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Nuclei segmentation
a Manual segmentation used for training b Training and validation losses of the 

segmentation model

c Examples of segmentation
Breast tissue Hyperplasia IDC

d Automatic duct segmentation through thresholding
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Supplementary Figure 1. Image segmentation.

(a) Representative examples of manual segmentation of nuclei used for training the StarDist model.

(b) Training and validation losses of the StarDist model.

(c) Representative examples of nuclear segmentation using the trained StarDist Model.

(d) Representative examples of breast duct segmentation.



Quality of cells 
without imaging 

artifact
Segmentation errors of cells 

without imaging artifact

If segmentation 
errors is related 

to disease stages

If imaging 
artifact is related 
to disease stage

Summary of imaging 
artifacts

P0. Breast 
tissue

Excellent (equivalent to 
a very accurate 

manual segmentation.)

Very rare non-segmented 
nuclei and segmented non-
nuclear artifacts. Very fusate 

nuclei are less efficiently 
segmented.

No NA None

P1. Cancer 
adjacent breast 

tissue

Excellent (almost 
perfect when the 

stroma does not have 
background signal)


Very fusate nuclei are not 
recognized (fibroblasts) No NA None

P2. IDC (Breast 
tissue) Excellent

Very few nuclei with cleaved 
morphology are not properly 
segmented (spindle-shaped 

nuclei of stromal cells).

No (will not impact 
epithelial cells 

either normal or 
malignant)

NA None

P3. Hyperplasia Excellent None NA NA None

P4. Atypical 
hyperplasia Excellent

Spindle-shaped nuclei of 
stromal cells less properly 

segmented as in P2.
NA NA None

P5. DCIS and 
breast tissue Excellent None NA No

In some regions, high 
DAPI background signal 

impairs proper 
segmentation.

P6. DCIS Excellent None NA No
In some regions, high 

DAPI background signal 
impairs proper 
segmentation.

P7. DCIS with 
early infiltration

Excellent (Crowding of 
the cells and the 

brightness of DAPI in 
one patch would not 

have permitted manual 
segmentation.)

None NA NA None

P8. 
Micropapillary 
DCIS with early 

infiltration

Excellent
Few cancer nuclei in one 

patch are not properly 
segmented

No NA None

P9. IDC and 
breast tissue Excellent None NA NA None

P10. IDC Excellent Few minor errors No NA None

Pathologist’s summary of our automatic segmentation:

Excellent, equivalent to a very accurate manual segmentation.
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Supplementary Figure 2. Summary of the assessment of our nuclear segmentation by a pathologist.



Pathologist’s assessment of our segmentaBon of normal breast Bssue (P0)
The quality of the segmentation is excellent, it is equivalent to a very accurate manual segmentation. The only minor issue is the 
presence of very rare non-segmented nuclei (blue arrow) and segmented non-nuclear artifacts (yellow arrow). It seems that some 
very fusate (flat) nuclei are less efficiently segmented.
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Supplementary Figure 3. Examples of a pathologist’s assessment of our nuclear segmentation of

normal breast tissue samples.



Pathologist’s assessment of our segmentaBon of hyperplasia

Excellent segmentation.

Pathologist’s assessment of our segmentaBon of atypical hyperplasia

These regions are excellently segmented. The same caveat applies for splindle-shaped nuclei of stromal cells: Some nuclei with 
cleaved morphology are not properly segmented, but they are very few.
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Supplementary Figure 4. Examples of a pathologist’s assessment of our nuclear segmentation of

hyperplasia and atypical hyperplasia samples.



Pathologist’s assessment of our segmentaBon of DCIS

Excellent segmentation.

Pathologist’s assessment of our segmentaBon of DCIS with early infiltraBon
Excellent segmentation. This is a clear example where the crowding of the cells and the brightness of the DAPI would have not 
permitted manual segmentation in the focus highlighted on the right.
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Supplementary Figure 5. Examples of a pathologist’s assessment of our nuclear segmentation of DCIS

samples.



Pathologist’s assessment of our segmentaBon of IDC

Excellent segmentation.
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Supplementary Figure 6. Examples of a pathologist’s assessment of our nuclear segmentation of IDC

samples.
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Supplementary Figure 7. Comparison of our duct annotation to a pathologist’s annotation in DCIS with

early infiltration. Our annotation of ducts is outlined in pink and the pathologist’s annotation is outlined

in white. Heatmaps show the number of cells that are inside or outside of the ducts in our annotation

compared to the number of cells in the pathologist’s annotation. IoU is the intersection over union that

computes the fraction of cells that are assigned with the same annotation by the two annotation sources

compared to the total number of cells.
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Supplementary Figure 8. Comparison of our duct annotation to a pathologist’s annotation in DCIS. Our

annotation of ducts is outlined in pink and the pathologist’s annotation is outlined in white. Heatmaps

show the number of cells that are inside or outside of the ducts in our annotation compared to the

number of cells in the pathologist’s annotation. IoU is the intersection over union that computes the

fraction of cells that are assigned with the same annotation by the two annotation sources compared to

the total number of cells.
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Supplementary Figure 9. Comparison of our duct annotation to a pathologist’s annotation in

