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Supplementary Figure 1. Image segmentation.

(a) Representative examples of manual segmentation of nuclei used for training the StarDist model.
(b) Training and validation losses of the StarDist model.

(c) Representative examples of nuclear segmentation using the trained StarDist Model.

(d) Representative examples of breast duct segmentation.
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Supplementary Figure 2. Summary of the assessment of our nuclear segmentation by a pathologist.



Pathologist’s assessment of our segmentation of normal breast tissue (P0)

The quality of the segmentation is excellent, it is equivalent to a very accurate manual segmentation. The only minor issue is the
presence of very rare non-segmented nuclei (blue arrow) and segmented non-nuclear artifacts (yellow arrow). It seems that some

very fusate (flat) nuclei are less efficiently segmented.
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Supplementary Figure 3. Examples of a pathologist’s assessment of our nuclear segmentation of
normal breast tissue samples.



Pathologist’s assessment of our segmentation of hyperplasia

Excellent segmentation.

Pathologist’s assessment of our segmentation of atypical hyperplasia

These regions are excellently segmented. The same caveat applies for splindle-shaped nuclei of stromal cells: Some nuclei with
cleaved morphology are not properly segmented, but they are very few.

Supplementary Figure 4



Supplementary Figure 4. Examples of a pathologist’s assessment of our nuclear segmentation of
hyperplasia and atypical hyperplasia samples.



Pathologist’s assessment of our segmentation of DCIS

Excellent segmentation.

Pathologist’s assessment of our segmentation of DCIS with early infiltration

Excellent segmentation. This is a clear example where the crowding of the cells and the brightness of the DAPI would have not
permitted manual segmentation in the focus highlighted on the right.
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Supplementary Figure 5. Examples of a pathologist’s assessment of our nuclear segmentation of DCIS
samples.



Pathologist’s assessment of our segmentation of IDC

Excellent segmentation.
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Supplementary Figure 6. Examples of a pathologist’s assessment of our nuclear segmentation of IDC
samples.
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Supplementary Figure 7. Comparison of our duct annotation to a pathologist’s annotation in DCIS with
early infiltration. Our annotation of ducts is outlined in pink and the pathologist’s annotation is outlined
in white. Heatmaps show the number of cells that are inside or outside of the ducts in our annotation
compared to the number of cells in the pathologist’s annotation. loU is the intersection over union that
computes the fraction of cells that are assigned with the same annotation by the two annotation sources
compared to the total number of cells.
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Supplementary Figure 8. Comparison of our duct annotation to a pathologist’s annotation in DCIS. Our
annotation of ducts is outlined in pink and the pathologist’s annotation is outlined in white. Heatmaps
show the number of cells that are inside or outside of the ducts in our annotation compared to the
number of cells in the pathologist’s annotation. loU is the intersection over union that computes the
fraction of cells that are assigned with the same annotation by the two annotation sources compared to
the total number of cells.
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Supplementary Figure 9. Comparison of our duct annotation to a pathologist’s annotation in
Hyperplesia and normal breast tissue. Our annotation of ducts is outlined in pink and the pathologist’s
annotation is outlined in white. Heatmaps show the number of cells that are inside or outside of the
ducts in our annotation compared to the number of cells in the pathologist’s annotation. loU is the
intersection over union that computes the fraction of cells that are assigned with the same annotation
by the two annotation sources compared to the total number of cells.
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Supplementary Figure 10. Convolutional VAE training.
(a) Training and validation losses of the convolutional VAE model over the training epochs (Methods).

(b) Randomly selected examples of the held-out nuclear images and the corresponding reconstruction by
the convolutional VAE model.
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b Examples of nuclei in the subclusters of top-level cell states
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Supplementary Figure 11. Subclusters of the eight top-level clusters.

(a) Inertia curve as a function of the number of subclusters is shown for each top-level cluster, where
inertia is defined as the sum of squared distances of the cells in a particular cluster to the center of that
cluster. The other plots from left to right are the proportion of the phenotypic categories in each
subcluster, the average protein expression in each subcluster, a UMAP of the subclusters, and the
location of the cells in that cluster (blue dots) relative to all cells not in that cluster (orange dots). The
UMAP coordinates of each cell are the same as in Figure 2a.

