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SUPPLEMENTARY METHODS 
 
 
Experimental Conditions used to Probe Circuits of Interest 
The six circuits of interest in this study were measured from functional magnetic resonance imaging (fMRI) 
data using a novel standardized image processing procedure called ‘the Stanford Et Cere Image Processing 
System’. This system allows the quantification of task-free and task-evoked brain circuit function at the level of 
the individual participants. Default Mode, Salience and Attention circuits were derived from the task-free 
periods of the fMRI sequencing protocols using a previously established procedure 1. Negative and Positive 
Affect circuits were engaged by a facial expressions task, and the Cognitive Control circuit was engaged by a 
Go-NoGo task, the design of which was as follows:  
 
Facial Expressions of Emotion Task  
A standardized set of 3D-evoked facial expression stimuli were presented in pseudorandom order, with five 
repeated blocks of eight stimuli per block for sad, threat evoked by fear, threat evoked by anger, and happy, 
relative to neutral blocks; duration of stimulus was 500ms and the interstimulus interval was 750ms 2. 
Participants were instructed to actively attend in order to answer post-scan questions about these faces, and we 
monitored alertness using an eye tracking system. We also presented the same stimuli nonconsciously in a 
backward-masking design to prevent awareness; face stimuli were presented for 10 ms followed immediately by 
a neutral face mask stimulus for 150 ms, and with a stimulus onset asynchrony of 1250 ms to match that of the 
conscious condition 3.  
 
Go-NoGo Task 
‘Go’ trials (the word “press” in GREEN) required participants to respond as quickly as possible, while the 
‘NoGo’ trials (“press” in RED) required participants to withhold responses. 180 Go and 60 NoGo stimuli were 
presented in pseudorandom order; stimulus duration was 500 ms each with an interstimulus interval of 750 ms 4.  
 
Imaging Acquisition 
MRI data was collected using a 3.0 Tesla GE Signa HDx (Sydney), a 3.0 Tesla GE MR750 Discovery 
(Stanford) and a 3.0 Tesla GE UHP (Stanford) (GE Healthcare, Milwaukee, Wisconsin) using an 8-channel 
head coil (Sydney) and 32-channel head coil (Stanford). The two Stanford scanners used identical sequences. 
Head motion was restricted with foam pads and participant alertness was monitored using an eye-tracking 
system. Head motion was also recorded, which was later subject to quality control and potential data exclusion 
on the premise of excess motion. 
 
Stanford Sequences (RAD, HCP-DES, ENGAGE) 
In RAD and ENGAGE, a T1-weighted structural scan was acquired using a 3D spoiled gradient echo (SPGR) 
sequence normalization into standard space: TR=0.008; TE=0.003; voxel size=1x1x1mm; number of 
slices=176; FOV=256x256; flip angle=11o. In HCP-DES, the T1 parameters were TE = 3.548 ms; MPRAGE 
TR = 2.84s; FA = 8, acquisition time = 8 min and 33 sec; field of view = 256 × 256 mm; 3D matrix size = 320 × 
320 × 230; slice orientation = sagittal; angulation to AC-PC line; receiver bandwidth = 31.25 kHz; fat 
suppression = no; motion correction = PROMO; voxel size = 0.8 mm isotropic. Blood oxygenation level-
dependent contrast functional images were acquired using echo-planar T2*-weighted imaging. Each whole 
brain volume consisted of 45 interleaved 3mm thick axial/oblique slices (74 x 74 matrix; TR=2000ms; 
TE=27.5ms; voxel size=3x3x3mm; FOV=222mm; flip angle=77°). Each of the three tasks acquired 154 
volumes over 5 minutes and 8 seconds. 
 
Sydney Sequences (iSPOT-D) 
The T1-weighted structural scan was acquired in the sagittal plane using a 3D spoiled gradient echo (SPGR) 
sequence (TR = 8.3 ms; TE = 3.2 ms; flip angle = 11 degrees; TI = 500 ms; NEX = 1; ASSSET = 1.5; matrix = 
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256 x 256). A total of 180 contiguous slices, each 1 mm thick, covered the whole brain with an in-plane 
resolution of 1 mm x 1 mm. The functional images for each task were acquired using echo planar imaging (TR 
= 2500 ms; TE = 27.5 ms; matrix = 64 x 64; FOV = 24 cm; flip angle = 90 degrees). Forty slices, each 3.5 mm 
thick, covered the whole brain in each volume. Each of the three tasks acquired 123 volumes over 5 minutes 
and 8 seconds.  
 
Image Pre-processing 
For functional images, the first three volumes were removed to account for magnetization transfer artifacts 
before pre-processing. Pre-processing was performed using fMRIPrep  20.2.1 (iSPOTD) and fMRIPrep  20.2.3 
(HCP-DES, ENGAGE, RAD) 5. For details, the standardized methodology outputs from fMRIPrep for each 
study can be found at the end of the Supplementary Material.  
 
Quality Control 
The quality control reports generated by fMRIPrep were visually inspected for abnormalities by an experienced 
rater (L.T.) and scans with incidental findings, major scanner artifacts, and signal dropouts were discarded. 
Scans with more than 25% of volumes that contained significant frame-wise displacement as defined by 
fMRIPrep were also discarded. This threshold was chosen to maximize applicability to real world, clinical 
settings and to be consistent with the original design of the iSPOT-D pragmatic biomarker trial. 
 
Derivation of Regions of Interest 
The derivation of regions of interest (ROIs) is described in detail in a previous publication 6.  
 
In summary, an anatomical definition of subcortical nodes was combined with an automated meta-analysis 
approach to cortical nodes using neurosynth.org 7. Neurosynth uniformity (previously called forward- inference) 
maps were used with a false detection rate (FDR) threshold of .01 for each circuit and defined our ROIs (see 
Supplementary Table 18 for Neurosynth search terms). A set of peaks associated with each circuit’s search 
term were then identified using AFNI’s 3dExtrema function. Because some terms yielded maps with 
excessively large spatial extent, a restriction was imposed that each peak have a minimum z-score of 6 and each 
region extend no farther than 10mm from the peak. For subcortical regions, neurosynth maps were restricted by 
anatomically defined boundaries from the AAL atlas 8 plus an additional anatomical boundary defining the 
ventral striatum from the FSL atlas 9. The Talairach atlas was used to identify the anatomical location of the 
peak of each region, and visual inspection of masks confirmed or adjusted these automatically derived labels. 
 
In order to refine and maximize the quality of circuit definitions, we implemented the following steps in two 
healthy reference samples (see 6 for details). In the first sample, each individual’s gray matter was identified by 
warping the output of FSL’s FMRIB's Automated Segmentation Tool (FAST) to the MNI template. Each ROI 
was limited to gray matter only using this procedure. Using the second reference sample, we excluded ROIs 
with less than 50% average overlap between the original ROI and gray matter.  
 
Next, in the first reference sample, ROIs were excluded if 95% of subjects had a temporal signal to noise ratio 
(tSNR) two standard deviations above the mean tSNR of a gray matter region with considerable signal drop out 
(peak coordinates 2, 46, -16, mean tSNR=47.03).  
 
To further establish the internal validity of circuit definitions, the internal consistency of functional connectivity 
between pairs of regions was assessed, excluding region pairs for which connectivity (both task and task-free) 
showed stronger associations with out-of-circuit region pairs than with within-circuit region pairs in a healthy 
sample (see 6 for details). 
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For the current study, we selected the subset of regions most strongly implicated in circuit dysfunction in 
depression and anxiety in our theoretical synthesis 10. These regions are the same that have been used for the 
derivation of circuit scores in 6. 
 
Task-evoked activation analysis 
The task-evoked analysis was conducted using SPM8 (https://www.fil.ion.ucl.ac.uk/spm/) and MATLAB 
version 2018b (MathWorks). 
 
Task-evoked activation was quantified using a generalized linear model (GLM) in which task events were 
convolved with a canonical hemodynamic response function as implemented in SPM8. In this analysis, a 128s 
high pass filter was applied to the data, and six realignment parameters as well as white matter and 
cerebrospinal fluid signals derived by fMRIPrep were added to the design matrix as confounds. Residuals from 
these models were saved and used for the estimation of task-free connectivity (see below). Specific contrasts of 
interest were then computed for each circuit as follows: 1) negative affect circuit: sad > neutral conscious faces; 
2) negative affect circuit: threat > neutral conscious faces; 3) negative affect circuit: threat > neutral non-
conscious faces; 4) positive affect circuit: happy > neutral conscious faces; 5) cognitive control circuit: NoGo > 
Go trials. Measures of activation for each region of each circuit were obtained by extracting the average value 
of the contrast of interest. 
 
To quantify task-based functional connectivity, we computed psychophysiological interactions (PPI) between 
pairs of regions belonging to the same circuit. For each region in each circuit (PPI seed), we calculated the first 
eigenvariate of that region’s time series and fit a whole-brain first-level GLM as described above, which 
consisted of the psychological variable (task contrast of interest), physiological variable (region time course), 
and the interaction between psychological and physiological variables (PPI effect of interest). Then, we 
computed the average PPI effect of interest in specific regions belonging to the same circuit in accordance with 
our hypothesized model of circuit dysfunction (PPI targets) (Figure 1). To account for the fact that regions were 
used once as PPI targets and once as PPI seeds in this calculation, we averaged these results, yielding a single 
PPI value for each connection.  
 
Task-free analysis 
The task-free analysis was conducted using FSL version 5.0.10 11 and MATLAB version 2018b (MathWorks). 
 
Task-free data were derived following an established procedure 1. First, the residuals of the task effects were 
saved from the GLM analysis described above. Then, these residuals were band-pass filtered between 0.08 and 
0.009 Hz using FSL and concatenated across tasks. We then calculated from these data the correlation 
coefficient of the timeseries of each region pair belonging to the default mode, attention, and salience circuits. 
Finally, these values were converted to Fisher z and used as measures of task-free functional connectivity. 
 

https://www.fil.ion.ucl.ac.uk/spm/
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SUPPLEMENTARY FIGURES 
 
 
Supplementary Figure 1: Sum of distances between participants for different numbers of clusters. 
 

 
 
The plot showed an elbow at 5 clusters and another, smaller one at 9, which suggests that the optimal solution could lie between these 
two values. We selected 6 as the optimal number of clusters using four convergent sources of evidence: the elbow method, 
permutation-based significance testing of the silhouette index, stability using cross-validation; and the match of the solution to a 
theoretical framework (circled in red). 
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Supplementary Figure 2: Simulation-based significance testing of the silhouette index.  
 

 
 
For different numbers of clusters, we show the mean silhouette (a) and its p-value defined as the fraction of mean silhouettes greater 
than our result obtained by clustering 10,000 synthetic datasets from a multivariate normal distribution (b). We selected 6 as the 
optimal number of clusters using four convergent sources of evidence: the elbow method, permutation-based significance testing of 
the silhouette index, stability using cross-validation; and the match of the solution to a theoretical framework (circled in red). The plot 
showing the silhouette values for each participant for the 6-cluster solution is shown (c). 
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Supplementary Figure 3: Permutation-based significance testing of the silhouette index.  
 

 
 

We shuffled each brain circuit score across subjects 10,000 times, then repeated the hierarchical clustering procedure and calculated 
the average silhouette index. Thus, we obtained null distributions for these average silhouette indexes, comprising 10,000 
observations. We computed a p-value defined as the fraction of average silhouette indexes in this null distribution greater than our 
result. We selected 6 as the optimal number of clusters using six convergent sources of evidence: the elbow method, simulation-based 
significance testing of the silhouette index, permutation-based significance testing of the silhouette index, split-half reliability of the 
cluster profiles, stability using cross-validation; and the match of the solution to a theoretical framework (circled in red). 
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Supplementary Figure 4: Assessment of cluster stability using cross-validation.  
 

 
 
To evaluate whether the clustering assignment was stable under small perturbations to the data, we repeated the clustering procedure 
801 times, each time with one participant left out (leave-one-out cross-validation, left). We also repeated the clustering procedure 801 
times, each time with 20% of participants left out (leave-20%-out cross-validation, right). For each run and for each solution between 
2 and 15 clusters, we calculated the similarity of the new cluster assignments to those from the original analysis using the adjusted 
Rand index. We selected 6 as the optimal number of clusters using six convergent sources of evidence: the elbow method, simulation-
based significance testing of the silhouette index, permutation-based significance testing of the silhouette index, split-half reliability of 
the cluster profiles, stability using cross-validation; and the match of the solution to a theoretical framework (circled in red). 
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Supplementary Figure 5: Biotypes identified by hierarchical clustering.  
 

 
 
At the top, we show the regions of interest used to calculate regional circuit scores (see Supplementary Table 18 for details). Then, we 
show the average and standard error of regional circuit scores across participants. Colors correspond to each circuit. Measures are 
abbreviated as per Figure 1 in the main text. The size of spheres representing each circuit denotes an absolute activation difference 
of >0.50 SD compared to a healthy norm (small spheres=decreased activation, large spheres=increased activation). The thickness of 
lines between the spheres denotes an absolute connectivity difference of >0.50 SD compared to a healthy norm (dashed 
lines=decreased connectivity, thick lines=increased connectivity). We named each biotype according to the circuits and circuit 
features that specifically differentiated each relative to other biotypes and to the healthy reference. We used the following 
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nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked 
by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by non-
conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = 
connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth biotype is 
not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-
English description for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default 
with salience and attention hyperconnectivity’ (N=169 participants); AC- = ‘Attention hypoconnectivity’ (N=161 participants); 
NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’(N=154 participants); CA+ = ‘Cognitive control 
hyperactivation’(N=258 participants); NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect 
hypoconnectivity’(N=15 participants); DXSXAXNXPXCX = ‘Intact activation and connectivity’ (N=44 participants). Abbreviations: 
AG=angular gyrus; aI=anterior insula; aIPL=anterior inferior parietal lobule, amPFC=anterior medial prefrontal cortex; 
Amy=amygdala; dACC=dorsal anterior cingulate cortex; DLPFC=dorsolateral prefrontal cortex; LPFC=lateral prefrontal cortex; 
msPFC=medial superior prefrontal cortex; PCC=posterior cingulate cortex; PCU=precuneus; pgACC=pregenual anterior cingulate 
cortex; sgACC=subgenual anterior cingulate cortex; vmPFC=ventero-medial prefrontal cortex. 
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Supplementary Figure 6: Split-half reliability of the biotype profiles.  
 

