## Supplemental Information for

## High temperature sensitivity of Arctic isoprene emissions explained by sedges

Contents of this file

Supplementary Fig. 1 to Fig. 7

Supplementary Tab. 1 to Tab. 4



Supplementary Fig. 1. Comparison of leaf-level isoprene emissions from vegetation species at the Toolik Field Station. The measurements were conducted when the leaf temperature was about  $30^{\circ}$ C under a PPFD of 1000 µmol m<sup>-2</sup> s<sup>-1</sup>. The green triangle represents the mean, while the orange line represents the median. The upper and lower boundaries of the box represent the first and third quartiles, respectively. The whiskers extend from the box by 1.5 times the inter-quartile range.



Supplementary Fig. 2. The  $Q_{10}$  values between 25 and 35 °C from *Salix* spp. (willows), *Carex* spp., and *Eriophorum* spp. The  $Q_{10}$  values between 25 and 35 °C from Arctic sedges are significantly (p<0.05) higher than those of willows measured at the Toolik Field Station. The  $Q_{10}$  value of MEGAN (=2.91) is presented by a red dashed line. Points and error bars represent mean and standard deviation of Q10.



Supplementary Fig. 3. Comparison of temperature sensitivities and  $R^2$  for the fitted curves of sedges from measurements with the highest temperature of 35 °C and 40 °C. Temperature sensitivities are represented by the activation energy in Equation (5). *Eriophorum* spp. and *Carex* spp. are represented by squares and circles, respectively. The colors blue and orange denote the temperature curves fitted with the highest temperatures of 35 °C and 40 °C, respectively. Solid marks indicate the mean values of activation energy and  $R^2$ , with error bars representing the standard deviation. Transparent marks represent the values for individual sedges.



Supplementary Fig. 4. Correlation coefficients of the activation energy (left axis, in blue) and the emission factors (right axis, in orange) of sedges with the mean temperature during the 1 to 15 days preceding the measurement. (a), (b), and (c) display the Pearson correlation coefficients for the activation energy (AE) and emission factors (EF) in relation to the mean temperature of the preceding 1 to 15 days for *Eriophorum* spp., *Carex* spp., and a combined analysis of both species, respectively. Statistically significant correlation coefficients (p < 0.05) are indicated by solid filled points.



Supplementary Fig. 5. The response curves of the temperature sensitivity and emission factor to the past 10-day average air temperature. (a) and (b) present the relationship between the activation energy or temperature sensitivity to the past 10-day average temperature for *Eriophorum* spp. (blue) and *Carex* spp. (orange). (c) and (d) depict emission factors versus the past 10-day average temperature for *Eriophorum* spp. (blue) and *Carex* spp. (orange). The fitted equation and  $R^2$  are both presented.



Supplementary Fig. 6. The spatial distribution of cover fraction for the boreal deciduous shrub (a) and Arctic grass (b) in the Community Land Model version 5.



Supplementary Fig. 7. Air temperature and isoprene emission anomalies in the high-latitude regions (north of 60°N) in 1991 and 2001. Air temperature ((a) and (d)) and isoprene emission anomalies in summer estimated by the default and updated MEGANv2.1 in 1991 ((b) and (c)) and 2001 ((e) and (f)).