(b) Randomly selected examples of nuclei in each of the eight clusters in two representative phenotypic
categories.



a Samples used in training the convolutional VAE and k-means clustering

‘br1003a_1_cytokeratin_555_aSMA_647 hoechst’ all samples, ‘br1003a_3 collagen1l_647 hoechst’ all samples,
‘br1003a_4 cytokeratin_555 gh2ax_ 647 hoechst’ selected samples: A1-11; C1-11; 11-11

‘br301_4 cytokeratin_555_aSMA_647 hoechst’ all samples, ‘br301_6_collagen1l 647 hoechst’ selected samples: Al-7,
B1-7, C1-7, D1-7, E1-7, 'br8018a_1 cytokeratin_555 aSMA_647 hoechst’ all samples, ‘br8018a_3 collagenl 647 hoechst’
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Supplementary Figure 12. Results on held-out samples.

(a) Samples used in training the convolutional VAE and k-means clustering.

(b) UMAP of the held-out samples, colored by k-means clustering results, using the same k-means
estimator computed with the training samples.

(c) The fraction of cells in each of the eight top-level clusters in each phenotypic category. Columns are
normalized to sum to 1.

(d) The expression of each protein marker in each of the eight clusters. Columns are normalized to sum
to 1.

(e) Randomly selected examples of nuclei in each of the eight clusters in four representative phenotypic
categories.
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Supplementary Figure 13. 256 randomly selected nuclei and their surrounding tissue patches. The
queried nucleus is indicated by a red box at the center of each patch.
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Supplementary Figure 14. Severity of pathologist-assigned nuclear grade is positively correlated with
cell state malignancy inferred by our model.

(a) The number of nuclei assigned by a pathologist with each of the three grades in the eight top-level
clusters identified by our model.

(b) The number of nuclei assigned with each of the three pathologist-assigned grades in the three
disease stages.

(c) Pathologist-assigned nuclear grades of the nuclei bounded by the red boxes. Nuclei are graded from 1
to 3, where 3 is the most malignant. “NO” means there is no nucleus at the center of the image. “NA”
means a grade cannot be assigned because there are multiple nuclei at the center or the nucleus is out
of focus.

(d) Cluster ID of the nucleus at the center bounded by the red box.

(e) Disease stage (as assigned by Biomax) of the tissue section containing the queried nucleus.



Pathology classifier training and validation losses (with VAE latent as the inputs)
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Pathology classifier confusion matrices (with VAE latent as the input)
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Pathology classifier confusion matrices (with VAE latent as the input)
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Pathology classifier confusion matrices (with VAE latent as the input)
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Pathology classifier confusion matrices (with VAE latent as the input)
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Supplementary Figure 15. Training curves and confusion matrices of the pathology classifiers that

predict the phenotypic category of a cell from its VAE latent space embedding within each subcluster.
(a) Training and validation losses.
(b)-(e) Confusion matrices.



Confusion matrices of classifying cell cluster assignment using NMCO scores
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Supplementary Figure 16. Confusion matrices for cell cluster assignment using the NMCO features.
The subcluster assignment of a cell can be predicted with high accuracy from the NMCO scores of the
NMCO features of a cell.
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Supplementary Figure 17. Grouping of NMCO features at different correlation thresholds. NMCO
features that are significantly different in at least one of the eight top-level clusters are grouped by
correlation: Each of the 201 NMCO features was tested for whether its mean in any of the eight clusters
was different to the mean in cells outside of that cluster (Methods); highly correlated features were
grouped together with different thresholds of minimum correlation (Methods).

(a)-(d) Representative examples of NMCO features in each group when different correlation thresholds
are used.

(e) The heatmap shows the mean of the significant NMCO features (columns) in each of the eight
top-level clusters (rows) ordered by correlation groups. The grouping is shown for a correlation threshold
of 0.7.