 
 

First, we split our dataset into two random samples of equal size. Then, we ran our clustering procedure on the first half-split. Then, 
we assigned each participant in the second split to one of the clusters obtained in the first half-split. To do so, we computed the mean 
circuit scores across all participants belonging to each cluster in the first half-split. Then, we calculated the Pearson correlation 
coefficient between each participant’s brain circuit scores and these averaged scores. Each participant was assigned to the cluster for 
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which this correlation was highest. Finally, we identified the primary circuit dysfunctions of each cluster in each split as described 
above (>0.5 SD absolute mean difference compared to the healthy norm) and checked whether they replicated the ones found in the 
whole sample. We show the average and standard error of regional circuit scores across participants in the whole sample and in each 
of two random splits. All correlations of mean circuit profiles for each cluster between the two splits were significant (DC+SC+AC +: 
r=0.95, two-sided p=1.72e-21; AC- : r=0.97, two-sided p=7.08e-25; NSA+PA+ : r=0.93, two-sided p=1.10e-18; CA+ : r=0.96, two-sided 
p=2.21e-23; NTCC-CA- : r=0.79, two-sided p=1.15e-09; DXSXAXNXPXCX : r=0.86, two-sided p=4.44e-13). We highlight with colored 
bands the primary circuit dysfunctions of the whole sample that replicated in the two half-splits (all but one). Colors correspond to 
each circuit. Measures are abbreviated as per Figure 1 in the main text. The size of spheres representing each circuit denotes an 
absolute activation difference of >0.50 SD compared to a healthy norm (small spheres=decreased activation, large spheres=increased 
activation). The thickness of lines between the spheres denotes an absolute connectivity difference of >0.50 SD compared to a healthy 
norm (dashed lines=decreased connectivity, thick lines=increased connectivity). We named each biotype according to the circuits and 
circuit features that specifically differentiated each relative to other biotypes and to the healthy reference. We used the following 
nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked 
by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by non-
conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = 
connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth biotype is 
not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-
English description for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default 
with salience and attention hyperconnectivity’ (N=169 participants); AC- = ‘Attention hypoconnectivity’ (N=161 participants); 
NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’(N=154 participants); CA+ = ‘Cognitive control 
hyperactivation’(N=258 participants); NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect 
hypoconnectivity’(N=15 participants); DXSXAXNXPXCX = ‘Intact activation and connectivity’ (N=44 participants).  
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Supplementary Figure 7: Correlation between symptoms and regional circuit scores.  
 

 
 

Across all clinical participants, we calculated a Spearman correlation between regional circuit scores and symptoms and show the 
resulting Spearman rho values as a heatmap, unthresholded (a), thresholded at two-sided p<0.05 (b) and thresholded with FDR 
correction at two-sided pFDR<0.05 (c). When thresholded at two-sided p<0.05, 127 (31%) correlations were significant and when 
thresholded with FDR correction, 86 (21%) correlations were significant. Of the correlations significant when thresholded with FDR 
correction 10 (2 %) correlations were of absolute magnitude rho>0.10 and the remaining 76 (19%) were of absolute magnitude 
rho<0.10. Abbreviation: FDR=false discovery rate. 
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Supplementary Figure 8: Correlation between behavioral performance and regional circuit scores.  
 

 
 
Across all clinical participants, we calculated a Spearman correlation between regional circuit scores and behavioral performance and 
show the resulting Spearman rho values as a heatmap, unthresholded (a), thresholded at two-sided p<0.05 (b) and thresholded with 
FDR correction at two-sided pFDR<0.05 (c). When thresholded at two-sided p<0.05, 131 (20%) correlations were significant and 
when thresholded with FDR correction, 66 (10%) correlations were significant. Of the correlations significant when thresholded with 
FDR correction 1 (0.15 %) correlation was of absolute magnitude rho>0.10 and the remaining 65 (10%) were of absolute magnitude 
rho<0.10. Abbreviation: FDR=false discovery rate. 
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Supplementary Figure 9: Correlation between treatment response and regional circuit scores.  
 

 
 
Across all clinical participants, we calculated a Spearman correlation between between regional circuit scores and treatment response 
and show the resulting Spearman rho values as a heatmap, unthresholded (a), thresholded at two-sided p<0.05 (b) and thresholded 
with FDR correction at two-sided pFDR<0.05 (c). When thresholded at two-sided p<0.05, 79 (39%) correlations were significant and 
when thresholded with FDR correction, 63 (31%) correlations were significant. Of the correlations significant when thresholded with 
FDR correction 15 (7%) correlations were of absolute magnitude rho>0.10 and the remaining 48 (23%) were of absolute magnitude 
rho<0.10. Abbreviation: FDR=false discovery rate.  
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Supplementary Figure 10: Between biotype comparisons for each symptom domain. 
 

 
 
Plots comparing the severity of our symptoms of interest for participants in each biotype to that of participants not in the biotype. The 
dots show individual data points for individuals in the biotype. The median of participants in the biotype is shown as a red diamond, 
the median of participants not in the biotype is shown as a black line. To enable comparison across symptoms, all symptoms were 
scaled between 0 and 1 based on the minimum and maximum of the corresponding scales. We named each biotype according to the 
circuits and circuit features that specifically differentiated relative to each other biotypes and to the healthy reference. We used the 
following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect 
circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked 
by nonconscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript 
(C = connectivity or A = activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth 
biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a 
short plain-English description for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ 

= ‘Default with salience and attention hyperconnectivity’ (N=169 participants); AC- = ‘Attention hypoconnectivity’ (N=161 
participants); NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’(N=154 participants); CA+ = ‘Cognitive 
control hyperactivation’(N=258 participants); NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative 
affect hypoconnectivity’(N=15 participants); DXSXAXNXPXCX = ‘Intact activation and connectivity’ (N=44 participants).  
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Supplementary Figure 11: Between biotype comparisons for insomnia and suicidality.  
 

 
 
Insomnia was measured by the QIDS-SR sum of items 1-3 and suicidality was measured by the QIDS-SR item 12. A participant was 
considered as endorsing the symptom if their score was >0. We named each biotype according to the circuits and circuit features that 
specifically differentiated relative to each other biotypes and to the healthy reference. We used the following nomenclature: each 
circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked by sad stimuli, 
NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by nonconscious threat 
stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = connectivity or A 
= activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth biotype is not differentiated 
by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-English description 
for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and 
attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect with positive affect 
hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-
elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact activation and connectivity’. Abbreviation: QIDS-SR= Quick 
Inventory of Depressive Symptomatology - Self-Report Revised. 
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Supplementary Figure 12: Between biotype comparisons of behavioral performance. 
 

 
 

Plots comparing behavioral performance for participants in each biotype to that of participants not in the biotype. The dots show 
individual data points for individuals in the biotype. The median of participants in the biotype is shown as a red diamond, the median 
of participants not in the biotype is shown as a black line. Behavioral measures are adjusted for age and sex and are expressed relative 
to a healthy norm (Webneuro normed scores). We named each biotype according to the circuits and circuit features that specifically 
differentiated relative to each other biotypes and to the healthy reference. We used the following nomenclature: each circuit is 
indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked by sad stimuli, NTC = 
negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by nonconscious threat stimuli, P = 
positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = connectivity, A = activity) and 
the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth biotype is not differentiated by a prominent 
circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-English description for each biotype 
(in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention 
hyperconnectivity’ (N=169 participants); AC- = ‘Attention hypoconnectivity’ (N=161 participants); NSA+PA+ = ‘Sad-elicited negative 
affect with positive affect hyperactivation’(N=154 participants); CA+ = ‘Cognitive control hyperactivation’(N=258 participants); 
NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’(N=15 participants); 
DXSXAXNXPXCX = ‘Intact activation and connectivity’ (N=44 participants). Abbreviation: RT=reaction time. 
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Supplementary Figure 13: Between biotype comparisons of treatment outcomes. 
 

 
 

Plots comparing clinical severity after treatment for participants in each biotype to that of participants not in the biotype. The dots 
show individual data points for individuals in the biotype. The median of participants in the biotype is shown as a red diamond, the 
median of participants not in the biotype is shown as a black line.  Severity is scaled between 0 and 1 based on the minimum and 
maximum of the symptom scales used. We named each biotype according to the circuits and circuit features that specifically 
differentiated relative to each other biotypes and to the healthy reference. We used the following nomenclature: each circuit is 
indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked by sad stimuli, NTC = 
negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by non-conscious threat stimuli, P = 
positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = connectivity, A = activity) and 
the direction of dysfunction is indicated by  + or -. The subscript x indicates that the sixth biotype is not differentiated by a prominent 
circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-English description for each biotype 
(in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention 
hyperconnectivity’ (N=169 participants); AC- = ‘Attention hypoconnectivity’ (N=161 participants); NSA+PA+ = ‘Sad-elicited negative 
affect with positive affect hyperactivation’(N=154 participants); CA+ = ‘Cognitive control hyperactivation’(N=258 participants); 
NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’(N=15 participants); 
DXSXAXNXPXCX = ‘Intact activation and connectivity’ (N=44 participants). 
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Supplementary Figure 14: Correlation between task-free and task regional circuit scores.  
 

 
 
Across all clinical participants, we calculated a Spearman correlation between task-free and task regional circuit scores and show the 
resulting Spearman rho values as a heatmap, unthresholded (a), thresholded at two-sided p<0.05 (b) and thresholded with FDR 
correction at two-sided pFDR<0.05 (c). When thresholded at two-sided p<0.05, 110 (21%) correlations were significant and when 
thresholded with FDR correction, 53 (10%) correlations were significant. Of the correlations significant when thresholded with FDR 
correction 53 (10%) correlations were of absolute magnitude rho>0.10 and the remaining 0 (0%) were of absolute magnitude 
rho<0.10. Abbreviation: FDR=false discovery rate.  
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SUPPLEMENTARY TABLES 
 
 
Supplementary Table 1: Demographics and diagnoses of the sample used in the cross-sectional analyses.  
DSM-IV-TR (RAD), DSM-5 (HCP-DES), or DSM-IV (iSPOT-D) criteria for major depressive disorder, anxiety disorder, post-
traumatic stress disorder or obsessive-compulsive disorder were ascertained by a psychiatrist, general practitioner or research 
personnel using the structured interview, Mini International Neuropsychiatric Interview (MINI) (Sheehan et al., 1998). In the 
ENGAGE sample, patients were considered eligible if they scored 10 or greater on PHQ-9, a threshold with 88% specificity for major 
depressive disorder (Kroenke et al., 2001), and had a qualifying BMI at study screening. Comorbidities were ascertained from 
electronic health records. Abbreviations: ENGAGE=Engaging self-regulation targets to understand the mechanisms of behavior 
change and improve mood and weight outcome; HCP-DES=Human Connectome Project for Disordered Emotional States; iSPOT-
D=International Study to Predict Optimized Treatment in Depression; QIDS-SR=Quick Inventory of Depressive Symptomatology 
Self-Report Revised; RAD=Research on Anxiety and Depression study; SCL-20=Symptom Checklist 20 depression scale. A dash 
indicates that the information was not available in the dataset. 
 

Features Clinical 
Sample 1 

Clinical 
Sample 2 

Clinical 
Sample 3 

Clinical 
Sample 4 

Controls 
Sample 1 

Control 
Sample 2 

Dataset   RAD HCP-DES iSPOT-D ENGAGE HCP-DES iSPOT-D 
N 309 208 198 86 70 67 
Gender       

  Female 178 (58%) 126 (61%) 100 (51%) 57 (66%) 33 (47%) 34 (51%) 
  Male 127 (41%) 75 (36%) 98 (49%) 29 (34%) 37 (53%) 33 (49%) 
  Other 4 (1%) 7 (3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
  Age mean (standard deviation) 35.12 (14.04) 26.11 (4.91) 34.21 (11.97) 50.81 (11.98) 33.44 (12.12) 30.71 (12.97) 

Race       
  American Indian/Alaska native 1 2 (1%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
  Asian 65 75 (36%) 35 (18%) 6 (7%) 20 (29%) 9 (13%) 
  Black/African American 8 5 (2%) 2 (1%) 1 (1%) 1 (1%) 0 (0%) 
  Hawaiian/pacific islander 0 0 (0%) 0 (0%) 1 (1%) 0 (0%) 0 (0%) 
  More than one race 1 23 (11%) 0 (0%) 7 (8%) 4 (6%) 0 (0%) 
  Other 48 15 (7%) 38 (19%) 2 (2%) 5 (7%) 1 (1%) 
  White 186 88 (42%) 122 (62%) 66 (80%) 40 (57%) 57 (85%) 

Currently taking psychiatric 
medication 

13 (4%) 0 (0%) 0 (0%) 27 (31%) 0 (0%) 0 (0%) 

Current diagnoses      
  Major depressive 

disorder/depression 
27 (9%) 64 (31%) 198 (100%) 86 (100%) 0 (0%) 0 (0%) 

  Generalized anxiety disorder 92 (32%) 89 (43%) 11 (6%) 0 (0%) 0 (0%) 0 (0%) 
  Panic disorder 19 (7%) 26 (12%) 22 (11%) 8 (10%) 0 (0%) 0 (0%) 
  Social anxiety disorder 35 (12%) 65 (31%) 79 (40%) 0 (0%) 0 (0%) 0 (0%) 
  Obsessive-compulsive disorder 20 (9%) 22 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
  Post-traumatic stress disorder 19 (9%) 18 (11%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Severity       
QIDS-SR mean (standard deviation) 10 (4.81) 10.8 (4.75) 14 (3.72) - 3.01 (2.44) 2.16 (1.61) 
SCL-20 mean (standard deviation) - - - 1.58 (0.54) - - 

Scanner       
  GE Signa HDx 3T 0 (0%) 0 (0%) 198 (100%) 0 (0%) 0 (0%) 67 (100%) 
  GE MR750 Discovery 3T 309 (100%) 120 (58%) 0 (0%) 86 (100%) 70 (100%) 0 (0%) 
  GE UHP 3T 0 (0%) 88 (42%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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Supplementary Table 2: Demographics and diagnoses of the sample used in the treatment analyses.  
Abbreviations: ENGAGE=Engaging self-regulation targets to understand the mechanisms of behavior change and improve mood and 
weight outcome; iSPOT-D=International Study to Predict Optimized Treatment in Depression; QIDS-SR=Quick Inventory of 
Depressive Symptomatology Self-Report Revised; SCL-20=Symptom Checklist 20 depression scale; I-CARE=active behavioral 
therapy; U-CARE=usual care. A dash indicates that the information was not available in the dataset.  
 