| Site Name            | Position           | Sample period              | Major vegetation species                                                                                                                                                                                                           | Reference                      |
|----------------------|--------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Abisko-<br>Stordalen | 68.36° N, 19.05° E | Jun. 01 – Oct. 19,<br>2018 | Empetrum hermaphroditum, Carex<br>rotundata, Betula nana, Rubus<br>chamaemorus, Eriophorum vaginatum,<br>Dicranum elongatum, Sphagnum<br>fuscum, Sphagnum balticum,<br>Drepanucladus schulzei, and<br>Politrichum jensenii         | Seco, et al. <sup>2</sup>      |
| Finse                | 60.60° N, 7.53 ° E | May 13 – Sep. 26,<br>2019  | E. hermaphroditum, Salix herbacea<br>and other Salix spp., Eriophorum<br>angustifolium, and Carex spp, Ptilidium<br>ciliare and Polytrichum juniperinum,<br>Alectoria ochroleuca, Nephromopsis<br>nivalis, and Cetraria islandica. | Seco, et al. <sup>2</sup>      |
| Siikaneva            | 61.83° N, 24.19° E | May 19, - Jun. 28,<br>2021 | Sphagnum balticum, S. papillosum, S.<br>magellanicum, S. majus, Carex<br>rostrata, C. limosa, C. lasiocarpa, and<br>Eriophorum vaginatum, Andromeda<br>polifolia, Betula nana, Rubus<br>chamaemorus, and Vaccinium<br>oxycoccus.   | Vettikkat, et al. <sup>3</sup> |

## Supplementary Tab. 1. Details about the flux measurements used in this study.

**Supplementary Tab. 2. The performances of models.** The statistics of the different temperature response curve models at the Abisko-Stordalen, Finse, and Siikaneva sites with the least square fitting. RMSE and MAE are short for the root mean square error and mean absolute error in the unit of nmol  $m^{-2}$  s<sup>-1</sup>, respectively. T-tests were applied to test the significance between the differences of MAE.

| Site                         | Abisko-Stordalen |           |          | Finse               |          |           | Siikaneva |                     |          |           |          |                     |
|------------------------------|------------------|-----------|----------|---------------------|----------|-----------|-----------|---------------------|----------|-----------|----------|---------------------|
| -                            | R²               | Slop<br>e | RMS<br>E | MAE<br>(p<0.05<br>) | R²       | Slop<br>e | RMS<br>E  | MAE<br>(p=0.22<br>) | R²       | Slop<br>e | RMS<br>E | MAE<br>(p<0.01<br>) |
| Update<br>d<br>MEGAN<br>v2.1 | 0.8<br>1         | 0.84      | 0.45     | 0.24                | 0.6<br>8 | 0.74      | 0.58      | 0.28                | 0.9<br>0 | 0.89      | 1.02     | 0.87                |
| Default<br>MEGAN<br>v2.1     | 0.7<br>8         | 0.73      | 0.48     | 0.21                | 0.6<br>4 | 0.62      | 0.60      | 0.27                | 0.8<br>3 | 0.80      | 1.37     | 0.64                |

Supplementary Tab. 3. Emission factors of sedges grown near Toolik, AK, USA. Specimens were collected near Imnavait Creek or at Toolik from the local tundra (Toolik). The isoprene emission factor is defined as the isoprene emission rate when the leaf temperature equals  $30^{\circ}$ C at a photosynthetic photon flux density of 1000 µmol m<sup>-2</sup> s<sup>-1</sup>.

