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Peer Review File

Context-aware geometric deep learning for protein sequence 
design



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

Krapp et al. present a graph-based transformer method to recover a protein sequence given the 

atomic coordinates of a backbone. The methodology is akin to MPNN, with the added benefit that it 

has the capacity to consider ligands. The authors evaluated its accuracy in a number of tasks. They 

convincingly show the strength of including ligands in the graph, which improves functional sequence 

recovery, in particular in the vicinity of the ligand. The manuscript is well written, the work is well 

executed and presented. This method will certainly be useful for the community in design workflows, 

in particular where ligands are involved, as well as more generally in theoretical works aiming to map 

the structure-sequence space. I have only a few minor comments detailed below.

The training and test sets are processed to remove redundancy, e.g., at 30% sequence identity. How 

was overlap considered? For example, if a sequence is 40% identical and its overlap is only 50%. On a 

similar note, “no CATH similarity” means no single CATH domain is shared between both structures? 

(this could be clarified in the text).

Given that the methodology is similar to MPNN and ESM-if1, reflecting better on their similarity and 

differences in the recovered sequence spaces would be useful. For instance, a similarity could be 

computed between methods for each structure, and three distributions of these similarity values (i.e., 

MPNN-ESM-if1, MPNN-CARBONARA, ESM-if1-CARBONARA) could be shown.

The training was performed on biological assemblies from the PDB. Multiple assemblies can exist for a 

particular PDB code, and it is not clear how this was handled. Additionally, assemblies often contain 

artefactual interfaces that could be filtered out. I recommend retraining after such a filter is applied.

The architecture of the transformer could be illustrated in more detail in a supplementary figure.

The readme is cryptic. Some details regarding the main functions, their input-output and options 

would be useful for people to re-use the code. A gunzipped archive with the original structure files and 

original split used to train/test the network would also be important.

Reviewer #1 (Remarks on code availability):

I had a look at the repository but did not read, install, or run the code.

Reviewer #2 (Remarks to the Author):

"Context-aware geometric deep learning for protein sequence design" is a manuscript describing a 

novel deep-learning model (CARBonAra) for protein design that generalizes existing design methods 

by natively handling any type of molecular context within the design process. This is extremely 

important in protein design tasks, as information about non-protein molecules interacting with the 

candidate structure is typically available at design time. The authors show how this ability results in 

heavily increased median sequence recovery when provided with the correct molecular context. The 

authors validate the method in a real-case scenario by engineering a Beta-lactamase enzyme, 

retrieving four designs that, although weakly active against the substrate at 30C, display improved 

activity at 70C. This, combining with the finding that the four designs are part of a novel family of B 

lactamases enzymes, has very important implications for in-silico protein evolution analysis.



The manuscript is very well written and highly relevant, and results are presented with clarity and 

scientific rigor. Overall, I strongly recommend the manuscript for publication in Nature 

Communications.

I have some minor criticisms/observations that could hopefully help improving an already excellent 

work:

1) the authors perform the Beta lactamase design in a context-aware manner, where the context is 

provided with a nitrocefin molecule docked at the active site. I think the authors should specify A) why 

the docking is necessary here (I imagine that nitrocefin has never been crystallized neither in the 

reference pdb file nor in any of its homologs) B) how the docking was performed using Autodock Vina: 

how big was the search space? were the default settings used? how was the nitrocefin model 

generated? C) how was the analysed pose selected? In the methods there is some discussion about 

this selection, but it's not quantitative enough.

2) when discussing the context-aware performances of CARBonAra I would separate the glycans from 

the ligands. I believe glycoproteins could benefit even more than standard small molecules from the 

presence of the context, especially when the "context" (glycan here) itself is covalently linked to the 

protein.

3) The authors mention the GPU time needed to train CARBonAra. I do think that reporting (and 

maybe visualizing in a plot) the inference time would be very helpful to underline the competitiveness 

of the method. Maybe correlating it with the sequence length.

4) Alphafold2 is employed at various stages of the manuscript, from evaluating the foldability of the 

designed sequences to screening the obtained designs. It is usually used in single-sequence mode: 

why? In protein-design it is quite common to not input the multiple sequence alignment, but I think 

this should be explained.

Reviewer #3 (Remarks on code availability):

Although I didn't review the whole code, I have some observations that I hope the authors will 

consider.