Features Escitalopram 
treatment 

Sertraline 
treatment 

Venlafaxine 
treatment 

U-CARE 
treatment 

I-CARE 
treatment 

Dataset   iSPOT-D iSPOT-D iSPOT-D ENGAGE ENGAGE 
N 59 55 50 40 46 
Gender           

  Female 29 (49%) 23 (42%) 31 (62%) 25 (62%) 32 (70%) 
  Male 30 (51%) 32 (58%) 19 (38%) 15 (38%) 14 (30%) 
  Other 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Age mean (standard deviation) 34.42 (11.67) 32.65 (11.12) 34.9 (12.45) 50.37 (12.44) 51.19 (11.69) 
Race      

  American Indian/Alaska native 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
  Asian 13 (22%) 9 (16%) 7 (14%) 2 (5%) 4 (9%) 
  Black/African American 2 (3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
  Hawaiian/pacific islander 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (2%) 
  More than one race 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
  Other 13 (22%) 13 (24%) 9 (18%) 1 (3%) 1 (2%) 
  White 30 (52%) 33 (60%) 34 (68%) 30 (77%) 36 (82%) 

Currently taking psychiatric 
medication 

0 (0%) 0 (0%) 0 (0%) 13 (32%) 14 (30%) 

Current diagnoses           
  Major depressive disorder 59 (100%) 55 (100%) 50 (100%) 40 (100%) 46 (100%) 
  Generalized anxiety disorder 2 (3%) 1 (2%) 3 (6%) 0 (0%) 0 (0%) 
  Panic disorder 7 (12%) 5 (9%) 4 (8%) 3 (8%) 5 (11%) 
  Social anxiety disorder 23 (39%) 21 (38%) 22 (44%) - - 
  Obsessive-compulsive disorder 0 (0%) 0 (0%) 0 (0%) - - 
  Post-traumatic stress disorder 0 (0%) 0 (0%) 0 (0%) - - 

Severity      
  QIDS-SR mean (standard 

deviation) 
14.4 (4.23) 14.1 (3.65) 13.8 (3.34) - - 

  SCL-20 mean (standard 
deviation) 

- - - 1.65 (0.52) 1.52 (0.56) 

Scanner      
  GE Signa HDx 3T 59 (100%) 55 (100%) 50 (100%) 0 (0%) 0 (0%) 
  GE MR750 Discovery 3T 0 (0%) 0 (0%) 0 (0%) 40 (100%) 46 (100%) 
  GE UHP 3T 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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Supplementary Table 3: Significant between biotype comparisons for each symptom domain. 
For each symptom, the scores of participants in each biotype were compared to the median of participants not in the biotype using a 
Mann-Whitney U test. Here, we show the direction of the difference (↑ =symptom median was higher in the biotype, ↓ =symptom 
median was lower in the biotype), number of participants used for this comparison in each biotype, the median, the two-sided p-value 
of the test, a measure of effect size r, calculated as the Z statistic divided by square root of the sample size and confidence interval 
(CI). We also show whether the finding replicates in split-half and leave-study-out procedures. We named each biotype according to 
the circuits and circuit features that specifically differentiated each relative to other biotypes and to the healthy reference. We used the 
following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect 
circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked 
by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript 
(C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth 
biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a 
short plain-English description for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ 

= ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect 
with positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with 
conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact activation and connectivity’. Abbreviation: CI = 
confidence interval. 
 

Biotype Symptom Direction N Median p Effect size r CI Split-half  Leave-
study-out  

AC- Cognitive 
dyscontrol 

↓ 80 17 0.006 -0.305 [15.5; 17.5] No No 
 

Tension ↓ 101 13 0.049 -0.196 [11.5; 15.0] No No 
NSA+PA+ Anhedonia ↑ 51 3 0.014 0.343 [2.0; 4.5] No No 
 Ruminative 

brooding 
↑ 51 60 0.036 0.294 [55.5; 63.0] No No 

CA+ Anhedonia ↑ 68 3 0.015 0.295 [2.0; 3.5] No No 
 Anxious arousal ↑ 182 15 0.003 0.218 [15.5; 17.5] No No 
 Negative bias ↑ 250 16 0.003 0.188 [15.0; 18.5] Yes No 
 Threat 

dysregulation 
↑ 250 7 5.07e-07 0.317 [7.5; 9.0] Yes Yes 

NTCC-CA- Ruminative 
brooding 

↓ 6 48 0.036 -0.902 [46.0; 51.0] No No 
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Supplementary Table 4: Between biotype comparisons for each symptom domain.  
For each symptom, the scores of participants in each biotype were compared to the median of participants not in the biotype using a 
Mann-Whitney U test. Here, we show the direction of the difference (↑ =symptom median was higher in the biotype, ↓ =symptom 
median was lower in the biotype), number of participants used for this comparison in each biotype, the median, the two-sided p-value 
of the test, a measure of effect size r, calculated as the Z statistic divided by square root of the sample size and confidence interval 
(CI). We named each biotype according to the circuits and circuit features that specifically differentiated each relative to other 
biotypes and to the healthy reference. We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S 
= salience, A = attention, NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat 
stimuli, NTN = negative affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the 
distinguishing circuit feature is indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated 
by + or -. The subscript x indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other 
biotypes. Besides this nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with 
our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention 
hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control 
hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; 
DXSXAXNXPXCX = ‘Intact activation and connectivity’. Abbreviation: CI = confidence interval. 
 

Biotype Symptom Direction N Median p Effect 
size r 

CI 

DC+SC+AC+ Anhedonia ↓ 40 1 0.058 -0.300 [0.5; 3.0] 
 Anxious arousal ↑ 95 14 0.404 0.086 [14.5; 17.0] 
 Cognitive dyscontrol ↑ 95 18 0.672 0.044 [17.0; 19.5] 
 Negative bias ↑ 134 13.5 0.384 0.075 [13.5; 18.5] 
 Ruminative brooding ↑ 40 57.5 0.652 0.072 [52.0; 61.0] 
 Ruminative worry ↓ 55 56 0.132 -0.204 [51.5; 60.0] 
 Tension ↑ 132 15.5 0.081 0.151 [14.0; 17.5] 
 Threat dysregulation ↑ 132 5 0.645 0.040 [5.5; 9.0] 
AC- Anhedonia ↑ 33 3 0.077 0.310 [2.0; 4.5] 
 Anxious arousal ↑ 80 14.5 0.799 0.029 [14.0; 16.0] 
 Cognitive dyscontrol ↓ 80 17 0.006 -0.305 [15.5; 17.5] 
 Negative bias ↓ 101 14 0.734 -0.034 [12.0; 17.0] 
 Ruminative brooding ↓ 33 54 0.300 -0.183 [50.0; 59.5] 
 Ruminative worry ↓ 47 58 0.108 -0.235 [51.0; 59.0] 
 Tension ↓ 101 13 0.049 -0.196 [11.5; 15.0] 
 Threat dysregulation ↓ 101 5 0.051 -0.195 [4.5; 7.0] 
NSA+PA+ Anhedonia ↑ 51 3 0.014 0.343 [2.0; 4.5] 
  Anxious arousal ↑ 114 15 0.194 0.122 [14.5; 16.5] 
  Cognitive dyscontrol ↑ 114 18 0.635 0.045 [17.0; 19.0] 
  Negative bias ↑ 143 16 0.335 0.081 [14.0; 18.0] 
  Ruminative brooding ↑ 51 60 0.036 0.294 [55.5; 63.0] 
  Ruminative worry ↓ 63 58 0.332 -0.123 [52.5; 60.0] 
  Tension ↑ 142 15 0.317 0.084 [14.0; 17.5] 
  Threat dysregulation ↑ 145 7 0.311 0.084 [6.5; 9.0] 
CA+ Anhedonia ↑ 68 3 0.015 0.295 [2.0; 3.5] 
 Anxious arousal ↑ 182 15 0.003 0.218 [15.5; 17.5] 
 Cognitive dyscontrol ↓ 182 18 0.751 -0.024 [17.0; 18.5] 
 Negative bias ↑ 250 16 0.003 0.188 [15.0; 18.5] 
 Ruminative brooding ↓ 68 55 0.428 -0.096 [52.5; 59.0] 
 Ruminative worry ↑ 114 59.5 0.631 0.045 [55.5; 61.5] 
 Tension ↑ 251 15 0.245 0.073 [14.5; 17.0] 
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 Threat dysregulation ↑ 250 7 5.07e-07 0.317 [7.5; 9.0] 
NTCC-CA- Anhedonia ↑ 6 2 1.000 0.111 [0.0; 4.0] 
 Anxious arousal ↑ 11 14 0.531 0.202 [13.0; 19.5] 
 Cognitive dyscontrol ↑ 11 18 0.362 0.296 [16.0; 22.5] 
 Negative bias ↑ 14 14.5 1.000 0.008 [9.0; 25.0] 
 Ruminative brooding ↓ 6 48 0.036 -0.902 [46.0; 51.0] 
 Ruminative worry ↓ 5 49 0.813 -0.181 [25.0; 75.0] 
 Tension ↑ 14 13.5 0.889 0.047 [8.0; 22.5] 
 Threat dysregulation ↑ 14 8 0.278 0.299 [5.0; 15.0] 
DXSXAXNXPXCX Anhedonia ↑ 10 3 0.103 0.541 [2.0; 10.0] 
 Anxious arousal ↑ 34 15 0.197 0.223 [14.0; 20.0] 
 Cognitive dyscontrol ↑ 34 18.5 0.536 0.108 [17.0; 20.0] 
 Negative bias ↑ 44 15 0.856 0.028 [12.0; 20.0] 
 Ruminative brooding ↑ 10 64 0.101 0.534 [55.0; 67.5] 
 Ruminative worry ↑ 25 64 1.000 0.003 [52.5; 65.5] 
 Tension ↑ 44 15 0.126 0.232 [13.5; 20.0] 
 Threat dysregulation ↑ 44 6.5 0.665 0.066 [5.5; 9.5] 
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Supplementary Table 5: Between biotype comparisons for insomnia and suicidality. 
Since insomnia and suicidality were assessed using only three and one item on the QIDS-SR respectively, we instead used a chi-
square test comparing the fraction of participants in the biotype endorsing any of the items (total value >0) compared to those not in 
the biotype. Here we show number of participants used for this comparison in each biotype, the percentage of participants reporting 
the symptom in the biotype and in other biotypes, the value and two-sided p-value of the test. We named each biotype according to the 
circuits and circuit features that specifically differentiated each relative to other biotypes and to the healthy reference. We used the 
following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect 
circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked 
by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript 
(C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth 
biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a 
short plain-English description for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ 

= ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect 
with positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with 
conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact activation and connectivity’. 
 

Biotype Symptom N Participants 
reporting 
(biotype) 

Participants 
reporting 

(other) 

p Chi-square 

DC+SC+AC+ Insomnia 169 72% 80% 0.930 0.008  
Suicidality 169 28% 32% 0.979 0.001 

AC- Insomnia 161 59% 83% 0.567 0.327  
Suicidality 161 23% 33% 1.000 0.000 

NSA+PA+ Insomnia 154 84% 77% 0.492 0.473  
Suicidality 154 34% 30% 1.000 0.000 

CA+ Insomnia 258 88% 73% 0.959 0.003  
Suicidality 258 34% 30% 0.590 0.291 

NTCC-CA- Insomnia 15 73% 78% 0.306 1.050  
Suicidality 15 40% 31% 0.797 0.066 

DXSXAXNXPXCX Insomnia 44 95% 77% 0.343 0.901  
Suicidality 44 43% 31% 0.390 0.739 
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Supplementary Table 6: Significant between biotype comparisons of behavioral performance.  
For each behavioral measure, the scores of participants in each biotype were compared to the median of participants not in the biotype 
using a Mann-Whitney U test. Here, we show the direction of the difference (↑ =symptom median was higher in the biotype, ↓ 
=symptom median was lower in the biotype), number of participants used for this comparison in each biotype, the median, the two-
sided p-value of the test, a measure of effect size r, calculated as the Z statistic divided by square root of the sample size and 
confidence interval (CI). We also show whether the finding replicates in split-half and leave-study-out procedures. We named each 
biotype according to the circuits and circuit features that specifically differentiated each relative to other biotypes and to the healthy 
reference. We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, 
NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative 
affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is 
indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x 
indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this 
nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with our theoretically 
synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; 
NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = 
‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact 
activation and connectivity’. Abbreviations: CI = confidence interval, RT = reaction time. 
 

