
1 SUPPLEMENTARY INFORMATION

1.1 Wrinkled Topography

We can find the conditions to have a well defined topography that is not modified by the presence
of the patch. First, we reproduce the classical calculation to obtain the wrinkle wavelength of a
bilayer and introduce the main parameters that we have used throughout the article. Assuming
that the membrane is thin and has the highest stiffness of all the layers, we estimate its elastic
energy when it is wrinkled with a wavelength λ as UMemb

B = (Bm/2)
∫
S κ

2dS ∼ (Bm/2)(A/λ2)2S
where S = bL and Bm = Emh

3/12(1 − ν2m). The substrate is thick and deforms by two ways:
the compression of the whole substrate USubs0 = (Es/2)

∫
V ε

2dV and the deformation of a layer
of depth λ near the membrane that stores a strain εs ∼ ∂yux ∼ A/λ. It gives an energy for the
substrate USubsS ∼ USubs0 + (Es/2)ε2sλS. Thus, the energy for the bilayer is
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Because A ≈ λ
√
ε, energy minimization predicts a wavelength λ ≈ (Bm/Es)

1/3. It corresponds
to the classical result that can be obtained with more precise theoretical methods [6, 7]. It
is noteworthy that an important assumption of the presented derivation is a large mismatch
between the stiffness of the membrane and substrate, or Em � Es.

When a thin patch, λ � t, is added to the bilayer, we need to add the energy of bending
the patch. Assuming that the system has an unknown wavelength λ, we estimate the bending
energy of the patch as UPatchB = (Bp/2)

∫
S κ

2dS ∼ (Bp/2)(A/λ2)2S where Bp = Ept
3/12(1−ν2p).

Note that we are using the curvature of the membrane to describe the curvature of the middle
surface of the patch. This is correct if tκ, hκ� 1 to neglect extra stretching energy because of
rotation of the patch. The total energy of the three layer system (bilayer and patch) is

Ut = UPatchB + Ub ∼
(Bm +Bp)
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where we observe that for Bm � Bp the bending energy of the patch can be neglected and then
the wavelength is given by the interaction between the membrane and substrate. It includes
the important case where the stiffness of the patch is larger than the stiffness of the membrane,
Em � Ep, but h� t so that Bm � Bp.

In the thick patch limit, λ� t, the patch deforms in a similar way to the substrate: there is
a compression of the whole patch and, because of the wrinkling, a layer of depth λ has an extra
compressive strain εp ∼ εs ∼ A/λ. It gives UPatchS ∼ UPatch0 + (Ep/2)ε2pλS. The total energy of
the three layer is

Ut = UPatchS + Ub ∼
Bm
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Here we observe that the patch acts as a second substrate. We can neglect its effect in the
determination of λ if Es � Ep.

We conclude that the conditions given in Table 1 are sufficient to have a topography that is
not the result of an elastic interaction between the patch and the membrane.

Table 1: Conditions to have a well defined topography for the bilayer

λ� t Em � Es; Bm � Bp
λ� t Em � Es � Ep

Finally, we observe that a sufficient condition to cover the thin and thick limits is Em � Es &
Ep. In the thick limit case, Eq. (3) implies that the wavelength can be estimated in general as
λ ≈ [Bm/(Es+Ep)]

1/3. It shows that for Es & Ep the patch could modify the original wavelength
at most to the value λ ≈ 2−1/3(Bm/Es)

1/3 ≈ 0.8(Bm/Es)
1/3. In the thin limit, λ � t, or

equivalently, Bm � Est
3, the condition Em � Es & Ep implies Bm � Est

3 & Ept
3 ≈ Bp which

is the condition required in Table 1.