1) I have to commend the authors for making the conda environment setup very simple and 

straightforward.

2) I suggest that the authors add way more information to the README file

3) understanding how to run the program is not very intuitive, and I think that implementing one or 

more command line interfaces to launch the different design tasks on an input folder (or directly on a 

pdb file) would be very helpful. As an example, having something like "carbonara-design 

examples/2oob.pdb" doing the job of apply_model.ipynb

4) while running the model on a couple of dimers I encountered the following error "RuntimeError: 

Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor". I 

don't know exactly what it means but it would be nice if the error message was somehow more 

informative. An example dimer I tried was pdb 8cyj, chains B and R.



Point-by-point response to reviewers’ comments 

We thank the reviewers for their constructive and overall positive feedback on our work. 
We reply point by point to their concerns here below and provide an emended version of 
our manuscript where additional figures are added and modified text is highlighted in red. 
To note, the user resources and support for our code have been heavily improved in order 
to respond to the reviewers’ request and make our tool more accessible to the users. We 
think that this new version will allow more people to access our code using it in a more 
rational and efficient way.  

 

Response to Reviewer #1  

Krapp et al. present a graph-based transformer method to recover a protein sequence 
given the atomic coordinates of a backbone. The methodology is akin to MPNN, with the 
added benefit that it has the capacity to consider ligands. The authors evaluated its 
accuracy in a number of tasks. They convincingly show the strength of including ligands 
in the graph, which improves functional sequence recovery, in particular in the vicinity of 
the ligand. The manuscript is well written, the work is well executed and presented. This 
method will certainly be useful for the community in design workflows, in particular where 
ligands are involved, as well as more generally in theoretical works aiming to map the 
structure-sequence space. I have only a few minor comments detailed below. 

We would like to thank the reviewer for the overall positive assessment of our work. 

 

The training and test sets are processed to remove redundancy, e.g., at 30% sequence 
identity. How was overlap considered? For example, if a sequence is 40% identical and 
its overlap is only 50%. 

We calculate sequence identity based on the aligned portion of sequences. This implies 
that if two sequences exhibit 40% identity over a 50% overlap, the overlapping region still 
has a 40% identity. Consequently, these sequences would be regarded as sufficiently 
similar to be grouped together, even though much of their lengths might differ. This 
approach implies that we apply stricter criteria when segregating our training and testing 
datasets, ensuring that even partial similarities are accounted for to maintain the integrity 
of our data splits. 

 

 

 



On a similar note, “no CATH similarity” means no single CATH domain is shared between 
both structures? (this could be clarified in the text). 

We ensure that there are no shared CATH domains between the testing dataset and 
training dataset. We have better explained this point in the revised text. 

 

Given that the methodology is similar to MPNN and ESM-if1, reflecting better on their 
similarity and differences in the recovered sequence spaces would be useful. For instance, 
a similarity could be computed between methods for each structure, and three 
distributions of these similarity values (i.e., MPNN-ESM-if1, MPNN-CARBONARA, ESM-
if1-CARBONARA) could be shown. 

As requested, we performed this comparative benchmark and found out that the 
sequences predicted by the three methods are as similar with each other than with the 
original scaffold sequence. The quantification is now shown in a new supplementary 
figure (Supplementary Figure 4) also attached here below. 

 
Supplementary Figure 4 | Comparison of predicted sequences between methods. Sequence 
identity between sequences predicted by two different methods for 142 monomers. The sequences 
predicted by the three methods are as similar with each other than with the original scaffold sequence. 

 

The training was performed on biological assemblies from the PDB. Multiple assemblies 
can exist for a particular PDB code, and it is not clear how this was handled. Additionally, 
assemblies often contain artefactual interfaces that could be filtered out. I recommend 
retraining after such a filter is applied. 

We only took the first biological assembly as provided by RCSB PDB. The first biological 
assembly is in many cases provided by the authors or both by the software and confirmed 
by the authors. Therefore, this would suggest that most of the oligomers have been 
annotated with the correct biological interface. In the cases where the authors didn’t know 
the oligomerization state of the protein, the assignment is only done automatically by 
software like PISA.  



However, our analysis reported in the figure here below indicates that most (95%) 
of the interfaces present in the first biological assembly are properly annotated and can 
be considered trustworthy. The ones relying only on automatic assignments of 
oligomerization states are a minority (5%) that should not bias the model significantly. 