Biotype Measure Direction N Median p Effect 
size r 

CI Split-
half 

Leave-
study-

out 
DC+SC+AC+ Maze completion 

time 
↑ 133 -0.062 0.044 0.175 [-0.182; 0.166] No No 

 Go-Nogo 
commission errors 

↓ 132 -0.312 0.002 -0.275 [-0.505; -0.217] No Yes 

 Working memory 
omission errors 

↑ 134 -0.326 0.051 0.168 [-0.331; 0.129] No Yes 

 Working memory 
RT 

↑ 133 0.968 0.0001 0.336 [0.714; 1.099] No No 

 Explicit sad RT ↑ 134 0.015 0.001 0.289 [-0.072; 0.289] No Yes 
AC- Go-Nogo mean RT ↓ 139 0.452 6.20e-06 -0.383 [0.180; 0.510] Yes No 
 Working memory 

omission errors 
↑ 138 -0.303 0.020 0.198 [-0.308; -0.010] No No 

 Working memory 
commission errors 

↑ 138 -0.073 0.0004 0.300 [-0.302; -0.019] No No 

 Implicit threat 
priming RT 

↓ 142 -0.036 0.002 -0.256 [-0.111; 0.112] No No 

CA+ Maze completion 
time 

↑ 212 -0.103 0.027 0.152 [-0.164; 0.090] No No 

 Maze errors ↑ 212 -0.240 0.017 0.164 [-0.268; -0.027] No No 
 Go-Nogo 

commission errors 
↑ 212 -0.034 0.022 0.158 [-0.201; 0.035] No Yes 

 Working memory 
omission errors 

↑ 212 -0.333 6.46e-05 0.275 [-0.045; 0.170] Yes Yes 

NTCC-CA- Explicit sad RT ↑ 11 -0.194 0.831 0.081 [-1.016; 0.915] No No 
DXSXAXNXPXCX Implicit threat 

priming RT 
↑ 38 0.353 0.001 0.516 [0.254; 0.611] No No 
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Supplementary Table 7: Between biotype comparisons of behavioral performance.  
For each behavioral measure, the scores of participants in each biotype were compared to the median of participants not in the biotype 
using a Mann-Whitney U test. Here, we show the direction of the difference (↑ =symptom median was higher in the biotype, ↓ 
=symptom median was lower in the biotype), number of participants used for this comparison in each biotype, the median, the two-
sided p-value of the test, a measure of effect size r, calculated as the Z statistic divided by square root of the sample size and 
confidence interval (CI). We named each biotype according to the circuits and circuit features that specifically differentiated each 
relative to the healthy reference. We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S = 
salience, A = attention, NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat 
stimuli, NTN = negative affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the 
distinguishing circuit feature is indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated 
by + or -. The subscript x indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other 
biotypes. Besides this nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with 
our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention 
hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control 
hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; 
DXSXAXNXPXCX = ‘Intact activation and connectivity’. Abbreviations: CI = confidence interval, RT = reaction time. 

Biotype Symptom Direction N Median p Effect size r CI 
DC+SC+AC+ Maze completion time ↑ 133 -0.062 0.044 0.175 [-0.182; 0.166] 
 Maze errors ↑ 133 -0.239 0.089 0.147 [-0.308; 0.006] 
 Go-Nogo mean RT ↓ 131 0.753 0.730 -0.030 [0.523; 0.785] 
 Go-Nogo commission errors ↓ 132 -0.312 0.002 -0.275 [-0.505; -0.217] 
 Working memory omission errors ↑ 134 -0.326 0.051 0.168 [-0.331; 0.129] 
 Working memory commission errors ↑ 133 -0.363 0.467 0.063 [-0.355; -0.121] 
 Working memory RT ↑ 133 0.968 0.0001 0.336 [0.714; 1.099] 
 Implicit threat priming RT ↓ 134 0.103 0.213 -0.108 [-0.093; 0.182] 
 Implicit happy RT ↑ 134 -0.554 0.263 0.097 [-0.702; -0.345] 
 Implicit sad RT ↑ 134 -0.264 0.405 0.072 [-0.370; -0.018] 
 Explicit threat RT ↑ 134 -0.118 0.137 0.129 [-0.207; 0.158] 
 Explicit happy RT ↑ 134 -0.015 0.079 0.152 [-0.105; 0.263] 
 Explicit sad RT ↑ 134 0.015 0.001 0.289 [-0.072; 0.289] 
AC- Maze completion time ↑ 142 -0.290 0.567 0.048 [-0.263; 0.075] 
 Maze errors ↓ 142 -0.316 0.943 -0.006 [-0.409; -0.125] 
 Go-Nogo mean RT ↓ 139 0.452 6.20e-06 -0.383 [0.180; 0.510] 
 Go-Nogo commission errors ↑ 139 -0.191 0.808 0.021 [-0.279; -0.012] 
 Working memory omission errors ↑ 138 -0.303 0.020 0.198 [-0.308; -0.010] 
 Working memory commission errors ↑ 138 -0.073 0.0004 0.300 [-0.302; -0.019] 
 Working memory RT ↑ 138 0.683 0.437 0.066 [0.453; 0.840] 
 Implicit threat priming RT ↓ 142 -0.036 0.002 -0.256 [-0.111; 0.112] 
 Implicit happy RT ↑ 142 -0.604 0.648 0.038 [-0.771; -0.400] 
 Implicit sad RT ↑ 142 -0.165 0.144 0.123 [-0.343; 0.020] 
 Explicit threat RT ↑ 142 -0.189 0.645 0.039 [-0.270; 0.111] 
 Explicit happy RT ↑ 142 -0.101 0.837 0.017 [-0.212; 0.140] 
 Explicit sad RT ↓ 142 -0.232 0.431 -0.066 [-0.342; -0.007] 
NSA+PA+ Maze completion time ↓ 131 -0.184 0.994 -0.001 [-0.320; 0.032] 
 Maze errors ↑ 131 -0.305 0.438 0.068 [-0.365; -0.047] 
 Go-Nogo mean RT ↓ 131 0.742 0.851 -0.016 [0.566; 0.795] 
 Go-Nogo commission errors ↓ 131 -0.210 0.527 -0.055 [-0.398; -0.063] 
 Working memory omission errors ↑ 131 -0.347 0.197 0.113 [-0.409; 0.159] 
 Working memory commission errors ↓ 131 -0.529 0.871 -0.014 [-0.409; -0.143] 
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 Working memory RT ↓ 131 0.522 0.317 -0.087 [0.359; 0.721] 
 Implicit threat priming RT ↑ 131 0.205 0.261 0.099 [0.074; 0.321] 
 Implicit happy RT ↑ 131 -0.602 0.381 0.077 [-0.710; -0.403] 
 Implicit sad RT ↑ 131 -0.237 0.277 0.095 [-0.362; 0.017] 
 Explicit threat RT ↑ 131 -0.160 0.276 0.095 [-0.220; 0.128] 
 Explicit happy RT ↑ 131 0.058 0.155 0.124 [-0.168; 0.220] 
 Explicit sad RT ↑ 131 -0.090 0.100 0.143 [-0.156; 0.220] 
CA+ Maze completion time ↑ 212 -0.103 0.027 0.152 [-0.164; 0.090] 
 Maze errors ↑ 212 -0.240 0.017 0.164 [-0.268; -0.027] 
 Go-Nogo mean RT ↓ 211 0.720 0.849 -0.013 [0.575; 0.765] 
 Go-Nogo commission errors ↑ 212 -0.034 0.022 0.158 [-0.201; 0.035] 
 Working memory omission errors ↑ 212 -0.333 6.46e-05 0.275 [-0.045; 0.170] 
 Working memory commission errors ↓ 212 -0.498 0.553 -0.041 [-0.401; -0.178] 
 Working memory RT ↓ 212 0.521 0.340 -0.066 [0.425; 0.705] 
 Implicit threat priming RT ↑ 212 0.165 0.295 0.072 [0.067; 0.239] 
 Implicit happy RT ↑ 213 -0.650 0.514 0.045 [-0.702; -0.427] 
 Implicit sad RT ↑ 213 -0.327 0.864 0.012 [-0.400; -0.096] 
 Explicit threat RT ↑ 213 -0.020 0.138 0.101 [-0.204; 0.100] 
 Explicit happy RT ↑ 213 -0.085 0.439 0.053 [-0.156; 0.150] 
 Explicit sad RT ↓ 213 -0.215 0.957 -0.004 [-0.250; 0.066] 
NTCC-CA- Maze completion time ↑ 11 0.447 0.966 0.027 [-0.812; 0.630] 
 Maze errors ↑ 11 -0.530 0.898 0.054 [-0.740; 0.335] 
 Go-Nogo mean RT ↑ 11 1.040 0.520 0.214 [0.112; 1.285] 
 Go-Nogo commission errors ↓ 11 -0.995 0.083 -0.537 [-1.690; 0.001] 
 Working memory omission errors ↑ 11 -0.390 0.577 0.188 [-0.623; 0.221] 
 Working memory commission errors ↑ 11 -0.075 0.197 0.401 [-0.490; 1.126] 
 Working memory RT ↓ 11 0.220 0.365 -0.295 [-0.531; 1.219] 
 Implicit threat priming RT ↑ 11 0.140 0.577 0.188 [0.025; 0.405] 
 Implicit happy RT ↓ 11 -0.550 0.577 -0.188 [-1.256; -0.234] 
 Implicit sad RT ↓ 11 -0.830 0.024 -0.669 [-1.316; -0.315] 
 Explicit threat RT ↓ 11 -0.345 0.465 -0.241 [-1.050; 0.332] 
 Explicit happy RT ↓ 11 -0.248 0.898 -0.054 [-0.840; 0.786] 
 Explicit sad RT ↑ 11 -0.194 0.831 0.081 [-1.016; 0.915] 
DXSXAXNXPXCX Maze completion time ↓ 37 -0.385 0.059 -0.311 [-0.738; -0.144] 
 Maze errors ↑ 37 -0.340 0.916 0.019 [-0.465; -0.028] 
 Go-Nogo mean RT ↑ 38 0.787 0.098 0.269 [0.640; 1.020] 
 Go-Nogo commission errors ↓ 38 -0.276 0.353 -0.152 [-0.689; 0.046] 
 Working memory omission errors ↑ 38 -0.319 0.090 0.276 [-0.365; 0.395] 
 Working memory commission errors ↑ 38 -0.151 0.612 0.084 [-0.445; -0.040] 
 Working memory RT ↓ 38 0.549 0.546 -0.099 [0.095; 0.895] 
 Implicit threat priming RT ↑ 38 0.353 0.001 0.516 [0.254; 0.611] 
 Implicit happy RT ↓ 38 -0.714 0.172 -0.222 [-1.010; -0.530] 
 Implicit sad RT ↑ 38 -0.362 0.662 0.072 [-0.569; 0.255] 
 Explicit threat RT ↓ 38 -0.288 0.785 -0.046 [-0.505; 0.168] 
 Explicit happy RT ↓ 38 -0.409 0.207 -0.206 [-0.509; 0.035] 
 Explicit sad RT ↓ 38 -0.245 0.922 -0.017 [-0.386; 0.205] 
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Supplementary Table 8: Biotype distributions for number of participants receiving each treatment.  
We report how many participants of each biotype received each treatment in the randomized clinical trial dataset. For comparisons of 
post-treatment severity, we chose to exclude combinations of treatment and biotype that had ≤5 participants. We named each biotype 
according to the circuits and circuit features that specifically differentiated each relative to other biotypes and to the healthy reference. 
We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = 
negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect 
circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is 
indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x 
indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this 
nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with our theoretically 
synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; 
NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = 
‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact 
activation and connectivity’. 1.Biotype-treatment combinations for which the comparison of post-treatment severity with other 
biotypes was not conducted because of too small sample size (N≤5). 
 

Biotype Escitalopram Sertraline Venlafaxine I-CARE U-CARE 
DC+SC+AC+ 16 13 9 12 14 
AC- 11 7 31 27 20 
NSA+PA+ 13 10 8 11 11 
CA+ 18 18 25 01 01 
NTCC-CA- 01 21 21 01 01 
DXSXAXNXPXCX 16 13 9 12 14 
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Supplementary Table 9: Between biotype comparisons of treatment outcomes.  
The severity after treatment of participants in each biotype was compared to the median of participants not in the biotype using a 
Mann-Whitney U test for each treatment separately. Here, we show the direction of the difference (↑ =symptom median was higher in 
the biotype, ↓ =symptom median was lower in the biotype), number of participants used for this comparison in each biotype, the 
median, the two-sided p-value of the test, a measure of effect size r, calculated as the Z statistic divided by square root of the sample 
size and confidence interval (CI). Comparisons with N<6 were discarded. Significant comparisons (p<0.05) are bolded. We named 
each biotype according to the circuits and circuit features that specifically differentiated each relative to other biotypes and to the 
healthy reference. We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = 
attention, NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = 
negative affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit 
feature is indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The 
subscript x indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides 
this nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with our theoretically 
synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; 
NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = 
‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact 
activation and connectivity’. Abbreviations: CI = confidence interval, I-CARE=active behavioral therapy, U-CARE=usual care. 
 

Biotype Treatment Direction N Median p Effect size r CI 
DC+SC+AC+ Escitalopram ↑ 16 0.198 0.155 0.363 [0.151; 0.245] 
 I-CARE ↓ 12 0.175 0.037 0.612 [0.137; 0.306] 
 Sertraline ↑ 13 0.226 0.080 0.494 [0.160; 0.264] 
 U-CARE ↓ 14 0.275 0.802 0.076 [0.169; 0.350] 
 Venlafaxine ↑ 9 0.226 0.342 0.337 [0.132; 0.321] 
AC- Escitalopram ↓ 11 0.151 0.504 0.215 [0.113; 0.274] 
 I-CARE ↑ 27 0.313 0.002 0.593 [0.219; 0.350] 
 Sertraline ↓ 7 0.170 0.446 0.320 [0.085; 0.236] 
 U-CARE ↓ 20 0.250 0.287 0.241 [0.200; 0.337] 
NSA+PA+ Escitalopram ↑ 13 0.208 0.724 0.109 [0.123; 0.245] 
 Sertraline ↓ 10 0.142 0.476 0.244 [0.085; 0.255] 
 Venlafaxine ↓ 8 0.170 0.325 0.371 [0.104; 0.274] 
CA+ Escitalopram ↓ 18 0.170 1.000 0.006 [0.132; 0.255] 
 Sertraline ↓ 18 0.179 0.962 0.017 [0.132; 0.264] 
 Venlafaxine ↓ 25 0.170 0.034 0.426 [0.132; 0.226] 
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Supplementary Table 10: Biotype distribution of treatment response and remission rates.  
Response was defined as a 50% reduction in symptoms at follow-up, and remission was defined as a follow-up Hamilton Depression 
Rating Scale score ≤7 (collected in iSPOT-D) and Symptom Checklist 20 Depression Scale score ≤0.5 (collected in ENGAGE). We 
named each biotype according to the circuits and circuit features that specifically differentiated each relative to other biotypes and to 
the healthy reference. We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = 
attention, NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = 
negative affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit 
feature is indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The 
subscript x indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides 
this nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with our theoretically 
synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; 
NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = 
‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact 
activation and connectivity’. Abbreviations: I-CARE=active behavioral therapy; U-CARE=usual care. 
 