1.2 Silicone Patch Physical Experiment

An experimental set-up with controlled surface wrinkling was designed (see figure S1), to test
topography induced surface de-adhesion in a model physical system mimicing the geometry of
our simulations. The system is composed of two bilayers: a support bilayer and a wrinkling
bilayer adhered under strain-mismatched conditions. The two bilayers are constructed using the
same two polymers: S245 (Silicones, Inc., High Point, NC) as the softer component and RTV-
4136M/Xiameter (Dow Corning, Midland, MI) as the stiffer component. Bulk samples of each
fully cured silicone were tested using standard dog-bone tensile testing to obtain their respective
Young’s moduli: Es = 30 kPa (S245) and Em = 3 MPa (Xiameter). The support bilayer was
constructed first by spreading a 1mm thick layer of RTV-4136M/Xiameter on an acrylic plate
(McMaster-Carr, Elmhurst, IL) using 10:1 polymer:curing agent ratio from a solution of octane
or hexane (percentage 10 weight percent) using a wire-wound rod with 0.0025 inch wire diameter
and an automatic spreader (Paul N. Gardner Company, Pompano Beach, FL). After complete
curing, a 250µm S245 layer (10:2 ratio) was spread onto the 1mm Xiameter membrane; before
allowing the second silicone to cure the support bilayer was placed into a custom built uni-
axial stretch apparatus and stretched to a desired strain ε between 0 < ε . 0.3 (see figure S1).
At this point, we placed onto the stretched support bilayer a wrinkling bilayer with the S245
substrate facing downwards (synthesis described below). The assembly now consisted of the
support bilayer at 30 percent tensile strain, uncured S245 layer, and the wrinkling bilayer that
was strain free by virtue of simply being laid down onto the stretched surface. The uncured S245
mid-layer was allowed to cure over 24 hours; after completion, the support and wrinkling bilayers
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Fig. S 1: Picture of pre-stretch apparatus and bilayer assembly for experimental wrinkle induced
patch de-adhesion experiments. The pictures shows the support bilayer, wrinkling bilayer, and
patch. The initial assembly is such that the support and wrinkling bilayers are bonded in a
strain mismatched configuration. As the strain is released in the support bilayer, wrinkles are
generated on the top surface of the wrinkling bilayer. We follow the adhesion of the patch up to
the point of de-adhesion. See supplementary videos 1 and 2 for representative data sets in thin
and thick patch regimes.
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were bonded in a strain mismatched configuration. By releasing the stretch (at approximate
strain rates of 0.15 min−1) on the support bilayer and given its larger thickness and stiffness,
the wrinkling bilayer is compressed along its entire length generating wrinkles with wavelength
λ ∼ h× (Em/Es)

1/3 and amplitude A ∼ λ
√
ε.

To obtain a wavelength in the λ ∼ 1500µm range, a membrane thickness h on the order of
a few microns was needed. The thin stiff membrane in the wrinkling bilayer was made by using
10:1 polymer:curing agent ratio of Xiameter in solution of octane or hexane (percentage ranged
from 20 to 50 weight percent) and spreading a wet film using a wire-wound rod with 0.0025 inch
wire diameter on-top of Acrylic plates. After the micron thin film fully cured, a 750µm layer of
S245 (10:1 polymer:curing agent ratio) was spread on-top and cured, generating the wrinkling
bilayer that was used in the assembly described above and in generating the data for figure 5.

Having a controllable wrinkling surface with a precise measure of strain at each point, we
turned to making S245 patches of varying thickness to function as the adlayers. Patches with
thicknesses between 250 and 2750µm were spread and cured. 1 × 3 cm rectangles were cut
and placed onto the flat wrinkling bilayer surface (see figure S1). Once the tensile strain in the
support bilayer was released and wrinkles developed in the wrinkling bilayer, the patch followed
up to a critical point (εc) at which de-adhesion occurred (see figure 5, S1, and supplementary
videos S1 and S2).

1.3 FEA Simulation Methods

Finite element simulations were performed using the commercial software package Abaqus v6.14
(Simulia, Dassault-Systemes, Providence, RI). To fully capture the highly non-linear aspects of
the problem including the geometric non-linearity of surface buckling/wrinkling coupled with
interfacial failure which introduces very complex contact problems, the simulations were carried
out using the dynamic explicit solver in the mm-kg-ms system of units. The simulations were
done using three-dimensional elements (C3D8R, 8-node linear brick, reduced integration, with
hourglass control), however in order to optimize CPU time boundary conditions were used to
create an effective plane-strain simulation, where the long wrinkle axis (proportional to the
longitudinal axis in a wrinkling artery) was made much shorter than wrinkle wavelength.

The assembly consisted of three parts: substrate, membrane, and patch. Length (x−axis)
and width (y−axis) were kept equal in all three parts. The thickness (z−axis) was adjusted
proportionally. We first validated our wrinkling surface by assembling a bilayer composite with
the thin membrane kinematically coupled to the substrate surface. By using the kinematic
coupling constraint between the membrane bottom and substrate top surfaces in the xy−plane,
we assure these surfaces behave as a perfectly bonded interface. The thickness of the substrate
was chosen such that H ≥ 2λ for a given wavelength; this condition assured us that we would
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be in the so called ‘deep substrate limit’ and that the well known wrinkle power law [4,5]

λ = 2π

[
(3− 4νs)(1− ν2s )

