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Supplementary Algorithm 1 | CARBonAra geometric transformer. Based on the 
PeSTo architecture, each geometric transformer is composed of 5 neural networks of 
3 layers with an exponential linear unit (ELU) activation function. The characteristic 
dimensions are the number of atoms (N), the state size (S), the number of nearest 
neighbors (nn), the dimension of the embedding for the keys (Nk) and the number of 
attention heads (Nh). The neural networks haven a flat architecture with hidden layers 
width equal to the input and output state size (S). The multi-layers perceptrons (MLP) 
are the node query model (fnqm), encoding scalar key model (feqkm), encoding vector 
key model (fepkm), encoding value model (fevm), and scalar state projection model (fqpm). 
The vectorial hidden state is projected over the attention heads with a weighted sum 
(Wppm) to preserve the rotation equivariance of the operation. The output vector state 
belongs to the span of the geometry and vector states. 

 

  

Algorithm 1: Geometric transformer
Input: Center node features: q 2 RN⇥S , p 2 RN⇥S⇥3

Context neighbors features: qnn 2 RN⇥n⇥S , pnn 2 RN⇥n⇥S⇥3

Geometry features: dnn 2 RN⇥n, rnn 2 RN⇥n⇥3

Output: New state of center node: q0, ~p0

// pack node and edges features
Xn  concat(q, k~pk) 2 RN⇥2S . Node features
Xe  concat(dnn, q, k~pk , qnn, k~pnnk , ~p · ~rnn, ~pnn · ~rnn) 2 RN⇥n⇥6S+1 . Edges features

// encode queries from node state
Qq, Qp  fnqm(Xn) 2 RN⇥Nh⇥Nk ⇥ RN⇥Nh⇥Nk . Encoded queries

// encode keys from edges state
Kq  feqkm(Xe) 2 RN⇥n⇥Nk . Scalar keys
Kp  fepkm(Xe) 2 RN⇥3n⇥Nk . Vector keys

// encode values from edges state
Vq, Vp  fevm(Xe) 2 RN⇥n⇥S ⇥ RN⇥n⇥S . Edges encoded values
~Xg  concat(Vp � ~rnn, ~p, ~pnn) 2 RN⇥3n⇥S⇥3 . Geometric features

// scaled dot-product attention and projection

qh  fqpm(softmax(
QqKT

qp
Nk

)Vq) 2 RN⇥S . Scalar hidden state

~ph  Wppm softmax(
QpKT

pp
Nk

) ~Xg 2 RN⇥S⇥3 . Vectorial hidden state

// update state with residual
q0  q + qh
~p0  ~p+ ~ph
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Supplementary Figure 1 | CARBonAra geometric transformer. The inputs of the 
geometric transformer are scalar state (q) and vector state (p) for the central atom and 
the neighbors scalar states (qnn), vector states (pnn), distances (dnn) and relative 
displacement vectors (rnn). First, we extract the scalar information of the central node 
features (Xn) and edges features (Xe) from the inputs. The central node features 
produce the queries (Qq, Qp) through an MLP (fnqm). The edge node features produce 
the keys (Kq, Kp) and values (Vq, Vp) through multiple MLP (feqkm, fepkm, fevm). We project 
the vector track values (Vp) on relative displacement vectors (rnn) and concatenate the 
vector states to create the geometric features (Xg). We compute the multi-heads key, 
query and value attention for the scalar and vector track. We reduce the outputs of the 
attention operation with an MLP for the scalar quantities (fqpm) and a weighted sum (fppm) 
for the vector track to preserve the rotation equivariance of the operation. Lastly, we 
add the input states as residual connections. 

  

+

+
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Supplementary Figure 2 | Prediction confidence analysis. (a) Recovery rate as a 
function of the average maximum prediction score (943 structures from the testing 
dataset). (b) Relationship between prediction confidence and the prediction accuracy 
for each amino acid type (4096 subunits from the training dataset). (c) Rescaling 
prediction score into a prediction confidence correlated with the probability to be 
correct (943 structures from the testing dataset). This mapping (computed from the 
training set) converts the prediction confidence into a probability that can be used for 
sampling. 