Biotype Treatment Responders Remitters 
DC+SC+AC+ U-CARE 4 (29%) 4 (29%)  

I-CARE 5 (42%) 3 (25%)  
Escitalopram 9 (56%) 5 (31%)  
Sertraline 6 (46%) 3 (23%)  
Venlafaxine 2 (22%) 2 (22%) 

AC- U-CARE 8 (40%) 1 (5%)  
I-CARE 7 (26%) 6 (22%)  
Escitalopram 7 (64%) 4 (36%)  
Sertraline 4 (57%) 3 (43%)  
Venlafaxine 2 (67%) 2 (67%) 

NSA+PA+ U-CARE 0 (0%) 0 (0%)  
I-CARE 0 (0%) 0 (0%)  
Escitalopram 6 (46%) 4 (31%)  
Sertraline 6 (60%) 5 (50%)  
Venlafaxine 4 (50%) 4 (50%) 

CA+ U-CARE - -  
I-CARE - -  
Escitalopram 11 (61%) 6 (33%)  
Sertraline 10 (56%) 7 (39%)  
Venlafaxine 16 (64%) 10 (40%) 

NTCC-CA- U-CARE - -  
I-CARE - -  
Escitalopram - -  
Sertraline 2 (100%) 1 (50%)  
Venlafaxine 0 (0%) 0 (0%) 

DXSXAXNXPXCX U-CARE - -  
I-CARE - -  
Escitalopram 1 (100%) 1 (100%)  
Sertraline 1 (50%) 1 (100%)  
Venlafaxine 1 (33%) 1 (100%) 
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Supplementary Table 11: Biotype distribution of number of participants by dataset.  
We show how many participants belonged to each biotype in each dataset. Biotypes were represented differently between datasets 
(chi-square = 161.37, two-sided p=2.2e-16). We named each biotype according to the circuits and circuit features that specifically 
differentiated each relative to other biotypes and to the healthy reference. We used the following nomenclature: each circuit is 
indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked by sad stimuli, NTC = 
negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by non-conscious threat stimuli, P = 
positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = connectivity or  A = activity) 
and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth biotype is not differentiated by a 
prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-English description for 
each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and 
attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect with positive affect 
hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-
elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact activation and connectivity’. Abbreviations: 
ENGAGE=Engaging self-regulation targets to understand the mechanisms of behavior change and improve mood and weight 
outcome; HCP-DES=Human Connectome Project for Disordered Emotional States; iSPOT-D=International Study to Predict 
Optimized Treatment in Depression; RAD=Research on Anxiety and Depression study. 
 

Biotype ENGAGE HCP-DES iSPOT-D RAD 
DC+SC+AC+ 29 (17%) 40 (24%) 45 (27%) 55 (33%) 
AC- 55 (34%) 33 (20%) 26 (16%) 47 (29%) 
NSA+PA+ 2 (1%) 51 (33%) 38 (25%) 63 (41%) 
CA+ 0 (0%) 68 (26%) 76 (29%) 114 (44%) 
NTCC-CA- 0 (0%) 6 (40%) 4 (27%) 5 (33%) 
DXSXAXNXPXCX 0 (0%) 10 (23%) 9 (20%) 25 (57%) 
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Supplementary Table 12: Biotype overlap with diagnoses.  
Number and proportion of participants in each biotype that meet diagnostic criteria for major depressive disorder, generalized anxiety 
disorder, panic disorder, social anxiety disorder and obsessive-compulsive disorder. We named each biotype according to the circuits 
and circuit features that specifically differentiated each relative to other biotypes and to the healthy reference. We used the following 
nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = attention, NS = negative affect circuit evoked 
by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = negative affect circuit evoked by non-
conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit feature is indicated as a subscript (C = 
connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The subscript x indicates that the sixth biotype is 
not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides this nomenclature, we suggest a short plain-
English description for each biotype (in quotes), that connects them with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default 
with salience and attention hyperconnectivity’; AC- = ‘Attention hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect with 
positive affect hyperactivation’; CA+ = ‘Cognitive control hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with 
conscious threat-elicited negative affect hypoconnectivity’; DXSXAXNXPXCX = ‘Intact activation and connectivity’. 
 

Biotype Major 
depressive 
disorder 

Generalized 
anxiety 
disorder 

Panic 
disorder 

Social 
anxiety 
disorder 

Obsessive-
compulsive 

disorder 
DC+SC+AC+      

  Does not meet criteria 72 (44%) 98 (72%) 155 (95%) 101 (74%) 126 (93%) 
  Meets criteria 93 (56%) 38 (28%) 9 (9%) 35 (26%) 10 (7%) 

AC-      
  Does not meet criteria 65 (41%) 78 (76%) 140 (89%) 78 (76%) 97 (94%) 
  Meets criteria 93 (59%) 25 (24%) 17 (11%) 25 (24%) 6 (6%) 

NSA+PA+      
  Does not meet criteria 85 (57%) 105 (72%) 135 (92%) 107 (73%) 131 (90%) 
  Meets criteria 63 (43%) 41 (28%) 12 (8%) 39 (27%) 15 (10%) 

CA+      
  Does not meet criteria 143 (57%) 183 (73%) 221 (88%) 187 (74%) 239 (95%) 
  Meets criteria 109 (43%) 69 (27%) 31 (12%) 65 (26%) 13 (5%) 

NTCC-CA-      
  Does not meet criteria 10 (71%) 9 (64%) 12 (86%) 7 (50%) 14 (100%) 
  Meets criteria 4 (29%) 5 (36%) 2 (14%) 7 (50%) 0 (0%) 

DXSXAXNXPXCX      
  Does not meet criteria 31 (70%) 30 (68%) 40 (91%) 36 (82%) 41 (93%) 
  Meets criteria 13 (30%) 14 (32%) 4 (9%) 8 (18%) 3 (7%) 
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Supplementary Table 13: Comparison of the performance of our brain circuit features to other features.  
We selected three competing alternative feature sets, each used in a recent paper reporting the identification of biotypes of depression 
using resting state fMRI 12–14. We did not replicate the entire analysis workflow used in these studies. Rather, we used them to derive 
alternative imaging feature sets supported by previous evidence that we then entered in our own analysis pipeline, validating the results 
with the same criteria and procedures we used for our own features. For each of these alternative sets, we tested the number of clusters 
reported in the original paper. We named each biotype according to the circuits and circuit features that specifically differentiated each 
relative to other biotypes and to the healthy reference. We used the following nomenclature: each circuit is indicated with a letter (D = 
default mode, S = salience, A = attention, NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by 
conscious threat stimuli, NTN = negative affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive 
circuit), the distinguishing circuit feature is indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction 
is indicated by + or -. The subscript x indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to 
other biotypes. Besides this nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them 
with our theoretically synthesized biotypes: DC+SC+AC+ = ‘Default with salience and attention hyperconnectivity’; AC- = ‘Attention 
hypoconnectivity’; NSA+PA+ = ‘Sad-elicited negative affect with positive affect hyperactivation’; CA+ = ‘Cognitive control 
hyperactivation’; NTCC-CA- = ‘Cognitive control hypoactivation with conscious threat-elicited negative affect hypoconnectivity’; 
DXSXAXNXPXCX = ‘Intact activation and connectivity’. We highlight in red tests for which the alternative biotyping strategy did not 
outperform the strategy presented in the current work and in green tests for which the alternative biotyping strategy outperformed the 
strategy presented in the current work. 1.Excluding features with bad coverage for >5% of participants. 2. Too many features to compute 
a covariance matrix for the simulation. Abbreviations: AAL = automatic atlas labeling, Clu = cluster, Δ = difference, sil = silhouette 
index. 
 
Biotyping strategy Regional brain circuit 

scores 
6 clusters 

Whole-brain 
connectome 

2 clusters 

Default mode 
network 
2 clusters 

Angular gyrus 
network 
3 clusters 

Example of study using the 
imaging features 

Current work Drysdale et al. 2017 Liang et al. 2020 Tokuda et al. 2018 

Feature extraction Task activation and rest and 
task connectivity from a-
priori regions of interest 

Power atlas rest 
connectome1 

Power atlas rest 
connectome 
default mode 

network 
connections1 

AAL rest connectome 
connections from 

Tokuda et al. Fig. 5 

Number of features for 
clustering 

41 16 916 12 

Silhouette difference compared 
to current work (resampling 
test) 

- Δsil=-0.026, p=0.049 Δsil=-0.012, 
p=0.256 

Δsil=0.155, p=1 

Silhouette difference compared 
to current work (permutation 
test) 

- Δsil=-0.026, p=0 Δsil=-0.012, p=0 Δsil=0.155, p=1 

Evaluation criteria:         
1.  Solution outperforms null 

hypothesis of no clusters 
(simulated data) 

sil=0.065, p=0.016 - 2 sil=0.053, p=1 sil=0.220, p=0.777 

2.   Solution outperforms 
null hypothesis of no 
clusters (permuted data) 

sil=0.065, p=0 sil=0.045, p=0 sil=0.053, p=0 sil=0.220, p=0 

3.   Adjusted Rand Index 
(leave one out mean) 

0.80 0.94 0.77 0.81 

4.   Adjusted Rand Index 
(leave 20% out mean) 

0.35 0.48 0.38 0.48 

5.  Generalizable cluster 
profiles across random 
split-half 

DC+SC+AC, AC-, NSA+PA+, 
CA+, NTCC-CA, 

DXSXAXNXPXCX  

Clu 1, Clu 2, Clu 3, Clu 
4 

Clu 1, Clu 2 Clu 1, Clu 2, Clu 3 

6.  Generalizable symptom 
differences across 
random split-half 

CA+ threat dysregulation ↑, 
CA+ negative bias ↑ 

Clu 1 negative bias ↑ None None 



37 
 

7.  Generalizable behavior 
differences across 
random split-half 

AC- Go-NoGo RT ↓ 
CA+ working memory 

omission errors ↑ 
 

Clu 1 Go-Nogo RT ↓ 
Clu 1 Working memory 

commission errors ↑ 
Clu 2 Explicit sad RT ↑ 
Clu 4 Go-Nogo RT ↑ 

Clu 4 Working memory 
omission errors ↑ 

Clu 4 Working memory 
RT ↑ 

 

Clu 2 Working 
memory omission 

errors ↑ 

None 

8.  Generalizable symptom 
differences across leave-
study-out 

CA+ threat dysregulation ↑ Clu 1 tension ↑ 
Clu 2 anxious arousal ↑ 
Clu 3 anxious arousal ↑ 

Clu 1 negative 
bias ↑ 

Clu 2 anxious 
arousal ↑ 

Clu 1 tension ↑ 

9.  Generalizable behavior 
differences across leave-
study-out 

DC+SC+AC+ Go-Nogo 
commission errors ↓ 

DC+SC+AC+ Working memory 
omission errors ↑ 

DC+SC+AC+ Explicit sad RT ↑ 
CA+ Go-Nogo commission 

errors ↑ 
CA+ Working memory 

omission errors ↑ 

Clu 1 Working memory 
commission errors ↑ 
Clu 4 Go-Nogo RT ↑ 

Clu 4 Working memory 
omission errors ↑ 

 

Clu 1 Explicit 
happy RT ↑ 
Clu 1 Maze 

completion time ↑ 
Clu 1 Working 

memory 
commission errors 

↑ 
Clu 1 Working 

memory omission 
errors ↓ 

Clu 2 Working 
memory omission 

errors ↑ 
 
 
 

Clu 1 Working 
memory omission 

errors ↑ 
Clu 1 Explicit happy 

RT ↑ 
Clu 2 Working 

memory omission 
errors ↑ 

Clu 2 Maze 
completion time ↑ 

Clu 3 Working 
memory commission 

errors ↑ 
 

10.Biotypes differ in 
treatment response 

DC+SC+AC+ I-CARE ↓ 
AC- I-CARE ↑ 

CA+ venlafaxine ↓ 

Clu 1 sertraline ↑ 
Clu 1 venlafaxine ↑ 
Clu 2 venlafaxine ↓ 

None Clu 1 sertraline ↓ 
Clu 3 sertraline ↑ 

Clu 3 venlafaxine ↑ 
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Supplementary Table 14. Comparison of our brain circuit features to other features using six clusters.  
We selected three competing alternative feature sets, each used in a recent paper reporting the identification of biotypes of depression 
using resting state fMRI 12–14. We did not replicate the entire analysis workflow used in these studies. Rather, we used them to derive 
alternative imaging feature sets supported by previous evidence that we then entered in our own analysis pipeline, validating the results 
with the same criteria and procedures we used for our own features. For each of these alternative sets, we tested the number of clusters 
we chose in our own analysis. We highlight in red tests for which the alternative biotyping strategy did not outperform the strategy 
presented in the current work and in green tests for which the alternative biotyping strategy outperformed the strategy presented in the 
current work. For the resampling test of the silhouette index, the p-value is defined as the fraction of mean silhouettes greater than our 
result obtained by clustering 10,000 synthetic datasets from a multivariate normal distribution. For the permutation test of the silhouette 
index, we shuffled each brain circuit score across subjects 10,000 times, then repeated the hierarchical clustering procedure and 
calculated the average silhouette index. Thus, we obtained null distributions for these average silhouette indexes, comprising 10,000 
observations. We computed a p-value defined as the fraction of average silhouette indexes in this null distribution greater than our result. 
1.Excluding features with bad coverage for >5% of participants; 2. Too many features to compute a covariance matrix for the simulation; 
3 Too many features to visually assess if cluster profiles were comparable. Abbreviations: AAL = automatic atlas labeling, Clu. = cluster, 
sil = silhouette index. 
 