(1− νs)2

]1/3(
Bm
Es

)1/3

(4)

should hold (as will be shown below) under plain strain conditions. Membrane thickness h,
therefore, became our control parameter for setting λ. The material properties of the membrane
and substrate were modeled as either linearly elastic or Neo-Hookean. For the linearly elastic
case the Young’s moduli were Em = 1.23 GPa and Es = 0.01575 GPa, which gave a modulus
mismatch ratio of Em/Es = 80, and a Poisson ratio of 0.5. In the case of a Neo-Hookean
material, the elastic strain energy is defined as

UNH = C10(λ
2
1 − 1) +D−1

1 (λ1 − 2)2 (5)

where λ1 is the first principal stretch ratio, C10 = G/2 (where G is the shear modulus), and
D1 = 2/K (where K is the material bulk modulus). By using the virtual-work method, we
obtain the non-linear stress-strain relation used in the simulation:

σNH =
∂UNH
∂λ1

= 2C10λ1 + 2D−1
1 (λ1 − 2) (6)

In dynamic explicit simulations, hyperelastic materials are more expensive from a CPU us-
age vantage than linearly elastic materials. In both cases, the computational efficiency of the
simulation is dependent on the stable time increment that defines the minimum time between

simulation steps: ∆t = Le ·
(
E
ρ

)−1/2
, where Le is the smallest mesh length, E is the largest mod-

ulus in the system, and ρ is the smallest density in the system. The simulation efficiency can be
improved by using less stiff materials or coarser mesh. To optimize efficiency, the Neo-Hookean
stiffnesses were chosen somewhat softer than in the linearly elastic case: for the membrane,
Cm10 = 0.00308 GPa and Dm

1 =16.238 GPa−1, and for the substrate, Cs10 = 2.843 × 10−5 GPa
and Ds

1 =1301.07 GPa−1. The ratio in moduli remained the same, Em/Es = Cm10/C
s
10 = 80.

The above values of D1 were selected to be equivalent to a Poisson ratio of 0.475 by using the
standard relation ν = (3K/µ−2)/(6K/µ+2). By substituting ν = 0.475 and K/µ = 1/(C10D1),
the condition to select an appropriate D1 becomes 1/(C10D1) = 20. The choice of 0.475 was
again made to optimize computational performance, since complete incompressibility within a
dynamic explicit formulation leads to divergence in the stable time increment. The above ma-
terial parameters for both the linear elastic and Neo-Hookean models are used to generate the
wrinkling bilayer used in the simulations for patch deadhesion presented in figures 2 and 3. To
generate wrinkles, the bilayer is compressed along its length (x−axis). Since the simulation is
dynamic, the compression is defined as a velocity field applied to the the yz−planes at each end
of the membrane and substrate. The initial displacement velocity was set to zero and smoothly
increased over 0.5 ms to the target vx = 0.01 mm/ms allowing for system equilibration. The
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overall simulation time varied between 4 − 10 ms. The choice of velocity and slow ramp was
done to minimize kinetic energy in the system. Our goal is to use the broad versatility of the
dynamic explicit solver to study a purely static elastic problem, mainly surface wrinkling and
subsequently interfacial failure. To achieve this, the above boundary conditions and material
properties were optimized to achieve a quasi-static solution early on in each simulation. Quasi-
static solutions are those where the system kinetic energy is less than five percent of the total
internal energy, which in the case of non-dissipative materials means that elastic strain energy
comprises ninety-five percent of the total energy. During each simulation, kinetic, strain, and
internal energies were continuously monitored to assure that the criterion for a quasi-static so-
lution was always met. All other boundary conditions were applied such that overall the system
could be considered meeting plane-strain conditions. To validate that the physics of surface
wrinkling was correctly captured, a range of simulations was performed using different values of
mismatch Em/Es and thickness h. Figure S2 shows the obtained wavelengths plotted against
Em/Es and the corresponding scaling law given by the above defined power law for λ. Here we
use νm = νs = 0 to simplify the simulations and avoid differences between plain stress and plane
strain conditions, so that λ = 2π(h/22/3) (Em/Es)

1/3. The good correspondence between the
simulations and theory validates that our simulations capture surface wrinkling as expected for
real elastic systems.