 

  

Supplementary Figure 3 | Run time analysis on GPU. Model run time as a function 
of the sequence length tested on a Nvidia RTX 2080 Ti and Intel i9-9900K. ESM-IF1 
runs out of memory on the GPU with larger system so we compared the three 
methods on 142 structures with sequence length under 500 amino acids. 
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Supplementary Figure 4 | Comparison of predicted sequences between 
methods. Sequence identity between sequences predicted by two different methods 
for 142 monomers. The median sequence identity is indicated for the three 
comparisons. The sequences predicted by the three methods are as similar to each 
other as to the original scaffold sequence. 

 

 

 

Supplementary Figure 5 | Analysis of buried against surface amino acids. (a) 
Number of predicted options per position and (b) number of residues as a function of 
the average Cβ distance of the 8 nearest neighbours (18866 structures from the testing 
dataset). 
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Supplementary Figure 6 | Effect of backbone conformations on predictions. 
Sequence recovery as a function of the average Cβ distance of the 8 nearest 
neighbours. Prediction recovery rate against the average number of options for the 
reference experimental structure (initial conformation) and the consensus sequence 
predictions (average prediction), derived from 500 frames sampled from 1 μs 
molecular dynamics simulations for 80 monomers. 

 

 

 

Supplementary Figure 7 | Benchmark of different use cases. Sequence recovery 
distribution for systems of monomers, multimers and any biomolecules (18866 
structures from the testing dataset). The median sequence recovery is indicated for 
each case. 
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sequence 
recovery 

sequence 
similarity 

interface 
sequence 
recovery 

interface 
sequence 
similarity 

CARBonAra without context 47.5% 71.2% 28.6% 52.4% 

CARBonAra with context 49.2% 72.0% 52.4% 71.4% 
ProteinMPNN 39.8% 61.0% 23.8% 61.9% 

ESM-IF1 50.8% 66.9% 42.9% 71.4% 

 
Supplementary Table 1 | Method comparison with and without DNA bound on 
Colicin E7. Sequence recovery and similarity for the whole structure and at the 
interface (residues within 4 Å) with and without DNA of Colicin E7. 

 

 

 

 

Supplementary Figure 8 | Effect of changing the ion type on the prediction for 
the case of endonuclease domain of ColE7. The prediction confidence for the three 
most important amino acids for ion binding in the case where the zinc ion of Colicin 
E7 is replaced with a calcium ion. 
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Supplementary Figure 9 | Effect of the docked nitrocefin and catalytic water in 
TEM-1 on the prediction ranking. Rank of the prediction from maximum to minimum 
confidence for the 5 important amino acids at the pocket without and with the docked 
nitrocefin and catalytic water. 

 

 

Supplementary Figure 10 | TEM-like designs maintain second structural motifs 
as TEM-1. Far-UV circular dichroism spectra of the 4 soluble designs produced from 
TEM-1. 
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Supplementary Figure 11 | TEM-like designs are monomeric. Size Exclusion 
Chromatography Multi Angle Light Scattering (SEC-MALS) data show that all the 
TEM-like designs are monodispersed monomers with molar masses of ~31 kDa, as 
expected. The 280 nm absorbance trace also shows that they elute at the same elution 
volume in the Superose 6 column, indicative of similar 3-dimensional structure as the 
WT TEM-1. BSA (66 kDa) was used as internal calibration of the MALS set up.  
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Supplementary Figure 12 | TEM-like design shows typical NMR spectrum of a 
folded protein. 1H,15N HSQC spectrum of TEM design D4 obtained at 45 °C on a 250 
µM solution of protein prepared in MES pH 6.5 with 200 mM NaCl, at 800 MHz 1H 
frequency. 

 

 
D1 D2 D3 D4 TEM-1 SHV-1 LAP-1 LAP-2 KPC-2 CTX-M-1 

D1 1 0.875 0.878 0.886 0.551 0.49 0.464 0.46 0.352 0.322 

D2 0.875 1 0.905 0.875 0.548 0.487 0.479 0.475 0.36 0.318 
D3 0.878 0.905 1 0.867 0.551 0.494 0.475 0.471 0.356 0.341 

D4 0.886 0.875 0.867 1 0.536 0.49 0.464 0.46 0.349 0.318 
TEM-1 0.551 0.548 0.551 0.536 1 0.655 0.616 0.613 0.402 0.362 
SHV-1 0.49 0.487 0.494 0.49 0.655 1 0.606 0.606 0.416 0.374 
LAP-1 0.464 0.479 0.475 0.464 0.616 0.606 1 0.996 0.375 0.352 
LAP-2 0.46 0.475 0.471 0.46 0.613 0.606 0.996 1 0.371 0.349 
KPC-2 0.352 0.36 0.356 0.349 0.402 0.416 0.375 0.371 1 0.474 
CTX-M-1 0.322 0.318 0.341 0.318 0.362 0.374 0.352 0.349 0.474 1 