| Plant ID    | Species or<br>Genus     | Collection<br>Date | Sample<br>type | Collection<br>Location | Emission<br>Factor (nmol<br>m <sup>-2</sup> s <sup>-1</sup> ) | Experiment |
|-------------|-------------------------|--------------------|----------------|------------------------|---------------------------------------------------------------|------------|
| Carex1      | Carex sp.               | Jul. 9,<br>2022    | Leaf           | Toolik                 | 3.75                                                          | 20°C, 30°C |
| Carex2      | Carex sp.               | Jul. 27,<br>2022   | Leaves         | Toolik                 | 3.18                                                          | 15°C-35°C  |
| Carex3      | Carex sp.               | Jul. 27,<br>2022   | Leaves         | Toolik                 | 7.26                                                          | 15°C-35°C* |
| Carex4      | Carex sp.               | Jul. 17,<br>2023   | Leaves         | Toolik                 | 5.14                                                          | 20°C-40°C  |
| Carex5      | Carex sp.               | Jul. 17,<br>2023   | Leaves         | Toolik                 | 2.06                                                          | 20°C-40°C  |
| Carex6      | Carex sp.               | Jul. 27,<br>2023   | Leaves         | Toolik                 | 4.73                                                          | 20°C-40°C  |
| Carex7      | Carex sp.               | Jul. 27,<br>2023   | Leaves         | Toolik                 | 9.58                                                          | 20°C-40°C  |
| Eriophorum1 | Eriophorum<br>sp.       | Jul. 16,<br>2022   | Leaves         | Imnavait               | 7.67                                                          | 20°C, 30°C |
| Eriophorum2 | Eriophorum<br>sp.       | Jul. 27,<br>2022   | Leaves         | Toolik                 | 3.37                                                          | 15°C-35°C  |
| Eriophorum3 | Eriophorum<br>sp.       | Jul. 27,<br>2022   | Leaves         | Toolik                 | 6.48                                                          | 15°C-35°C* |
| Eriophorum4 | Eriophorum<br>vaginatum | Jul. 15,<br>2023   | Leaves         | Toolik                 | 4.86                                                          | 20°C-40°C  |
| Eriophorum5 | Eriophorum<br>vaginatum | Jul. 15,<br>2023   | Leaves         | Toolik                 | 9.46                                                          | 20°C-40°C  |
| Eriophorum6 | Eriophorum<br>vaginatum | Jul. 16,<br>2023   | Leaves         | Toolik                 | 13.69                                                         | 20°C-40°C  |
| Eriophorum7 | Eriophorum<br>vaginatum | Jul. 16,<br>2023   | Leaves         | Toolik                 | 7.14                                                          | 20°C-40°C  |
| Eriophorum8 | Eriophorum<br>vaginatum | Jul. 30,<br>2023   | Leaves         | Toolik                 | 15.73                                                         | 20°C-40°C  |
| Eriophorum9 | Eriophorum<br>vaginatum | Jul. 30,<br>2023   | Leaves         | Toolik                 | 17.73                                                         | 20°C-40°C  |

| Eriophorum10                                                 | Eriophorum<br>vaginatum | Jul. 31,<br>2023 | Leaves | Toolik | 13.44 | 20°C-40°C |  |
|--------------------------------------------------------------|-------------------------|------------------|--------|--------|-------|-----------|--|
| Eriophorum11                                                 | Eriophorum<br>vaginatum | Jul. 31,<br>2023 | Leaves | Toolik | 7.28  | 20°C-40°C |  |
| <sup>*</sup> The VOC samples were only taken at 20 and 30°C. |                         |                  |        |        |       |           |  |

Supplementary Tab. 4. Emission factors of plants other than sedges at Toolik Field Station. The isoprene emission factor is defined as the isoprene emission rate when the leaf temperature equals  $30^{\circ}$ C at a photosynthetic photon flux density of 1000 µmol m<sup>-2</sup> s<sup>-1</sup>.