Hyperplesia and normal breast tissue. Our annotation of ducts is outlined in pink and the pathologist’s

annotation is outlined in white. Heatmaps show the number of cells that are inside or outside of the

ducts in our annotation compared to the number of cells in the pathologist’s annotation. IoU is the

intersection over union that computes the fraction of cells that are assigned with the same annotation

by the two annotation sources compared to the total number of cells.



Training and validation losses
a Convolutional VAE b Convolutional VAE inputs and reconstructions
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Supplementary Figure 10. Convolutional VAE training.

(a) Training and validation losses of the convolutional VAE model over the training epochs (Methods).

(b) Randomly selected examples of the held-out nuclear images and the corresponding reconstruction by

the convolutional VAE model.
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DCIS with early infiltrationBreast tissue
b Examples of nuclei in the subclusters of top-level cell states
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Supplementary Figure 11. Subclusters of the eight top-level clusters.

(a) Inertia curve as a function of the number of subclusters is shown for each top-level cluster, where

inertia is defined as the sum of squared distances of the cells in a particular cluster to the center of that

cluster. The other plots from left to right are the proportion of the phenotypic categories in each

subcluster, the average protein expression in each subcluster, a UMAP of the subclusters, and the

location of the cells in that cluster (blue dots) relative to all cells not in that cluster (orange dots). The

UMAP coordinates of each cell are the same as in Figure 2a.

(b) Randomly selected examples of nuclei in each of the eight clusters in two representative phenotypic

categories.



Supplementary Figure 12

a Samples used in training the convoluBonal VAE and k-means clustering
‘br1003a_1_cytokeratin_555_aSMA_647_hoechst’ all samples,  ‘br1003a_3_collagen1_647_hoechst’ all samples,  
‘br1003a_4_cytokeratin_555_gh2ax_647_hoechst’ selected samples: A1-11; C1-11; I1-11 
‘br301_4_cytokeratin_555_aSMA_647_hoechst’ all samples, ‘br301_6_collagen1_647_hoechst’ selected samples: A1-7, 
B1-7, C1-7, D1-7, E1-7, ’br8018a_1_cytokeratin_555_aSMA_647_hoechst’ all samples, ‘br8018a_3_collagen1_647_hoechst’ 
all samples, ‘br8018a_4_cytokeratin_555_gh2ax_647_hoechst’: selected samples: A1-11, B1-11, F1-11; H1-9

b UMAP and clustering of the held-out 
samples
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Supplementary Figure 12. Results on held-out samples.

(a) Samples used in training the convolutional VAE and k-means clustering.

(b) UMAP of the held-out samples, colored by k-means clustering results, using the same k-means

estimator computed with the training samples.

(c) The fraction of cells in each of the eight top-level clusters in each phenotypic category. Columns are

normalized to sum to 1.

(d) The expression of each protein marker in each of the eight clusters. Columns are normalized to sum

to 1.

(e) Randomly selected examples of nuclei in each of the eight clusters in four representative phenotypic

categories.



Supplementary Figure 13



Supplementary Figure 13. 256 randomly selected nuclei and their surrounding tissue patches. The

queried nucleus is indicated by a red box at the center of each patch.



a Numbers of nuclei assigned with each grade in our 
clusters 

b Number of nuclei assigned with each grade in 
the three disease stages 

NA 2 1 NA 1 1 NA 1 3 3 3 1 2 NA NA 1
1 1 2 2 1 3 NA 1 NO NO NO 1 1 1 NO 1
2 1 2 2 1 NA 2 1 2 1 3 NA NA NA 3 NO
1 NO 2 1 NO 1 2 3 1 1 2 2 1 NA NA 2
2 2 1 3 2 NA 2 2 3 1 NO 3 3 2 1 1
1 3 3 2 2 NA NO 2 2 2 3 3 1 NO NO 1
1 1 1 NA 2 3 3 2 2 1 1 NA NA NA 1 2
3 1 1 2 3 1 NA NA 2 2 2 NA 1 1 NO 2
NA 1 NA 1 1 NO 3 1 2 NA NO 1 2 NO 2 1
2 1 2 3 3 1 2 1 NO NA 3 NA 2 1 2 2
1 2 1 1 NO NO 2 1 1 1 2 NA 1 2 2 2
2 3 3 1 NA 2 2 3 2 NA NA 3 NA NA NA 2
2 3 1 2 NA 2 NO NA 3 1 2 NO 2 NA NO 2
1 2 3 2 3 NA NA NA 2 2 1 2 3 2 NA 3
2 2 1 NA 2 NA 2 NA 2 1 1 3 3 2 NA NA
1 NO 2 2 1 2 3 NA 1 2 NA 2 1 3 1 NA