Biotyping strategy Regional brain circuit 
scores 

6 clusters 

Whole-brain 
connectome 

6 clusters 

Default mode 
network 
6 clusters 

Angular gyrus 
network 
6 clusters 

Example of study using the 
imaging features 

Current work Drysdale et al. 
2017 

Liang et al. 2020 Tokuda et al. 2018 

Feature extraction Task activation and rest and 
task connectivity from a-
priori regions of interest 

Power atlas rest 
connectome1 

Power atlas rest 
connectome default 

mode network 
connections1 

AAL rest 
connectome 

connections from 
Tokuda et al. Fig. 5 

Number of features for 
clustering 

41 29,161 916 12 

Silhouette difference 
compared to current work 
(resampling test) 

- Δsil=-0.039, 
p=0.021 

Δsil=-0.032, p=0.037  Δsil=0.139, p=1 

Silhouette difference 
compared to current work 
(permutation test) 

- Δsil=-0.039, 
p=0.001 

Δsil=-0.032, p=0  Δsil=0.139, p=1 

Evaluation criteria:         
1.  Solution outperforms 
null hypothesis of no 
clusters (simulated data) 

sil=0.06, p=0.02 - 2 sil=0.033, p=0.321 sil=0.204, p=0.079 

2.  Solution outperforms 
null hypothesis of no 
clusters (permuted data) 

sil=0.06, p=0 sil.=0.031, p=0 sil=0.033, p=0 sil=0.204, p=0 
 

3.  Adjusted Rand Index 
(leave one out mean) 

0.80 0.93 0.80 0.85 

4.  Adjusted Rand Index 
(leave 20% out mean) 

0.35 0.47 0.35 0.47 

5.  Generalizable cluster 
profiles across random 
split-half 

DC+SC+AC, AC-, NSA+PA+, 
CA+, NTCC-CA, 

DXSXAXNXPXCX  

Clu 1, Clu 2, Clu 
3, Clu 4, Clu 5, 

Clu 6 

Clu 1, Clu 2, Clu 3, 
Clu 4, Clu 5, Clu 6 

Clu 1, Clu 2, Clu 3, 
Clu 4, Clu 5, Clu 6 

6.  Generalizable 
symptom differences 
across random split-half 

CA+ threat dysregulation ↑, 
CA+ negative bias ↑ 

Clu 1 negative 
bias ↑ 

None None 

7.  Generalizable 
behavior differences 
across random split-half 

AC- Go-NoGo RT ↓ 
CA+ working memory 

omission errors ↑ 
 

Clu 1 working 
memory 

commission errors 
↑ 

Clu 4 working 
memory omission 

errors ↑ 
 

Clu 3 working 
memory commission 

errors ↑ 
Clu 3 working 

memory omission 
errors ↑ 

Clu 3 Go-NoGo RT ↑ 

Clu 3 Explicit threat 
RT ↑ 
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Clu 3 Maze 
completion time ↑ 

Clu 3 Maze errors ↑ 
8.  Generalizable 
symptom differences 
across leave-study-out 

CA+ threat dysregulation ↑ Clu 2 anxious 
arousal ↑ 

None None 

9.  Generalizable 
behavior differences 
across leave-study-out 

DC+SC+AC+ Go-Nogo 
commission errors ↓ 
DC+SC+AC+ Working 

memory omission errors ↑ 
DC+SC+AC+ Explicit sad RT 

↑ 
CA+ Go-Nogo commission 

errors ↑ 
CA+ Working memory 

omission errors ↑ 

None Clu 3 working 
memory commission 

errors ↑ 
Clu 3 working 

memory omission 
errors ↑ 

Clu 3 Maze 
completion time ↑ 

Clu 3 Maze errors ↑ 
Clu 2 Maze 

completion time ↑ 
 

Clu 1 Maze errors ↑ 
Clu 1 working 

memory omission 
errors ↑ 

Clu 3 Explicit happy 
RT ↑ 

Clu 4 Maze 
completion time ↑ 

 

10.   Biotypes differ in 
treatment response 

DC+SC+AC+ I-CARE ↓ 
AC- I-CARE ↑ 

CA+ venlafaxine ↓ 

Clu 1 sertraline ↑ 
Clu 1 venlafaxine 

↑ 
Clu 2 venlafaxine 

↓ 

None Clu 4 venlafaxine ↑ 
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Supplementary Table 15. Comparison of our brain circuit features to resting state features only.   
To assess the impact of including task fMRI measures in addition to task-free measures only, we compared our original results to results 
obtained using only our task-free brain circuit scores. We validated the results with the same criteria and procedures we used for our 
own features and chose as number of clusters 6 (the number we chose in our analysis using all features) or 2 (the number of clusters 
with task-free dysfunction identified in our analyses). We highlight in red tests for which the alternative biotyping strategy did not 
outperform the strategy presented in the current work and in green tests for which the alternative biotyping strategy outperformed the 
strategy presented in the current work. For the resampling test of the silhouette index, the p-value is defined as the fraction of mean 
silhouettes greater than our result obtained by clustering 10,000 synthetic datasets from a multivariate normal distribution. For the 
permutation test of the silhouette index, we shuffled each brain circuit score across subjects 10,000 times, then repeated the hierarchical 
clustering procedure and calculated the average silhouette index. Thus, we obtained null distributions for these average silhouette 
indexes, comprising 10,000 observations. We computed a p-value defined as the fraction of average silhouette indexes in this null 
distribution greater than our result. Abbreviations: Clu = cluster, sil = silhouette index. 
 

Biotyping strategy Regional brain circuit scores 
6 clusters 

Regional brain circuit 
scores (rest only) 

2 clusters 

Regional brain circuit 
scores (rest only) 

6 clusters 
Feature extraction Task activation and rest and task 

connectivity from a-priori regions 
of interest 

Rest connectivity from 
a-priori regions of 

interest 

Rest connectivity from 
a-priori regions of 

interest 
Number of features for clustering 41 14 14 
Evaluation criteria       

1.  Solution outperforms null 
hypothesis of no clusters 
(simulated data) 

sil=0.065, p=0.016 sil.=0.189, p=0.485 sil.=0.092, p=0.283 

2.  Solution outperforms null 
hypothesis of no clusters 
(permuted data) 

sil=0.065, p=0 sil.=0.189, p=0 sil.=0.092, p=0 

3.  Adjusted Rand Index (leave 
one out mean) 

0.80 0.82 0.76 

4.  Adjusted Rand Index (leave 
20% out mean) 

0.35 0.37 0.34 

5.  Generalizable cluster profiles 
across random split-half 

DC+SC+AC, AC-, NSA+PA+, CA+, 
NTCC-CA, DXSXAXNXPXCX 

Clu 1, Clu 2 Clu 1, Clu 2, Clu 3, Clu 
4, Clu 5, Clu 6 

6.  Generalizable symptom 
differences across random split-
half 

CA+ threat dysregulation ↑, 
CA+ negative bias ↑ 

None None 

7.  Generalizable behavior 
differences across random split-
half 

AC- Go-NoGo reaction time ↓ 
CA+ working memory omission 

errors ↑ 
 

Clu 1 working memory 
omission errors ↑ 

 

Clu 1 working memory 
omission errors ↑ 

 

8.  Generalizable symptom 
differences across leave-study-
out 

CA+ threat dysregulation ↑ Clu 1 anxious arousal ↑ 
Clu 1 cognitive 

dyscontrol ↑ 
Clu 1 threat 

dysregulation ↑ 
Clu 1 tension ↑ 
Clu 2 cognitive 

dyscontrol ↓ 

Clu 1 tension ↑ 
 

9.  Generalizable behavior 
differences across leave-study-
out 

DC+SC+AC+ Go-Nogo commission 
errors ↓ 

DC+SC+AC+ Working memory 
omission errors ↑ 

DC+SC+AC+ Explicit sad RT ↑ 
CA+ Go-Nogo commission errors ↑ 

CA+ Working memory omission 
errors ↑ 

Clu 1 Go-Nogo 
commission errors ↓ 
Clu 1 Go-Nogo mean 

RT ↑ 
Clu 1 Working memory 

commission ↑ 
Clu 2 Go-Nogo mean 

RT ↓ 
Clu 2 Implicit threat RT 

↓ 

Clu 1 Working memory 
commission ↑ 

Clu 3 Working memory 
omission errors ↑ 
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Clu 2 Maze errors ↑ 
Clu 2 Working memory 

omission errors ↑ 
Clu 2 working memory 

RT ↑ 
 
 
 

10.   Biotypes differ in treatment 
response 

DC+SC+AC+ I-CARE ↓ 
AC- I-CARE ↑ 

CA+ venlafaxine ↓ 

Clu 2 sertraline ↑ 
 

Clu 1 venlafaxine ↓ 
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Supplementary Table 16: Cluster-derived biotypes comparison with theoretically synthesized biotypes.  
In this table, we provide an interpretive synthesis of the cluster-derived biotypes from the clinical datasets in the present study and the 
theoretical taxonomy that informed this analysis.  Cluster-derived biotypes from the present study are ordered to match the order of 
biotypes in the theoretical taxonomy based on a synthesis of extant knowledge in case-control studies (Williams, 2017, 2016). We 
named each biotype according to the circuits and circuit features that specifically differentiated each relative to other biotypes and to 
the healthy reference. We used the following nomenclature: each circuit is indicated with a letter (D = default mode, S = salience, A = 
attention, NS = negative affect circuit evoked by sad stimuli, NTC = negative affect circuit evoked by conscious threat stimuli, NTN = 
negative affect circuit evoked by non-conscious threat stimuli, P = positive circuit, C = cognitive circuit), the distinguishing circuit 
feature is indicated as a subscript (C = connectivity or  A = activity) and the direction of dysfunction is indicated by + or -. The 
subscript x indicates that the sixth biotype is not differentiated by a prominent circuit dysfunction relative to other biotypes. Besides 
this nomenclature, we suggest a short plain-English description for each biotype (in quotes), that connects them with our theoretically 
synthesized biotypes. Abbreviations: ACC=anterior cingulate cortex; AG=angular gyrus; aI=anterior insula; aIPL=anterior inferior 
parietal lobule; amPFC=anterior medial prefrontal cortex; dACC=dorsal anterior cingulate cortex; DLPFC=dorsolateral prefrontal 
cortex; DPC=dorsal parietal cortex; LPFC=lateral prefrontal cortex; MPFC=medial prefrontal cortex; msPFC=medial superior 
prefrontal cortex; OFC=orbitofrontal cortex; PCC=posterior cingulate cortex; SLEA=sublenticular extended amygdala; TP=temporal 
pole; vmPFC=ventromedial prefrontal cortex. 
 

Cluster-derived biotypes Theoretically synthesized biotypes (Williams, 2016) 
A1. 

DC+SC+AC+ 
‘Default with salience and attention hyperconnectivity’ 

 
Distinguished by a relative intrinsic hyperconnectivity within the 
default mode circuit in particular and also within salience and 
attention circuits (Figure 3). Clinically, DC+SC+AC+ was 
distinguished by slowed behavioral responses in identifying sad 
faces and target stimuli in a sustained attention task, as well as 
less errors in a cognitive control task, relevant to the respective 
involvement of both salience and attention circuits (Figure 4). 
DC+SC+AC+ was associated with better response to behavioral 
treatment. 

A2. 
Biotypes #1and #2 

‘Default mode hyper-connectivity and altered salience and 
attention connectivity’ 

      
DC+SC+AC+ shows equivalence to Biotype 1, combined with Biotype 
2 in the theoretical taxonomy. Biotype 1 represents pronounced 
default mode hyperconnectivity. Biotype 2 includes a specific 
profile of hyperconnectivity of both the default mode and salience 
circuit, particularly the anterior default mode and salience circuit 
insula. In Biotype 2, salience and attention circuits also show hyper-
connectivity, consistent with DC+SC+AC+, although hypo-
connectivity has also been observed and the direction may fluctuate 
with the nature of internal versus external events, that reflect the role 
of the salience circuit in guiding attention according to the salience 
of these events. 

B1. 
NSA+PA+ 

‘Sad-elicited negative affect with positive affect hyperactivation’ 

 
Distinguished by heightened activation within the negative affect 
circuit evoked by sad stimuli and in the positive affect circuit 
evoked by happy stimuli (Figures 3-4). 

B2. 
Biotypes #3 and #6 

‘Sad-elicited negative affect hyperactivation and positive affect 
frontal hyperactivation’ 

 
NSA+PA+   shows equivalence to Biotype 3 defined by heightened 
insula and amygdala activation to sad stimuli indicative of a 
negative bias (left) in combination with Biotype 6 defined by 
heightened activation of the positive affect circuit in response to 
primary rewards such as happy stimuli (right) in the theoretical 
taxonomy.  
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C1. 
. NTCC-CA-   

‘Cognitive control hypoactivation with conscious threat-elicited 
negative affect hypoconnectivity’: 

 
Distinguished by low functional connectivity within the negative 
affect circuit during nonconscious threat processing as well as 
reduced cognitive control circuit activity (Figures 3-4).  

C2.  
Biotypes #8 and #4 

‘Cognitive control hypoactivation and conscious threat-elicited 
negative affect hypoconnectivity’ 

  
NTCC-CA- shows equivalence to Biotype #4 combined with 
Biotype #8 in the theoretical taxonomy, regarding reduced 
amygdala-subgenual cingulate connectivity during nonconscious 
threat processing (left) and reduced activity within the cognitive 
control circuit (right), respectively.  

D1.  
AC- 

‘Attention hypoconnectivity’ 

 
Distinguished by relatively reduced task-free intrinsic 
connectivity within the attention circuit (Fig. 2; Supp. Fig. 4) 
along with more false alarm errors on the sustained attention task 
and faster responses to target Go stimuli on the Go-NoGo task, 
which suggests reduced concentration with impulsivity (Figures 
3-4).  

D2.  
Biotype #7 

‘Attention hypoconnectivity’  

 
AC- is equivalent to Biotype 7 in the theoretical taxonomy, which is 
characterized by a loss of intrinsic connectivity within the fronto-
parietal attention circuit. Like AC-, Biotype 7 is also characterized 
by a specific behavioral profile of false alarm errors consistent 
with disruption to sustained attention.  
 