| Plant ID                                                        | Species or Genus           | Collection Date | Sample type | Collection<br>Location | Emission Factor<br>(nmol m <sup>-2</sup> s <sup>-1</sup> ) |  |  |
|-----------------------------------------------------------------|----------------------------|-----------------|-------------|------------------------|------------------------------------------------------------|--|--|
| Willow1                                                         | Salix glauca               | Jul. 13, 2022   | Leaf        | Toolik                 | 19.53                                                      |  |  |
| Willow2                                                         | Salix pulchra              | Jul. 14, 2022   | Branch      | Toolik                 | 3.84                                                       |  |  |
| Willow3                                                         | Salix pulchra              | Jul.16, 2022    | Leaf        | Toolik                 | 12.33                                                      |  |  |
| Willow4                                                         | Salix glauca               | Jul. 25, 2022   | Leaf        | Toolik                 | 2.07                                                       |  |  |
| Willow5                                                         | Salix pulchra              | Aug. 1, 2022    | Leaf        | Toolik                 | 0.41                                                       |  |  |
| Willow6                                                         | Salix glauca               | Aug. 1, 2022    | Leaf        | Toolik                 | 1.02                                                       |  |  |
| Willow7                                                         | Salix pulchra              | Aug. 4, 2022    | Leaf        | Toolik                 | 1.18                                                       |  |  |
| Willow8                                                         | Salix reticulata           | Jul. 25, 2023   | Leaf        | Toolik                 | 24.8                                                       |  |  |
| Willow9                                                         | Salix reticulata           | Jul. 25, 2023   | Leaf        | Toolik                 | 19.07                                                      |  |  |
| Willow10                                                        | Salix reticulata           | Jul. 31, 2023   | Leaf        | Toolik                 | 15.19                                                      |  |  |
| Willow11                                                        | Salix reticulata           | Jul. 31, 2023   | Leaf        | Toolik                 | 25.39                                                      |  |  |
| Birch1                                                          | Betula nana                | Jul. 14, 2022   | Branch      | Toolik                 | 0.011                                                      |  |  |
| Birch2                                                          | Betula nana                | Jul. 16, 2022   | Branch      | Toolik                 | 0.003                                                      |  |  |
| Birch3                                                          | Betula nana                | Jul. 25, 2022   | Branch      | Toolik                 | 0.008                                                      |  |  |
| Birch4                                                          | Betula nana                | Aug. 4, 2022    | Branch      | Toolik                 | 0*                                                         |  |  |
| Birch5                                                          | Betula nana                | Aug. 4, 2022    | Branch      | Toolik                 | 0.016                                                      |  |  |
| Cassiope1                                                       | Cassiope<br>tetragona      | Jul. 17, 2022   | Branch      | Toolik                 | 0.024                                                      |  |  |
| Cassiope2                                                       | Cassiope<br>tetragona      | Jul. 28, 2022   | Branch      | Toolik                 | 0*                                                         |  |  |
| Cassiope3                                                       | Cassiope<br>tetragona      | Aug. 2, 2022    | Branch      | Toolik                 | 0*                                                         |  |  |
| Cassiope4                                                       | Cassiope<br>tetragona      | Aug. 6, 2022    | Branch      | Toolik                 | 0*                                                         |  |  |
| Rhododendron1                                                   | Rhododendron<br>tomentosum | Jul. 17, 2022   | Branch      | Toolik                 | 0*                                                         |  |  |
| Rhododendron2                                                   | Rhododendron<br>tomentosum | Jul. 28, 2022   | Branch      | Toolik                 | 0*                                                         |  |  |
| Rhododendron3                                                   | Rhododendron<br>tomentosum | Aug. 2, 2022    | Branch      | Toolik                 | 0*                                                         |  |  |
| Sphagnum1                                                       | Sphagnum sp.               | Jul. 14, 2022   | Leaves      | Toolik                 | 0.001                                                      |  |  |
| Sphagnum2                                                       | Sphagnum sp.               | Jul. 21, 2022   | Leaves      | Toolik                 | 0.03                                                       |  |  |
| Sphagnum3                                                       | Sphagnum sp.               | Jul. 21, 2022   | Leaves      | Toolik                 | 0.011                                                      |  |  |
| * The measurements are lower than the blank tube concentration. |                            |                 |             |                        |                                                            |  |  |

## Reference

- 1 Wang, H. *et al.* Arctic Heatwaves Could Significantly Influence the Isoprene Emissions From Shrubs. *Geophysical Research Letters* **51**, e2023GL107599 (2024).
- 2 Seco, R. *et al.* Strong isoprene emission response to temperature in tundra vegetation. *Proceedings of the National Academy of Sciences* **119**, e2118014119 (2022).
- 3 Vettikkat, L. *et al.* High emission rates and strong temperature response make boreal wetlands a large source of isoprene and terpenes. *Atmos. Chem. Phys.* **23**, 2683-2698 (2023).