(f) The heatmap shows the mean of the significant NMCO features (columns) in each of the eight
top-level clusters (rows) ordered by correlation groups. The grouping is shown for a correlation threshold
of 0.85.
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Classifiers trained to distinguish cells inside vs outside of breast ducts from VAE latent (with manual duct segmentation)
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Classifiers trained to distinguish cells inside vs outside of breast ducts from NMCO features
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Proportions of cells inside or outside of breast ducts by subclusters

Subclusters of cluster 0 (healthy)

Subclusters of cluster 4
Breast tissue

=1
=S

O
=1
=S

IDC and breast tissue

) Breast tissue _DCIS and breast tissue
| s— -
[ — [ -
T e .
N s— [
Out In Out In
DCIS IDC and breast tissue |
:- EE ——— :_
== .
== - .
a4 . .
Il - s
Out In Out In Out
Subclusters of cluster 2
~ Breast tissue 'DCIS and breast tissue
| s— I
= == ey .
;_ e e | .
T e— N
O e
Out In Out In
DCIS IDC and breast tissue ID
|| I —
[—— | s
- I | — —1
— [ ee— |
| — I e - BN
Out In Out In Out

DCIS and breast tissue

[>]
o

o
o
[

o
<
s
5
o
s
5

Subclusters of cluster 6

o
s

Dbcis and breast tissue

| N — N —
| I I —
| o | s—
— i-—
| — .
Out In Out In
DCIS IDC and breast tissue IDC
‘. sees seess B
s s s
_—7__7_
[ I —
out In out In out

D

(@]

C

DCIS with early infiltration

o
s

Micropapillary type DCIS
with early infiltration

o
<
3

DCIS with early infiltration

o
=

u n

£ 2
2 =
> 3
[0}
kel
28
-]
El
22
$z
& T
o ™
S o
o)
wv

o
S

DCIS with early infiltration

o
s

Micropapillary type DCIS
with early infiltration

o
=
=
5

DCIS with early infiltration

o
s

Micropapillary type DCIS
with early infiltration

o
5

ut

Subclusters of cluster 1
Breast tissue DCIS and breast tissue

Subclusters of cluster 3
Breast tissue DCIS and breast tissue

] [

DCIS IDC and breast tissue IDC
B s -
. e .

Bl e

Subclusters of cluster 5

N
P—
L

Breast tissue

Out In

DCIS

Out

DCIS and breast tissue

Subclusters of cluster 7

Breast tissue

:__
| N —
| — —
. I —
|
Out In
DCIS
il
.
| [
-
Out In

Supplementary Figure 18 d

DCIS with early infiltration

s e N I —
= | = i— E _—
- -
Out In Out In Out In
Micropapillary type DCIS
DCIS _ IDC and breast tissue IDC with early infiltration
- I e e
- :_ N .
- I S e s N
== N e —
Out In Out In Out In Out In

DCIS with early infiltration
[
I .
e
B ==

out In

Micropapillary type DCIS
with early infiltration

Out

DCIS with early infiltration

- | | — -

| [e— [ N |

| - s BN

I s — -

Out In Out In
IDC and breast tissue IDC Micropapillary type DCIS
with early infiltration
e s e
e B oes B e
N ees B oes DS S
S e e e
Out In Out In Out In

DCIS and breast tissue DCIS with early infiltration

| — —

 — ==

I s —

N e—— | e

=== = _

Out In Out In
IDC and breast tissue IDC Micropapillary type DCIS
with early infiltration
e [ e T
e [ s
m B S e
I B BN e e
I S S e
Out In Out In Out In



Supplementary Figure 18. Training curves and confusion matrices of the classifiers trained to
distinguish cells inside versus outside of breast ducts based on the VAE latent space embedding or the
NMCO features.

(a) The latent representation of a cell computed by the VAE is used as the input to the classifiers.

(b) The same setup as in (a) but the manual segmentation of breast ducts is used instead of the
segmentation by thresholding the cytokeratin expression levels.

(c) The NMCO features of a cell are used as the input to the classifiers.

(d) The histograms indicate the proportion of cells inside versus outside of the breast ducts for each
phenotypic category within each subcluster.
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Supplementary Figure 19. The position of cells relative to breast ducts in each individual sample.

The average distance of a cell to breast ducts is computed for each subcluster and visualized on the PAGA
graph. Each plot contains all cells in one sample. Each node represents a subcluster, and its size is
proportional to the number of cells in the subcluster.



a Examples of neighborhood images

b Cross validation results of pathology classification using different neighborhood sizes to calculate co-localization
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Supplementary Figure 20. The predictiveness of the co-localization of cell states in a tissue microarray
with respect to phenotypic categories is robust to the choice of the neighborhood size.

(a) Randomly selected examples of neighborhood images with the same size as used in Figure 6.