c Nuclear grades assigned by pathologist
1 7 3 2 3 1 4 0 0 3 6 0 5 6 0 2
1 1 3 7 7 1 2 3 1 4 1 7 2 2 3 3
4 1 4 2 2 2 3 1 3 6 5 0 0 1 4 0
6 0 1 3 2 2 7 6 1 4 4 7 6 6 0 0
5 2 5 6 0 0 3 4 4 3 1 7 0 1 1 5
4 2 0 0 2 1 4 4 7 0 6 7 1 0 5 5
3 1 2 2 0 3 3 1 6 7 5 5 4 2 3 3
3 0 5 0 3 5 7 4 1 6 7 0 2 3 4 0
4 3 6 5 3 6 3 7 5 5 3 0 2 4 0 5
7 6 6 1 2 4 3 3 2 3 5 4 7 5 2 4
2 0 6 4 2 5 2 6 2 7 3 2 2 1 6 2
3 3 6 5 1 7 5 4 2 5 6 5 5 3 3 7
2 4 0 6 6 0 1 2 1 1 0 3 1 5 5 6
1 3 4 1 1 5 0 2 1 4 0 4 7 2 4 5
7 3 3 0 2 1 6 7 3 2 2 0 1 6 3 1
2 3 6 4 7 2 5 0 2 6 0 4 0 2 7 0

d Cluster ID assigned by our model

e Disease stages obtained from Biomax
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Supplementary Figure 14. Severity of pathologist-assigned nuclear grade is positively correlated with

cell state malignancy inferred by our model.

(a) The number of nuclei assigned by a pathologist with each of the three grades in the eight top-level

clusters identified by our model.

(b) The number of nuclei assigned with each of the three pathologist-assigned grades in the three

disease stages.

(c) Pathologist-assigned nuclear grades of the nuclei bounded by the red boxes. Nuclei are graded from 1

to 3, where 3 is the most malignant. “NO” means there is no nucleus at the center of the image. “NA”

means a grade cannot be assigned because there are multiple nuclei at the center or the nucleus is out

of focus.

(d) Cluster ID of the nucleus at the center bounded by the red box.

(e) Disease stage (as assigned by Biomax) of the tissue section containing the queried nucleus.



Pathology classifier training and validation losses (with VAE latent as the inputs)
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Supplementary Figure 15. Training curves and confusion matrices of the pathology classifiers that

predict the phenotypic category of a cell from its VAE latent space embedding within each subcluster.

(a) Training and validation losses.

(b)-(e) Confusion matrices.



Confusion matrices of classifying cell cluster assignment using NMCO scores
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Supplementary Figure 16. Confusion matrices for cell cluster assignment using the NMCO features.

The subcluster assignment of a cell can be predicted with high accuracy from the NMCO scores of the

NMCO features of a cell.
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Supplementary Figure 17. Grouping of NMCO features at different correlation thresholds. NMCO

features that are significantly different in at least one of the eight top-level clusters are grouped by

correlation: Each of the 201 NMCO features was tested for whether its mean in any of the eight clusters

was different to the mean in cells outside of that cluster (Methods); highly correlated features were

grouped together with different thresholds of minimum correlation (Methods).

(a)-(d) Representative examples of NMCO features in each group when different correlation thresholds

are used.

(e) The heatmap shows the mean of the significant NMCO features (columns) in each of the eight

top-level clusters (rows) ordered by correlation groups. The grouping is shown for a correlation threshold

of 0.7.

(f) The heatmap shows the mean of the significant NMCO features (columns) in each of the eight

top-level clusters (rows) ordered by correlation groups. The grouping is shown for a correlation threshold

of 0.85.



Classifiers trained to distinguish cells inside vs outside of breast ducts from VAE latent
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Classifiers trained to distinguish cells inside vs outside of breast ducts from VAE latent (with manual duct segmentation)
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Classifiers trained to distinguish cells inside vs outside of breast ducts from NMCO features
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Supplementary Figure 18 d 

Proportions of cells inside or outside of breast ducts by subclusters
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Supplementary Figure 18. Training curves and confusion matrices of the classifiers trained to

distinguish cells inside versus outside of breast ducts based on the VAE latent space embedding or the

NMCO features.

(a) The latent representation of a cell computed by the VAE is used as the input to the classifiers.

(b) The same setup as in (a) but the manual segmentation of breast ducts is used instead of the

segmentation by thresholding the cytokeratin expression levels.

(c) The NMCO features of a cell are used as the input to the classifiers.

