[e][1,2]thiazine 1,1-dioxide (86): The compound was purified by columnchromatography (petroleum ether/EtOAc = 60/1), resulting in a colorless liquid (27.0 mg) at 26% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.99 – 7.94 (m, 2H), 7.75 – 7.70 (m, 1H), 7.63 – 7.57 (m, 1H), 7.52 – 7.46 (m, 3H), 7.37 – 7.31 (m, 1H), 7.31 – 7.27 (m, 1H), 4.52 – 4.28 (m, 2H), 3.24 – 3.15 (m, 1H), 1.79 – 1.70 (m, 2H), 1.49 – 1.36 (m, 2H), 1.30 – 1.21 (m, 22H), 0.88 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 139.26, 139.16, 137.21, 134.02, 132.94, 129.05, 129.00, 128.22, 127.32, 123.74, 50.02, 37.17, 34.24, 31.97, 29.75, 29.74, 29.71, 29.70, 29.68, 29.63, 29.62, 29.48, 29.41, 26.51, 22.74, 14.18. ESI-HRMS exact mass calculated for [C₂₈H₄₁NO₄S₂Na⁺]: 542.2369; found: 542.2381.

3-Methyl 4-methoxy-3-(trifluoromethyl)benzoate (103): The compound was purified by columnchromatography (petroleum ether/EtOAc = 80/1), resulting in a solid with color (10.3 mg) at 22% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.2 – 8.25 (m, 1H), 8.21 – 8.17 (m, 1H), 7.03 (d, *J* = 8.7 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.92, 161.12 – 161.02 (m), 135.28, 129.16 (q, *J* = 5.3 Hz), 123.25 (q, *J* = 272.5 Hz), 122.29, 118.89 (q, *J* = 31.6 Hz), 111.66, 56.35, 52.34. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -62.90 (s, 3F). **ESI-HRMS** exact mass calculated for [C₁₀H₉F₃O₃H⁺]: 235.0577; found: 235.0577.

Copies of ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

88,00 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 77,77 76,66,92 66,922 66,692 66,692 76,66,922 76,6

¹³C NMR, 101 MHz, DMSO-*d*₆

7.26
7.26
7.26
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.25
7.26
7.27
7.27
7.26
7.27
7.27
7.26
7.27
7.27
7.26
7.27
7.27
7.26
7.27
7.27
7.26
7.27
7.27
7.26
7.27
7.27
7.26
7.26
7.27
7.26
7.27
7.26
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27
7.27</l

Lo 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 f1 (ppm)

-1.0

 $\begin{array}{c} 7.7.99\\ 7.7.97\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.7\\ 7.7.12\\$

173.77 141.66 141.67 141.65 141.65 141.65 133.60 123.59 123.65 123.55 12

-40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹H NMR, 400 MHz, CDCl₃

— -180.74

$$\left\{\begin{smallmatrix} -183.52 \\ -183.53 \\ -183.54 \end{smallmatrix}\right.$$

¹⁹F NMR, 376 MHz, DMSO-*d*₆

1.0

10.0

9.0

8.0

7.0

6.0

5.0 f1 (ppm)

4.0

3.0

2.0

1.0

0.0

-1

 $^{19}\mathrm{F}$ NMR, 376 MHz, CDCI_3

4. Supplementary References

- 1. Ouyang, Y., Xu, X.-H., Qing, F.-L. Hydrotrifluoromethylthiolation of Unactivated Alkenes and Alkynes with Trifluoromethanesulfonic Anhydride through Deoxygenative Reduction and Photoredox Radical Processes. *Angew. Chem. Int. Ed.* **58**, 18508-18512 (2019).
- 2. Zhang, Y., Torker, S., Sigrist, M., Bregovic, N., Dydio, P. Binuclear Pd(I)-Pd(I) Catalysis Assisted by Iodide Ligands for Selective Hydroformylation of Alkenes and Alkynes. *J. Am. Chem. Soc.* **142**, 18251-18265 (2020).
- 3. Min S. J., Won S. K., Ye H. S., Ha J. J., Eun J. K. et al. Chemoselective Activities of Fe(III) Catalysts in the Hydrofunctionalization of Allenes. *Org. Lett.* **14**, 6262-6265 (2012).
- 4. Pirzer A. S., Alvarez E. M., Friedrich H., Heinrich M. R. Radical Carbofluorination of Alkenes with Arylhydrazines and Selectfluor: Additives, Mechanistic Pathways, and Polar Effects. *Chem. Eur. J.* **25**, 2786-2792 (2019).
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery Jr. J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J., Gaussian16, Gaussian, Inc., Wallingford, CT, 2016.
- 6. Furche, F., Ahlrichs, R. Adiabatic time-dependent density functional methods for excited state properties. *J. Chem. Phys.* **117**, 7433-7447 (2002).
- 7. Giovanni S., Michael J. F., Benedetta M., Jacopo T., Cammi, R. et al. Geometries and properties of excited states in the gas phase and in solution: Theory and application of a time-dependent density functional theory polarizable continuum model. *J. Chem. Phys.* **124**, 094107 (2006).
- 8. Bauernschmitt, R., Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. *Chem. Phys. Lett.* **256**, 454-464 (1996).
- 9. Adamo, C., Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. *Chem. Soc. Rev.* **42**, 845-856, (2013).