 

Supplementary Table 2 | Sequence identity comparison for TEM-like designs 
and other class A β-lactamases. 
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Supplementary Figure 13 | Phylogenetic analysis of TEM-1 like designs within 
the class A β-lactamases family. Phylogenetic tree of class A β-lactamases 
available in the Beta-Lactamase Database(reference) and the designed enzymes. The 
designs cluster into a family (yellow triangle) that is distinct from other β-lactamases 
of the same class. Interestingly, the TEM family (blue triangle) displays shorter 
phylogenetic distances to many other individual enzymes and families than to the 
designs, showing that our method is capable of effectively exploring a new sub-family 
of proteins. 
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Supplementary Figure 14 | Analysis of natural against CARBonAra-generated 
TEM-like sequences. Direct Coupling Analysis (DCA) computed on multiple 
sequence alignment of natural β-lactamase variants (left, alignment obtained by 
HHblits as implemented in the Gremlin website using the TEM-1 sequence as seed) 
and on sequences obtained by recursive imprinting with CARBonAra (right), whereby 
TEM-1 residues are imprinted consecutively one at a time, sampling amino acids with 
the confidences from CARBonAra’s predictions. In each upper triangle, gray dots 
indicate residue-residue contacts observed in the X-ray structure of TEM-1 β-
lactamase (PDB 1BT5), while in the lower triangle green/red dots denote coevolution 
pairs that match/don’t match contacts in the structures. 
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Supplementary Dataset 1 | Sequences of TEM-like designs in FASTA format. 

 

>D1 

HPEVLKEVKAAEERLGAPVGFIWLDLDTGEVLAAYNPNQYFPMNSTWKVFLVGAVL
HMIDQGKLKLDERVMYSEKDLVPFSPVTSQHLENGMTVAELMWAAVCHVDNTAAN
LLLKLIGGPASLTAFLKDIGDTITRMTHEEPEHNAAVPGSLDDTTTPISMATTLRGLLT
GPILSEESRKFLMDLMRNNQTCGPYFRAALPAGWYMADRCGTGWNGARGIIAALG
PNGKPSVIVVIMTTGSKASIATQAQAIRNIAAAVIKHA 

 

>D2 

HPAVLEVVRDAEKRLGAPVGFILLDLETGEVLASYNPNKYFPMCSTWKVFLVGAVL
HMVDQGKLKLDERIMYSEKDLVPFSPVTSQHLENGMTVEELMWAAVCHVDNTAAN
LLLKLIGGPAKLTAFLRDMGDTHTNMTHEEPEHNAAKPGSLDDTSTPISMATTLRGL
LTGPILSEEGRKFLMNLMRNNQVCGPYFRAALPAGWFMADRCGTGWNGARGIVA
ALGPNGKPTQILVIMTTGSKASIEEQHEAIRNIAAAVIKHA 

 

>D3 

HPAVLEEVRAAEERLGAPVGFILLDLETGEVLASYNPDKYFPMCSTWKVFLVGAVL
HMVDQGKLKLDERVMYSEEDLVPFSPVTSQHLEDGMTVAELMWAAVCYVDNTAA
NLLLKLIGGPAKLTAFLRDMGDTVTNMTHMEPEHNAAVPGSLDDTTTPISMATTLR
GLLTGPILSEEGRKFLSDLMRNNQHCGPYFRAALPAGWYMADRCGSGWNGARGI
VAAFGPNGKPSQIVVYMTTGSKASIEERHQCIRNIAAAVIKHA 

 

>D4 

HPEVLKVVRAAEERLGAPVGFIWLDLDTGEVLAAYNPDKYFPMCSTWKVFLVGAVL
HMIDQGKLKRDERIMYSEKDLVPFSPVCSQHLENGMTVEELMWAAVCYVDNTAAN
LLLKLIGGPAKLTAFLRDIGDTVNRMTHEEPDHNAAEPGSLDDTTTPISMATTLRGLL
TGPILSEEARKFLQDLMANNQYCGPYFRAALPAGWFLADRCGSGWNGARGIVAAL
GPNGKPSVIVVIMTSGSTASMETQHEAIRNIAAAVIKHA 

 

 