E1. 
CA+ 

‘Cognitive control hyperactivation’ 

 
Distinguished specifically by heightened activation within the 
Cognitive Control circuit. Clinically, CA+ was characterized by 
more severe ruminative brooding and anhedonia and deficits in 
cognitive performance (Figures 3-4). 

E2. 
Compensatory Biotype #8 

‘Cognitive control hyperactivation as compensation’  

 
CA+ is equivalent to a putative compensatory form of Biotype #8 in 
the theoretical taxonomy. Hyperactivation (rather than 
hypoactivation) of the cognitive control circuit might reflect 
compensation associated with cognitive overdrive or a distinct 
cognitive dysfunction dependent on task demands. 

F1. 
DXSXAXNXPXCX 

‘Intact activation and connectivity’ 

 
‘Intact activation and connectivity’: Although this biotype was 
not distinguished by marked circuit dysfunction in the present 
analyses, it was characterized clinically by more pronounced 
implicit threat priming (Figures 3-4). 

F2. 
- 

‘Intact activation and connectivity’ 

  
DXSXAXNXPXCX does not have a specific equivalent biotype in the 
theoretical taxonomy. This is an area that warrants more study 
given that implicit behavioral biases to negative and mood-
congruent threat and sad stimuli may characterize risk for 
depression and anxiety disorders and persist in the remitted state.  
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Supplementary Table 17: Number of scans passing quality check and motion criteria before imputation.  
Number of scans available by dataset passing quality check and motion criteria before multiple imputation. We show how many 
participants had scans available in each of the studies. Abbreviations: ENGAGE=Engaging self-regulation targets to understand the 
mechanisms of behavior change and improve mood and weight outcome; HCP-DES=Human Connectome Project for Disordered 
Emotional States; iSPOT-D=International Study to Predict Optimized Treatment in Depression; RAD=Research on Anxiety and 
Depression study. 
 
Features Clinical 

Sample 1 
Clinical 

Sample 2 
Clinical 

Sample 3 
Clinical 

Sample 4 
Controls 
Sample 1 

Control 
Sample 2 

Dataset   RAD HCP-DES iSPOT-D ENGAGE HCP-DES iSPOT-D 
Task-free 288 183 188 82 62 64 
Go-NoGo 296 195 195 83 65 66 
Facial Expressions of Emotion 
conscious 

281 185 182 79 64 59 

Facial Expressions of Emotion 
nonconscious 

291 190 180 80 69 65 
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Supplementary Table 18: Imaging features and brain regions.  
We derived 41 measures of activation, task-based functional connectivity, and task-free connectivity from regions belonging to six 
brain circuits for which we have established relevance to depression and anxiety based on prior meta-analyses and rigorous empirical 
studies: a default mode circuit, a salience circuit, an attention circuit, a negative affect circuit elicited by sad and by threat, a positive 
affect circuit, and a cognitive control circuit. A source study established the image processing method for quantifying these circuit 
features and reported on the psychometric properties and reproducibility for 41 circuit features (6; Supplementary Tables S5A and 
S5B). Using this method, cortical regions of interest were defined from the meta-analytic database Neurosynth (search conducted on 
06/04/2017) by identifying peak coordinates of a term search with a pFDR threshold of .01 and identifying voxels at maximum 10 mm 
from the peak. Subcortical regions were derived from the Harvard-Oxford or AAL atlases. Regions were refined by removing those 
that did not pass quality control or for which circuit quantification did not meet a set of psychometric criteria, such as construct 
validity, internal consistency, and independence. Of the remaining regions, we only retained those which were also implicated in our 
theoretical synthesis of dysfunctions in depression and anxiety. From these regions we then extracted 41 features by computing 
intrinsic functional connectivity, task activation or task-based functional connectivity. Abbreviations: FDR=false discovery rate, 
MNI=Montreal neurological Institute, AAL=automatic labeling atlas, R=right, L=left.
 

Default mode circuit 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 

D1 Anterior medial prefrontal cortex -2, 50, -6 498 Term="default mode"; "resting 
state", Number of studies=1341;  

D2 Angular gyrus L -46, -70, 32 468 Term="default mode"; "resting 
state", Number of studies=1341;  

D3 Angular gyrus R 50, -62, 26 462 Term="default mode"; "resting 
state", Number of studies=1341;  

D4 Posterior cingulate 0, -50, 28 503 Term="default mode"; "resting 
state", Number of studies=1341;  

Computed 
features Anatomical combinations Input metrics Condition Task contrast 

D2D1 Anterior medial prefrontal cortex with 
angular gyrus L Connectivity Task-free None 

D1D3 Anterior medial prefrontal cortex with 
angular gyrus R Connectivity Task-free None 

D1D4 Anterior medial prefrontal cortex with 
posterior cingulate Connectivity Task-free None 

D2D4 Angular gyrus L with posterior cingulate Connectivity Task-free None 
D3D4 Angular gyrus R with posterior cingulate Connectivity Task-free None 

Salience circuit 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 

S1 Anterior insula L -38, 14, -6 345 Terms="salience network"; 
"salience", Number of studies=329,  

S2 Anterior insula R 38, 18, 2 373 Terms="salience network"; 
"salience", Number of studies=329,  

S3 Amygdala L AAL 75 Terms="salience network"; 
"salience", Number of studies=329,  

S4 Amygdala R AAL 17 Terms="salience network"; 
"salience", Number of studies=329,  

Computed 
features Anatomical combinations Input metrics Condition Task contrast 

S1S3 Anterior insula L with amygdala L Connectivity Task-free None 
S2S4 Anterior insula R with amygdala R Connectivity Task-free None 
S1S2 Anterior insula R with anterior insula R Connectivity Task-free None 

Attention circuit 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 
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A1 Medial superior prefrontal cortex -2, 14, 52 346 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526 

A2 Lateral prefrontal cortex L -44, 6, 32 287 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526 

A3 Lateral prefrontal cortex R 50, 10, 28 255 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526 

A4 Anterior inferior parietal lobule L -30, -54, 40 249 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526 

A5 Anterior inferior parietal lobule R 38, -56, 48 312 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526,  

A6 Precuneus L -14, -66, 52 302 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526,  

A7 Precuneus R 18, -68, 52 380 
Terms="frontoparietal network"; 

"attention", Number of 
studies=1526,  

Computed 
features Anatomical combinations Input metrics Condition Task contrast 

A2A1 Lateral prefrontal cortex L with medial 
superior prefrontal cortex Connectivity Task-free None 

A3A1 Lateral prefrontal cortex R with medial 
superior prefrontal cortex Connectivity Task-free None 

A4A2 Anterior inferior parietal lobule L with 
lateral prefrontal cortex L Connectivity Task-free None 

A5A3 Anterior inferior parietal lobule R with 
lateral prefrontal cortex R Connectivity Task-free None 

A4A6 Anterior inferior parietal lobule L with 
precuneus L Connectivity Task-free None 

A5A7 Anterior inferior parietal lobule R with 
precuneus R Connectivity Task-free None 

Negative affect circuit (sad) 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 

N1 Pregenual anterior cingulate 6, 42, 4 136 Terms="threat", "sad", Number of 
studies=170,  

N2 Anterior insula L -36, 20, -4 481 Terms="threat", "sad", Number of 
studies=170,  

N3 Anterior insula R 38, 22, -4 463 Terms="threat", "sad", Number of 
studies=170,  

N4 Amygdala L AAL 217 Terms="threat", "sad", Number of 
studies=170,  

N5 Amygdala R AAL 225 Terms="threat", "sad", Number of 
studies=170,  

Computed 
features Anatomical combinations Input metrics Condition Task contrast 

NS1 Pregenual anterior cingulate Activation 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS2 Anterior insula L Activation 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 
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NS3 Anterior insula R Activation 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS4 Amygdala L Activation 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS5 Amygdala R Activation 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS2NS1 
(anterior insula L to pregenual anterior 

cingulate + pregenual anterior cingulate to 
anterior insula L)/2 

Connectivity 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS3NS1 
(anterior insula R to pregenual anterior 

cingulate + pregenual anterior cingulate to 
anterior insula R)/2 

Connectivity 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS4NS1 
(amygdala L to pregenual anterior 

cingulate + pregenual anterior cingulate to 
amygdala L)/2 

Connectivity 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

NS5NS1 
(amygdala R to pregenual anterior 

cingulate + pregenual anterior cingulate to 
amygdala R)/2 

Connectivity 
Conscious 

Facial Emotion 
Viewing 

Sad vs Neutral evoked by facial 
emotion stimuli 

Negative affect circuit (threat) 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 

NT1 Dorsal anterior cingulate 6, 22, 32 279 Terms="threat", "sad", Number of 
studies=170,  

NT2 Amygdala L AAL 217 Terms="threat", "sad", Number of 
studies=170,  

NT3 Amygdala R AAL 225 Terms="threat", "sad", Number of 
studies=170,  

Computed 
features Anatomical combinations Input metrics Condition Task contrast 

NT1 Dorsal anterior cingulate Activation 
Conscious 

Facial Emotion 
Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NT2 Amygdala L Activation 
Conscious 

Facial Emotion 
Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NT3 Amygdala R Activation 
Conscious 

Facial Emotion 
Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NT2NT1 (amygdala L to dorsal anterior cingulate + 
dorsal anterior cingulate to amygdala L)/2 Connectivity 

Conscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NT3NT1 (amygdala R to dorsal anterior cingulate + 
dorsal anterior cingulate to amygdala R)/2 Connectivity 

Conscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NTN1 Dorsal anterior cingulate Activation 
Nonconscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NTN2 Amygdala L Activation 
Nonconscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NTN3 Amygdala R Activation 
Nonconscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 
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NTN2NTN1 (amygdala L to dorsal anterior cingulate + 
dorsal anterior cingulate to amygdala L)/2 Connectivity 

Nonconscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

NTN3NTN1 (amygdala R to dorsal anterior cingulate + 
dorsal anterior cingulate to amygdala R)/2 Connectivity 

Nonconscious 
Facial Emotion 

Viewing 

Fear/Anger vs Neutral evoked by 
facial emotion stimuli 

Positive affect circuit 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 

P1 Ventral medial prefrontal cortex -2, 56, -8 408 
Terms="monetary reward"; 

"reward", Number of studies=755, 
Search date = 6.4.17 

P2 Ventral striatum L Harvard-Oxford 179 
Terms="monetary reward"; 

"reward", Number of studies=755, 
Search date = 6.4.17 

P3 Ventral striatum R Harvard-Oxford 174 
Terms="monetary reward"; 

"reward", Number of studies=755, 
Search date = 6.4.17 

Computed 
features Anatomical combinations Input metrics Condition Task contrast 

P1 Ventral medial prefrontal cortex Activation 
Conscious 

Facial Emotion 
Viewing 

Happy vs Neutral evoked by facial 
emotion stimuli 

P2 Ventral striatum L Activation 
Conscious 

Facial Emotion 
Viewing 

Happy vs Neutral evoked by facial 
emotion stimuli 

P3 Ventral striatum R Activation 
Conscious 

Facial Emotion 
Viewing 

Happy vs Neutral evoked by facial 
emotion stimuli 

Cognitive control circuit 

Region label Region anatomy Atlas/MNI 
coordinates Voxels Neurosynth search 

C1 Dorsal anterior cingulate 0, 18, 46 514 
Terms="cognitive control", 

Number of studies=428, Search 
date = 6.4.17 

C2 Dorsal lateral prefrontal cortex/inferior 
frontal gyrus L -44, 6, 32 501 

Terms="cognitive control", 
Number of studies=428, Search 

date = 6.4.17 

C3 Dorsal lateral prefrontal cortex/ inferior 
frontal gyrus R 44, 34, 22 412 

Terms="cognitive control", 
Number of studies=428, Search 

date = 6.4.17 
Computed 

features Anatomical combinations Input metrics Condition Task contrast 

C1 Dorsal anterior cingulate Activation Go-NoGo task No-Go vs Go 

C2 Dorsal lateral prefrontal cortex/inferior 
frontal gyrus L Activation Go-NoGo task No-Go vs Go 

C3 Dorsal lateral prefrontal cortex/ inferior 
frontal gyrus R Activation Go-NoGo task No-Go vs Go 

C1C2 

(dorsal anterior cingulate to dorsal lateral 
prefrontal cortex/inferior frontal gyrus L + 

dorsal lateral prefrontal cortex/inferior 
frontal gyrus L to dorsal anterior 

cingulate)/2 

Connectivity Go-NoGo task No-Go vs Go 

C3C2 

(dorsal anterior cingulate to dorsal lateral 
prefrontal cortex/inferior frontal gyrus R + 

dorsal lateral prefrontal cortex/inferior 
frontal gyrus R to dorsal anterior 

cingulate)/2 

Connectivity Go-NoGo task No-Go vs Go 
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Supplementary Table 19: Number of symptom and behavioral measures in the cross-sectional analyses.  
We show how many participants had data available for each measure in each of the studies. The instrument from which each measure 
was derived is indicated in parentheses. Equivalent behavioral measures were derived from WebNeuro (RAD, HCP-DES, ENGAGE) 
and IntegNeuro (iSPOT-D). Abbreviations: SHAPS=Snaith-Hamilton Pleasure Scale, MASQ=Mood and Anxiety Questionnaire, BIS= 
Barratt Impulsiveness Scale, DASS=Depression Anxiety and Stress Scale, RRS=Ruminative Response Scale, PSWQ= Penn State 
Worry Questionnaire-Abbreviated, QIDS=Quick Inventory of Depressive Symptomatology Self-Report Revised, WN=WebNeuro, 
IN=IntegNeuro. 
 