Having at our disposal a rigorously validated surface wrinkling model, whereby wrinkles
appear naturally and evolve following the established scaling laws for elastic bilayers, we can
turn to the problem of interest which is the stability of an attached adlayer/patch on a wrinkling
surface. Element type and boundary conditions were equivalent to the above bilayers, the
main differences include patch material property and the contact formulation between the patch
bottom surface and membrane top surface. Mechanical properties of biologic materials are
complex. In general, however, most biologic tissues are well modeled using hyperelasticity. To
represent the behavior of a platelet patch, we use literature derived stress-strain data for a newly
formed thrombus (S3) and model it using the generalized Ogden hyperelastic function. The data
provided in reference (S3) have been successfully used in prior computational studies for arterial
thrombus deformation (S4) and provide a well validated set for a biologically relevant foulant. Of
note, the difference in global behavior of the Ogden and the simpler Neo-Hookean model, which
can be reduced from the general Ogden form, is small; however, when performing experimental
data fitting, the more generalized models give better approximations. A fourth-order Ogden
functional is used:

UOgden =

4∑
i=1

2µi
α2
i

(λαi
1 + λαi

2 + λαi
3 − 3) +

4∑
i=1

1

Di
(λ1λ2λ3 − 1)2i (7)

where the best fit to the literature derived stress-strain data gives the coefficients in Table 2.
The energy functional is stable for a wide range of uniaxial and biaxial strains in the range

−0.63 to 0.75. Approximations can be made for the initial elastic coefficients using Go =
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Fig. S 2: Plots 2πh/λ versus Em/Es for a range of mismatch values of our bilayer composite

(circles). The solid black line is given by the scaling law λ = 2π(h/22/3) (Em/Es)
1/3 valid for

νs = νm = 0. The excellent fit validates that our bilayer simulation captures the expected
wrinkling physics correctly.

Table 2: Ogden coefficients

i µi αi Di

1 1.7147×10−6 1.9997 270703.3690

2 5.4766×10−7 4.0000 0

3 -6.9116×10−7 -2.0000 0

4 1.1942×10−8 -4.0000 0
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∑4
i=1 µi ≈ 1.583 × 10−6 GPa or 1500 Pa, which is in the appropriate range of magnitude for a

very soft biologic material. Likewise, Ko = 2/D1 = 7.388 × 10−6 GPa, which using the above
relation gives an effective Poisson ratio of 0.4.

Interfacial failure requires careful model considerations as it introduces a great deal of non-
linearity into the numerical solutions; most importantly, after failure, new surfaces are cre-
ated leading to discontinuities across boundaries that were once continuously differentiable.
Working within the general contact formulation of the dynamic explicit solver, we modeled
the patch/membrane interface using a cohesive zone model (CZM) (S5, S6, S7). We defined
a mode-independent traction-separation law: σcoh = kcδcoh, where the interfacial stress σcoh is
linearly related to the separation distance between patch bottom and membrane top surfaces
δcoh, with the cohesive stiffness set by kc = 0.2 kN/mm3 (S5). Stress develops within the in-
terface following the traction-separation law as the surfaces deform with the global deformation
up to a point, where interfacial failure occurs and a crack propagates. The failure stress is
defined by inputing the maximum interfacial separation parameter δcoh = δmax. In our model,
once the failure criterion is met the interfaces are free to separate and we do not model any
post-failure interfacial softening. This allows a simple connection to interfacial thermodynamics
via the scaling relation γ ∼ σcohδcoh = kcδ

2
coh (S5). In our model, we keep kc constant and vary

δmax = δcoh at which interfacial failure occurs to study various adhesion strengths. Even though
the relationship between adhesion strength and fracture energy is complex, the method of cohe-
sive volumetric finite element modeling using traction separation laws has been well validated
in multiple technical studies (S5, S6).

The critical point at which de-adhesion occurs is defined by tracking the contact area between
patch bottom and membrane top surfaces (Acontact). By definition, Acontact is constant until
interfacial failure between the membrane and patch initiates and decays to zero (Acontact → 0)
when the entire interface has failed. We define the critical point and therefore Ac(κc) as the
point when Acontact has decreased by 5% from its initial constant value (see figure S3). This
quantitative definition correlates very closely to a more qualitative measure obtained by visually
inspecting the simulation output graphics and defining Ac at the point where A` becomes first
noticeable. Of note, as shown in figure S3, there is a region of stable delamination that does not
correspond to any global shape change (see supplementary videos 3, 4, and 5) prior to Ac. This
stable delamination is predicted in the main text and figure 4.