(b) Confusion matrices as in Figure 6c after retraining the classifiers with different neighborhood sizes
using leave-one-patient-out cross validation. The numbers indicate the numbers of samples in each
entry. The sizes tested are half, 1.3 times, and 2.3 times the original neighborhood size with a diameter
of 51.8 um. The lower panel contains the classification results trained with the atypical hyperplasia
samples, i.e., the samples that might be difficult to distinguish from low-grade DCIS samples.*?
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Supplementary Figure 21. Cell state co-localization is more predictive of disease phenotypic categories
than cell state proportions.

(a) The confusion matrices of three disease-stage classifiers with different inputs were plotted for the
leave-one-patient-out cross validation task. The confusion matrices show the fraction of predicted labels
for cells sampled from a given phenotypic category. The numbers indicate the numbers of samples in
each entry. Top left: Proportions of cells in the eight top-level clusters and in the subclusters are used as
input for training the disease-stage classifier described in Figure 6¢, in addition to the cell state
co-localization matrix. Top right: Results of the classifier without cell cluster proportions are plotted,
which is the same plot as in Figure 6¢. Bottom: Results of the classifier without cell state co-localization
and with only the proportions of cells in the clusters and subclusters as input are plotted.

(b) Same comparison as in (a) for classifiers trained with the atypical hyperplasia samples, i.e., the
samples that might be difficult to distinguish from low-grade DCIS samples.’?



Cell state co-localization of misclassified cores vs correctly classified cores - without atypical hyperplasia
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Supplementary Figure 22. Co-localization patterns of the misclassified samples compared to the
correctly classified samples.

The classification is performed using leave-one-patient-out cross validation. The log2 fold changes are
plotted. Classification errors were categorized as true phenotypic category of the sample -> predicted
phenotypic category of the sample, e.g. Breast tissue -> IDC records the breast tissue samples that were
misclassified as IDC. The proportion of cells in each of the eight clusters in the misclassified samples
compared to the correctly classified samples are also plotted in terms of the log2 fold change (denoted
by %cluster).



Cell state co-localization of misclassified cores vs correctly classified cores - with atypical hyperplasia added
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Cell state co-localization of misclassified cores vs correctly classified cores - - with atypical hyperplasia added
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Cell state co-localization of misclassified cores vs correctly classified cores - with atypical hyperplasia added
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Supplementary Figure 23. Co-localization patterns of the misclassified samples compared to the
correctly classified samples, with Atypical Hyperplasia samples included in the analysis.

The log2 fold changes are plotted. Classification errors were categorized as true phenotypic category of
the sample -> predicted phenotypic category of the sample, e.g. Breast tissue -> IDC records the breast
tissue samples that were misclassified as IDC. The proportion of cells in each of the eight clusters in the
misclassified samples compared to the correctly classified samples are also plotted in terms of the log2
fold change (denoted by %cluster).



a Neural network training losses of three classifiers
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Supplementary Figure 24. Training losses and confusion matrices of disease phenotype prediction
using neural network and logistic regression.

(a) Examples of training losses in the leave-one-sample-out cross validation tasks are shown for the
neural network classifier using co-localization and the total number of cells as input to predict disease
phenotypes.

(b) Confusion matrix of the leave-one-out cross validation task in (a).
(c) Confusion matrix of the same prediction task using a logistic regression model.
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Supplementary Figure 25. Confusion matrix of disease phenotype classification using only cells in the
ductal region. This shows the results of leave-one-patient-out cross validation and the numbers indicate
the numbers of samples in each entry.



Supplementary Data 1. Summary of imaging samples. Each row in the table lists one core used in the
experiment; “sample_id” is a unique ID assigned to each core; “slide_id” is the TMA ID, i.e. samples with
the same “slide_id” and the same protein stains are on the same TMA; “patient_id” is the patient ID of
the core, and cores from the same patient share the same patient ID; “pathology_diagnosis” is the
phenotypic category assigned by Biomax. The last four columns indicate the protein stain combinations
applied to each core, where the different protein stain combinations of a core are applied to separate
samples at different z positions of the core.

Supplementary Data 2. Summary of nuclear morphology and chromatin organization (NMCO) features
and the assigned groups by correlation. All NMCO features used in our analysis are listed with a
description of what each feature measures. The “Group” column lists which feature group each NMCO
feature is assigned to based on correlation (Methods). “Ungrouped” means that the feature is not
strongly correlated with any other features, i.e., correlation is equal to or less than 0.8.
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