 

 
RCSB PDB assembly assessment. We downloaded the information provided for all structures on 
RCSB PDB and extracted the assignment method of biological assembly 1. We show here the number 
of biological assemblies assigned automatically (software), manually (author) or hybrid (author and 
software).  

 

The architecture of the transformer could be illustrated in more detail in a supplementary 
figure. 

We prepared an additional supplementary figure to better illustrate the architecture of our 
model. 

 
Supplementary Figure 1 | CARBonAra geometric transformer. The inputs of the geometric 
transformer are scalar state (q) and vector state (p) for the central atom and the neighbors scalar 
states (qnn), vector states (pnn), distances (dnn) and relative displacement vectors (rnn). First, we extract 
the scalar information of the central node features (Xn) and edges features (Xe) from the inputs. The 
central node features produce the queries (Qq, Qp) through an MLP (fnqm). The edge node features 
produce the keys (Kq, Kp) and values (Vq, Vp) through multiple MLP (feqkm, fepkm, fevm). We project the 
vector track values (Vp) on relative displacement vectors (rnn) and concatenate the vector states to 
create the geometric features (Xg). We compute the multi-heads key, query and value attention for the 



scalar and vector track. We reduce the outputs of the attention operation with an MLP for the scalar 
quantities (fqpm) and a weighted sum (fppm) for the vector track to preserve the rotation equivariance of 
the operation. Lastly, we add the input states as residual connections. 

 

The readme is cryptic. Some details regarding the main functions, their input-output and 
options would be useful for people to re-use the code. A gunzipped archive with the 
original structure files and original split used to train/test the network would also be 
important. 

We spent most of the time on this revision to improve the README file with more details 
on how to install and use the software. We also included the original split used to train, 
test and validate the method in the GitHub repository. The input structures can be easily 
downloaded from the FTP server of RCSB PDB. We think that this improved version will 
be instrumental in allowing a more user-friendly experience of our code. 

 

  



Response to Reviewer #2  

"Context-aware geometric deep learning for protein sequence design" is a manuscript 
describing a novel deep-learning model (CARBonAra) for protein design that generalizes 
existing design methods by natively handling any type of molecular context within the 
design process. This is extremely important in protein design tasks, as information about 
non-protein molecules interacting with the candidate structure is typically available at 
design time. The authors show how this ability results in heavily increased median 
sequence recovery when provided with the correct molecular context. The authors 
validate the method in a real-case scenario by engineering a Beta-lactamase enzyme, 
retrieving four designs that, although weakly active against the substrate at 30C, display 
improved activity at 70C. This, combining with the finding that the four designs are part of 
a novel family of B lactamases enzymes, has very important implications for in-silico 
protein evolution analysis. 

The manuscript is very well written and highly relevant, and results are presented with 
clarity and scientific rigor. Overall, I strongly recommend the manuscript for publication in 
Nature Communications. 

We would like to thank this reviewer for the overall positive assessment of our work. 

 

I have some minor criticisms/observations that could hopefully help improving an already 
excellent work: 

1) the authors perform the Beta lactamase design in a context-aware manner, where the 
context is provided with a nitrocefin molecule docked at the active site. I think the authors 
should specify A) why the docking is necessary here (I imagine that nitrocefin has never 
been crystallized neither in the reference pdb file nor in any of its homologs)  

Docking was indeed necessary because we do not have any TEM-1 structure in complex 
with any substrate. This information was probably too hidden in the methods section. We 
have better explained the protocol in the revision. The docking was guided also by the 
several TEM structures complexed by inhibitors as well as biomolecular models of the 
enzyme in complex with its substrates. 

 

B) how the docking was performed using Autodock Vina: how big was the search space? 
were the default settings used? how was the nitrocefin model generated?  

We obtained the 3D coordinates of nitrocefin from the PubChem database (PubChem 
CID: 6436140) and used a search space of size 40x40x40 Å3 centered on the enzyme’s 
active site (determined by visual inspection). The exhaustiveness parameter was set to 



200, and 30 models were generated. All these additional details are now reported in the 
revised methods. 

 

C) how was the analysed pose selected? In the methods there is some discussion about 
this selection, but it's not quantitative enough. 