1.4 Elastic Energy Color Map

In figure 2 of the text we do not provide the color map explicitly. Figure S4 provides this in
terms of kN-mm, given that the simulations are performed in mm-kg-ms consistent units.
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Fig. S 3: A. Total area of attached interface between top membrane surface and bottom patch
surface for representative thin and thick patch simulations (see supplementary videos 3, 4, and
5). The time at Ac correlates well to appearance of macroscopic delamination in the simulation
videos, this corresponds to the defined theoretical critical point in the main text. Once Ac is
reached the interfacial crack becomes unstable and propagates spontaneously. B. Zoom view of
A. It is noteworthy, that even prior to Ac, there is a slow and small decrease in attached area.
This stable microscopic delamination does not lead to any appreciable global shape changes (see
supplementary videos 3, 4, and 5), and likely corresponds to crack regions whose length is the
order of a single finite element.

Fig. S 4: Thin and thick regime simulations as shown in figure 2 (main text), with the elastic
strain energy scales shown in kN-mm.
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1.5 Thin and Thick Limit Crossover Analysis

To check the scaling relation BpAc/λ
2 = c× γ1/2 for the thin limit, we first study the numerical

data corresponding to t/λ < 0.2, a very cautious definition for the data in the thin limit case.
It gives the best fit for a dimensionless prefactor c ≈ 0.134. In a second stage, we fix c to the
value obtained from the previous analysis and use the relation

BdAc/λ
2 = c× γ1/2 (8)

where Bd = Epd
3/12(1− ν2p) and d is the penetration length defined as

d =

{
t t < λ/p
λ/p t > λ/p

Using all the data collected for N different numerical experiments, we obtain the difference
E =

∑N
i=1[ln(BdAc/λ

2)i − ln(c × γ1/2)i]2 as a function of the free parameter p. The function
E = E(p) has a minimum for p ≈ 2.4 that minimizes the error in the log-log fit of figure 3.

1.6 Supplementary Videos

Five supplementary videos are provided to help show the mechanism in real time. Representative
videos are chosen for both the thin (supplementary videos 1 and 3) and thick (supplementary
videos 2, 4, and 5) patch regimes. Videos 1 and 2 are of the experiments and videos 3, 4, and 5
are from the simulations. In the thin patch regime, the patches follow the topography coming
from the wrinkling surface up to a critical point where they delaminate into less curved blisters
several times the length of the wavelength (` > λ). In case of the thick patch regime, the patch
is deformed locally nearly the wrinkling interface but does not globally bend, once delamination
occurs the patch remains globally flat. The videos show the strong visual similarity in the
initial and final shapes of the patch pre and post-interfacial failure between the experimental
and numerical systems in both thin and thick regimes.

1.7 Data Availability Statement

The data that support the plots within this paper and other findings of this study are available
from the corresponding author upon request.

References

S1. Yang, S., K. Khare, and P.-C. Lin, Harnessing surface wrinkle patterns in soft matter.
Advanced Functional Materials, 2010. 20: p. 2550.

10



S2. Ye, S.H., et al., Hollow Fiber Membrane Modification with Functional Zwitterionic Macro-
molecules for Improved Thromboresistance in Artificial Lungs. Langmuir, 2015. 31: p.
2463-2471.

S3. Xie, H., Kim, K., Aglyamov, S.R., Emelianov, S.Y., O’Donnell, M., Weitzel, W.F., Wrob-
leski, S.K., Myeres, D.D., Wakefield, T.W., and J.M. Rubin. Correspondence of Ultrasound
Elasticity Imaging to Direct Mechanical MEasurement in Aging DVT in Rats. Ultrasound
in Medicine and Bioogy., 2005. 31: p. 1351-1359.

S4. Vahidi, B., and N. Fatouraee. Large deforming buoyant embolus passing through a stenotic
common carotid artery: a computational simulation.. Journal of Biomechanics, 2012. 45: p.
1312-1322.

S5. Dantuluri, V., Maiti, S., Geubelle, P.H., Patel, R., and Hakan Kilic. Cohesive modeling of
delmainatino in Z-pin reinforced composite laminates. Composites Science and Technology,
2007. 67: p. 616-631.

S6. Turon A., Camanho, P, and Costa J. Delamination in Composites: Simulation of Delami-
nation in Composites under Static and Fatigue Loading Using Cohesive Zone Models VDM
Verlag Dr. Muller, Berlin, Germany, (2008).

S7. Barbero, E.J. Finite Element Analysis of Composite Materials with ABAQUS Ch 10 -
Delaminations, CRC Press, Boca Raton, FL, (2013), pp. 356-371.

S8. Greensmith, E. and B.R. Duling. Morphology of the Constricted Arterioloar Wall - Physi-
ological Implications. American Journal of Physiology, 1984: 247: H687-H698.

11