Features Clinical Sample 1 Clinical Sample 2 Clinical Sample 3 Clinical Sample 4 
Dataset   RAD HCP-DES iSPOT-D ENGAGE 
Symptoms  

  
 

Anhedonia (SHAPS) 0 208 0 0 
Anxious arousal (MASQ) 308 208 0 0 
Cognitive dyscontrol (BIS) 308 208 0 0 
Negative bias (DASS) 289 208 0 189 
Ruminative brooding (RRS) 0 208 0 0 
Ruminative worry (PSWQ) 309 0 0 0 
Sleep (QIDS) 289 208 0 197 
Tension (DASS) 289 208 0 187 
Threat dysregulation (DASS) 289 208 0 189 

Behavioral measures  
  

 
Explicit happy RT (WN/IN) 308 188 80 93 
Explicit sad RT (WN/IN) 308 188 80 93 
Explicit threat RT (WN/IN) 308 188 80 93 
Explicit happy RT (WN/IN) 308 188 80 93 
Explicit sad RT (WN/IN) 308 188 80 93 
Explicit threat RT (WN/IN) 308 188 80 93 
Go-NoGo commission errors (WN/IN) 302 188 80 93 
Go-NoGo mean RT (WN/IN) 301 188 79 93 
Implicit happy RT (WN/IN) 308 188 80 93 
Implicit sad RT (WN/IN) 308 188 80 93 
Implicit threat RT (WN/IN) 307 188 80 93 
Maze completion time (WN/IN) 306 188 79 93 
Maze errors (WN/IN) 306 188 79 93 
Working memory commission errors (WN/IN) 304 187 79 93 
Working memory omission errors (WN/IN) 304 187 80 93 
Working memory RT (WN/IN) 304 187 79 93 
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iSPOT-D FMRIPREP PROCESSING DETAILS 
 
Results included in this manuscript come from preprocessing performed using fMRIPrep  20.2.1 (Esteban, 
Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is based on Nipype 1.5.1 
(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 
A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The T1-weighted (T1w) 
image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), 
distributed with ANTs 2.3.3 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-reference throughout 
the workflow. The T1w-reference was then skull-stripped with a Nipype implementation of 
the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue 
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces 
were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and 
the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, 
Klein et al. 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 
MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using 
brain-extracted versions of both T1w reference and the T1w template. The following templates were selected 
for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th 
Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012), 
RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], 

Functional data preprocessing 
For each of the 10 BOLD runs found per subject (across all tasks and sessions), the following preprocessing 
was performed. First, a reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep . Susceptibility distortion correction (SDC) was omitted. The BOLD reference was 
then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 
registration (Greve and Fischl 2009). Co-registration was configured with six degrees of freedom. Head-motion 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et 
al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 
RRID:SCR_005927). The BOLD time-series were resampled onto the following surfaces (FreeSurfer 
reconstruction nomenclature): fsnative, fsaverage. The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by applying the transforms to correct for head-
motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or 
just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of fMRIPrep . Grayordinates files (Glasser et al. 
2013) containing 91k samples were also generated using the highest-resolution fsaverage as intermediate 
standardized surface space. Automatic removal of motion artifacts using independent component analysis (ICA-
AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI space time-series after removal 
of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-
width half-maximum). Corresponding “non-aggresively” denoised runs were produced after such smoothing. 
Additionally, the “aggressive” noise-regressors were collected and placed in the corresponding confounds file. 
Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS and three region-wise global signals. FD was computed using two formulations following Power 
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(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement 
between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by Power et al. 2014). The three global signals are 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 
components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. 
The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on 
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. 
This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 
components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are 
resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained components’ time series 
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep  use Nilearn 0.6.2 (Abraham et al. 2014, RRID:SCR_001362), mostly 
within the functional processing workflow. For more details of the pipeline, see the section corresponding to 
workflows in fMRIPrep ’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users 
should copy and paste this text into their manuscripts unchanged. It is released under the CC0 license. 
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RAD fMRIPREP PROCESSING DETAILS 
 
Results included in this manuscript come from preprocessing performed using fMRIPrep  20.2.3 (Esteban, 
Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is based on Nipype 1.6.1 
(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 
A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The T1-weighted (T1w) 
image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), 
distributed with ANTs 2.3.3 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-reference throughout 
the workflow. The T1w-reference was then skull-stripped with a Nipype implementation of 
the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue 
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces 
were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and 
the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, 
Klein et al. 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym, 
MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), 
using brain-extracted versions of both T1w reference and the T1w template. The following templates were 
selected for spatial normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 
Stereotaxic Registration Model [Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID: 
MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing 
For each of the 4 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was 
performed. First, a reference volume and its skull-stripped version were generated using a custom methodology 
of fMRIPrep . Susceptibility distortion correction (SDC) was omitted. The BOLD reference was then co-
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 
registration (Greve and Fischl 2009). Co-registration was configured with six degrees of freedom. Head-motion 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et 
al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 
RRID:SCR_005927). The BOLD time-series were resampled onto the following surfaces (FreeSurfer 
reconstruction nomenclature): fsnative, fsaverage. The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by applying the transforms to correct for head-
motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or 
just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-stripped version 
were generated using a custom methodology of fMRIPrep . Grayordinates files (Glasser et al. 2013) containing 
91k samples were also generated using the highest-resolution fsaverage as intermediate standardized surface 
space. Automatic removal of motion artifacts using independent component analysis (ICA-AROMA, Pruim et 
al. 2015) was performed on the preprocessed BOLD on MNI space time-series after removal of non-steady state 
volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). 
Corresponding “non-aggresively” denoised runs were produced after such smoothing. Additionally, the 
“aggressive” noise-regressors were collected and placed in the corresponding confounds file. Several 
confounding time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 
DVARS and three region-wise global signals. FD was computed using two formulations following Power 
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(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement 
between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by Power et al. 2014). The three global signals are 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 
components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. 
The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on 
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. 
This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 
components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are 
resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained components’ time series 
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep  use Nilearn 0.6.2 (Abraham et al. 2014, RRID:SCR_001362), mostly 
within the functional processing workflow. For more details of the pipeline, see the section corresponding to 
workflows in fMRIPrep ’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users 
should copy and paste this text into their manuscripts unchanged. It is released under the CC0 license. 
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ENGAGE fMRIPREP PROCESSING DETAILS 
 
Results included in this manuscript come from preprocessing performed using fMRIPrep  20.2.3 (Esteban, 
Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is based on Nipype 1.6.1 
(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 
A total of 4 T1-weighted (T1w) images were found within the input BIDS dataset. All of them were corrected 
for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 
2.3.3 (Avants et al. 2008, RRID:SCR_004757). The T1w-reference was then skull-stripped with 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) 
was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 
2001). A T1w-reference map was computed after registration of 4 T1w images (after INU-correction) 
using mri_robust_template (FreeSurfer 6.0.1, Reuter, Rosas, and Fischl 2010). Brain surfaces were 
reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and the 
brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-derived 
and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, Klein et 
al. 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin2009cAsym, 
MNI152NLin6Asym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using 
brain-extracted versions of both T1w reference and the T1w template. The following templates were selected 
for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], FSL’s MNI ICBM 152 non-linear 6th 
Generation Asymmetric Average Brain Stereotaxic Registration Model [Evans et al. (2012), 
RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], 

Functional data preprocessing 
For each of the 21 BOLD runs found per subject (across all tasks and sessions), the following preprocessing 
was performed. First, a reference volume and its skull-stripped version were generated using a custom 
methodology of fMRIPrep . Susceptibility distortion correction (SDC) was omitted. The BOLD reference was 
then co-registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 
registration (Greve and Fischl 2009). Co-registration was configured with six degrees of freedom. Head-motion 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et 
al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 
RRID:SCR_005927). The BOLD time-series were resampled onto the following surfaces (FreeSurfer 
reconstruction nomenclature): fsnative, fsaverage. The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by applying the transforms to correct for head-
motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or 
just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-stripped 
version were generated using a custom methodology of fMRIPrep . Grayordinates files (Glasser et al. 
2013) containing 91k samples were also generated using the highest-resolution fsaverage as intermediate 
standardized surface space. Automatic removal of motion artifacts using independent component analysis (ICA-
AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI space time-series after removal 
of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-
width half-maximum). Corresponding “non-aggresively” denoised runs were produced after such smoothing. 
Additionally, the “aggressive” noise-regressors were collected and placed in the corresponding confounds file. 
Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
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(FD), DVARS and three region-wise global signals. FD was computed using two formulations following Power 
(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement 
between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by Power et al. 2014). The three global signals are 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 
components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. 
The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on 
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. 
This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 
components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are 
resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained components’ time series 
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep  use Nilearn 0.6.2 (Abraham et al. 2014, RRID:SCR_001362), mostly 
within the functional processing workflow. For more details of the pipeline, see the section corresponding to 
workflows in fMRIPrep ’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users 
should copy and paste this text into their manuscripts unchanged. It is released under the CC0 license. 
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HCP-DES fMRIPREP PROCESSING DETAILS 
 
Results included in this manuscript come from preprocessing performed using fMRIPrep  20.2.3 (Esteban, 
Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is based on Nipype 1.6.1 
(Gorgolewski et al. (2011); Gorgolewski et al. (2018); RRID:SCR_002502). 

Anatomical data preprocessing 
A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The T1-weighted (T1w) 
image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al. 2010), 
distributed with ANTs 2.3.3 (Avants et al. 2008, RRID:SCR_004757), and used as T1w-reference throughout 
the workflow. The T1w-reference was then skull-stripped with a Nipype implementation of 
the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue 
segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the 
brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). Brain surfaces 
were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, Dale, Fischl, and Sereno 1999), and 
the brain mask estimated previously was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438, 
Klein et al. 2017). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym, 
MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 2.3.3), 
using brain-extracted versions of both T1w reference and the T1w template. The following templates were 
selected for spatial normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 
Stereotaxic Registration Model [Evans et al. (2012), RRID:SCR_002823; TemplateFlow ID: 
MNI152NLin6Asym], ICBM 152 Nonlinear Asymmetrical template version 2009c [Fonov et al. (2009), 
RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing 
For each of the 6 BOLD runs found per subject (across all tasks and sessions), the following preprocessing was 
performed. First, a reference volume and its skull-stripped version were generated using a custom methodology 
of fMRIPrep . Susceptibility distortion correction (SDC) was omitted. The BOLD reference was then co-
registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-based 
registration (Greve and Fischl 2009). Co-registration was configured with six degrees of freedom. Head-motion 
parameters with respect to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et 
al. 2002). BOLD runs were slice-time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, 
RRID:SCR_005927). The BOLD time-series were resampled onto the following surfaces (FreeSurfer 
reconstruction nomenclature): fsnative, fsaverage. The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by applying the transforms to correct for head-
motion. These resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or 
just preprocessed BOLD. The BOLD time-series were resampled into standard space, generating 
a preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its skull-stripped version 
were generated using a custom methodology of fMRIPrep . Grayordinates files (Glasser et al. 2013) containing 
91k samples were also generated using the highest-resolution fsaverage as intermediate standardized surface 
space. Automatic removal of motion artifacts using independent component analysis (ICA-AROMA, Pruim et 
al. 2015) was performed on the preprocessed BOLD on MNI space time-series after removal of non-steady state 
volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-width half-maximum). 
Corresponding “non-aggresively” denoised runs were produced after such smoothing. Additionally, the 
“aggressive” noise-regressors were collected and placed in the corresponding confounds file. Several 
confounding time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 
DVARS and three region-wise global signals. FD was computed using two formulations following Power 
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(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement 
between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by Power et al. 2014). The three global signals are 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 
components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. 
The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on 
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. 
This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 
components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are 
resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained components’ time series 
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf (FreeSurfer). First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep . A B0-nonuniformity map 
(or fieldmap) was estimated based on two (or more) echo-planar imaging (EPI) references with opposing phase-
encoding directions, with 3dQwarp Cox and Hyde (1997) (AFNI 20160207). Based on the estimated 
susceptibility distortion, a corrected EPI (echo-planar imaging) reference was calculated for a more accurate co-
registration with the anatomical reference. The BOLD reference was then co-registered to the T1w reference 
using bbregister (FreeSurfer) which implements boundary-based registration (Greve and Fischl 2009). Co-
registration was configured with six degrees of freedom. Head-motion parameters with respect to the BOLD 
reference (transformation matrices, and six corresponding rotation and translation parameters) are estimated 
before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al. 2002). BOLD runs were slice-time 
corrected using 3dTshift from AFNI 20160207 (Cox and Hyde 1997, RRID:SCR_005927). The BOLD time-
series were resampled onto the following surfaces (FreeSurfer reconstruction 
nomenclature): fsnative, fsaverage. The BOLD time-series (including slice-timing correction when applied) 
were resampled onto their original, native space by applying a single, composite transform to correct for head-
motion and susceptibility distortions. These resampled BOLD time-series will be referred to as preprocessed 
BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into standard 
space, generating a preprocessed BOLD run in MNI152NLin6Asym space. First, a reference volume and its 
skull-stripped version were generated using a custom methodology of fMRIPrep . Grayordinates files (Glasser 
et al. 2013) containing 91k samples were also generated using the highest-resolution fsaverage as intermediate 
standardized surface space. Automatic removal of motion artifacts using independent component analysis (ICA-
AROMA, Pruim et al. 2015) was performed on the preprocessed BOLD on MNI space time-series after removal 
of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM (full-
width half-maximum). Corresponding “non-aggresively” denoised runs were produced after such smoothing. 
Additionally, the “aggressive” noise-regressors were collected and placed in the corresponding confounds file. 
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Several confounding time-series were calculated based on the preprocessed BOLD: framewise displacement 
(FD), DVARS and three region-wise global signals. FD was computed using two formulations following Power 
(absolute sum of relative motions, Power et al. (2014)) and Jenkinson (relative root mean square displacement 
between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each functional run, both using 
their implementations in Nipype (following the definitions by Power et al. 2014). The three global signals are 
extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological regressors 
were extracted to allow for component-based noise correction (CompCor, Behzadi et al. 2007). Principal 
components are estimated after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine 
filter with 128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 
tCompCor components are then calculated from the top 2% variable voxels within the brain mask. For 
aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical space. 
The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels on 
BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of GM. 
This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures 
components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks are 
resampled into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained components’ time series 
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep  use Nilearn 0.6.2 (Abraham et al. 2014, RRID:SCR_001362), mostly 
within the functional processing workflow. For more details of the pipeline, see the section corresponding to 
workflows in fMRIPrep ’s documentation. 

Copyright Waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express intention that users 
should copy and paste this text into their manuscripts unchanged. It is released under the CC0 license. 
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