(d) The histograms indicate the proportion of cells inside versus outside of the breast ducts for each

phenotypic category within each subcluster.
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Supplementary Figure 19. The position of cells relative to breast ducts in each individual sample.

The average distance of a cell to breast ducts is computed for each subcluster and visualized on the PAGA

graph. Each plot contains all cells in one sample. Each node represents a subcluster, and its size is

proportional to the number of cells in the subcluster.
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Supplementary Figure 20. The predictiveness of the co-localization of cell states in a tissue microarray

with respect to phenotypic categories is robust to the choice of the neighborhood size.

(a) Randomly selected examples of neighborhood images with the same size as used in Figure 6.

(b) Confusion matrices as in Figure 6c after retraining the classifiers with different neighborhood sizes

using leave-one-patient-out cross validation. The numbers indicate the numbers of samples in each

entry. The sizes tested are half, 1.3 times, and 2.3 times the original neighborhood size with a diameter

of 51.8 µm. The lower panel contains the classification results trained with the atypical hyperplasia

samples, i.e., the samples that might be difficult to distinguish from low-grade DCIS samples.1,2
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Supplementary Figure 21. Cell state co-localization is more predictive of disease phenotypic categories

than cell state proportions.

(a) The confusion matrices of three disease-stage classifiers with different inputs were plotted for the

leave-one-patient-out cross validation task. The confusion matrices show the fraction of predicted labels

for cells sampled from a given phenotypic category. The numbers indicate the numbers of samples in

each entry. Top left: Proportions of cells in the eight top-level clusters and in the subclusters are used as

input for training the disease-stage classifier described in Figure 6c, in addition to the cell state

co-localization matrix. Top right: Results of the classifier without cell cluster proportions are plotted,

which is the same plot as in Figure 6c. Bottom: Results of the classifier without cell state co-localization

and with only the proportions of cells in the clusters and subclusters as input are plotted.

(b) Same comparison as in (a) for classifiers trained with the atypical hyperplasia samples, i.e., the

samples that might be difficult to distinguish from low-grade DCIS samples.1,2
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Cell state co-localization of misclassified cores vs correctly classified cores - without atypical hyperplasia
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Supplementary Figure 22. Co-localization patterns of the misclassified samples compared to the

correctly classified samples.

The classification is performed using leave-one-patient-out cross validation. The log2 fold changes are

plotted. Classification errors were categorized as true phenotypic category of the sample -> predicted

phenotypic category of the sample, e.g. Breast tissue -> IDC records the breast tissue samples that were

misclassified as IDC. The proportion of cells in each of the eight clusters in the misclassified samples

compared to the correctly classified samples are also plotted in terms of the log2 fold change (denoted

by %cluster).
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Supplementary Figure 23. Co-localization patterns of the misclassified samples compared to the

correctly classified samples, with Atypical Hyperplasia samples included in the analysis.

The log2 fold changes are plotted. Classification errors were categorized as true phenotypic category of

the sample -> predicted phenotypic category of the sample, e.g. Breast tissue -> IDC records the breast

tissue samples that were misclassified as IDC. The proportion of cells in each of the eight clusters in the

misclassified samples compared to the correctly classified samples are also plotted in terms of the log2

fold change (denoted by %cluster).
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Supplementary Figure 24. Training losses and confusion matrices of disease phenotype prediction

using neural network and logistic regression.

(a) Examples of training losses in the leave-one-sample-out cross validation tasks are shown for the

neural network classifier using co-localization and the total number of cells as input to predict disease

phenotypes.

(b) Confusion matrix of the leave-one-out cross validation task in (a).

(c) Confusion matrix of the same prediction task using a logistic regression model.
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Supplementary Figure 25. Confusion matrix of disease phenotype classification using only cells in the 
ductal region. This shows the results of leave-one-patient-out cross validation and the numbers indicate 
the numbers of samples in each entry.  
 
 
 
  



Supplementary Data 1. Summary of imaging samples. Each row in the table lists one core used in the 
experiment; “sample_id” is a unique ID assigned to each core; “slide_id” is the TMA ID, i.e. samples with 
the same “slide_id” and the same protein stains are on the same TMA; “patient_id” is the patient ID of 
the core, and cores from the same patient share the same patient ID; “pathology_diagnosis” is the 
phenotypic category assigned by Biomax. The last four columns indicate the protein stain combinations 
applied to each core, where the different protein stain combinations of a core are applied to separate 
samples at different z positions of the core. 
 
 
Supplementary Data 2. Summary of nuclear morphology and chromatin organization (NMCO) features 
and the assigned groups by correlation. All NMCO features used in our analysis are listed with a 
description of what each feature measures. The “Group” column lists which feature group each NMCO 
feature is assigned to based on correlation (Methods). “Ungrouped” means that the feature is not 
strongly correlated with any other features, i.e., correlation is equal to or less than 0.8. 
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