The analyzed pose was selected based on both the DDG score and the proximity of the 
carbonyl group of the β-lactam ring to the catalytic residue S70. We also looked for 
interactions between nitrocefin and residues R244 and N132, known to stabilize 
cephalosporin binding in TEM-1. 

 

2) when discussing the context-aware performances of CARBonAra I would separate the 
glycans from the ligands. I believe glycoproteins could benefit even more than standard 
small molecules from the presence of the context, especially when the "context" (glycan 
here) itself is covalently linked to the protein. 

We followed this reasonable suggestion of the reviewer, as we have also recently 
addressed the possibility to treat carbohydrate-protein interfaces specifically (see PeSTo-
Carbs, Bibekar et al. JCTC 2024). We updated Figure 3, panel a and b where ligands and 
glycans are now separated, showing indeed significant differences. 

 

3) The authors mention the GPU time needed to train CARBonAra. I do think that 
reporting (and maybe visualizing in a plot) the inference time would be very helpful to 
underline the competitiveness of the method. Maybe correlating it with the sequence 
length. 

We quantitatively assessed in the revision the performance of our method with respect to 
ESM-IF1 and ProteinMPNN. As it is clear from the new supplementary figure, our method 
has a small advantage in terms of computational performance over the other two methods. 



 
Supplementary Figure 3 | Run time analysis on GPU. Model run time as a function of the sequence 
length tested on a Nvidia RTX 2080 Ti and Intel i9-9900K. ESM-IF1 runs out of memory on the GPU 
with larger system so we compared the three methods on 142 structures with sequence length under 
500 amino acids. 

 

4) Alphafold2 is employed at various stages of the manuscript, from evaluating the 
foldability of the designed sequences to screening the obtained designs. It is usually used 
in single-sequence mode: why? In protein-design it is quite common to not input the 
multiple sequence alignment, but I think this should be explained. 

In our study, we employed AlphaFold2 in single-sequence mode to evaluate and validate 
the structural integrity of the designed protein sequences. Primarily, the use of single-
sequence mode allows for streamlined computational efficiency and simplification of the 
process by avoiding the computation of multiple sequence alignments (MSAs). 
Additionally, single-sequence predictions are shown to correlate well with experimental 
success, offering a convenient metric for assessing the foldability and functional potential 
of new designs [Bennett, N.R., Coventry, B., Goreshnik, I. et al. Improving de novo protein 
binder design with deep learning. Nat Commun 14, 2625 (2023)]. We better explained 
this point in the revised text. 

 

  



Response to Reviewer #3  

Although I didn't review the whole code, I have some observations that I hope the authors 
will consider. 

We would like to thank the reviewer for the critical assessment of our work. 

 

1) I have to commend the authors for making the conda environment setup very simple 
and straightforward. 

2) I suggest that the authors add way more information to the README file 

We spent significant time in the effort to improve the README file with more details on 
how to install and use the software. We think that this new version will allow the users 
more convenient and easier use of our method. 

 

3) understanding how to run the program is not very intuitive, and I think that implementing 
one or more command line interfaces to launch the different design tasks on an input 
folder (or directly on a pdb file) would be very helpful. As an example, having something 
like "carbonara-design examples/2oob.pdb" doing the job of apply_model.ipynb 

We implemented and added a command line tool to use the software more easily. Here 
is in an example of command line to generate 100 sequences using a PDB file as input 
scaffold: 

carbonara --num_sequences 100 --imprint_ratio 0.5 examples/pdbs/2oob.pdb outputs 

We provide more examples and details on the GitHub repository page to produce 
sequences with different fixed parts, using different sampling methods and interpreting 
the output. 

 

4) while running the model on a couple of dimers I encountered the following error 
"RuntimeError: Number of dimensions of repeat dims can not be smaller than number of 
dimensions of tensor". I don't know exactly what it means but it would be nice if the error 
message was somehow more informative. An example dimer I tried was pdb 8cyj, chains 
B and R. 

To reply to this point, we added several examples and a notebook as a quick start guide 
with examples of usage with files and expected outputs. 

 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author):

The authors have thoroughly addressed my comments. This is a great piece of work.

Reviewer #3 (Remarks to the Author):

I thank the authors for answering all my questions and I fully recommend the manuscript for 

publication.
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