
Supplementary Figures 
 

Figure S1: Stimulus 
generation details and 
parameters 
 
A: To build a random 3D 
stimulus shape, we first 
generate a cross-
sectional 2D shape by 
randomizing a closed-
loop cubic b-spline with 
arbitrary complexity 
(number of control points 
and randomization). We 
also generate a curved 
axis with a randomized 
length and curvature, a 
thickness profile along 
the axis (by randomizing 
a 5-point Bezier curve), 
and a helical twist profile 
along the axis. We then 
scale the cross-sectional 
shape by the thickness 
profile and stack it along 
the axis. Once the 
vertices are in place, we 
join them with edges to 
create a closed 3D 
object. We render the 
object with a randomized 
color, position, in-plane 
orientation, and surface 
specularity/gloss. 
B: Example renders of 
the same object with 
changes in different 
features. Wherever 

possible, the ranges spanned the parameter space (orientation, color, curvature, twist, etc.) and were otherwise chosen 
manually (length, gloss, thickness profile). 
C: The lighting and camera were held in the same positions across all images – the camera was directly in front of the 
object and the light was an omnidirectional source above the camera. On the right, for demonstration, the object is shown 
being rendered along three camera positions. 
D: The shape colors were chosen from 25 random values which were generated by permuting three absolute R, G, and B 
values – 0.4, 0.7, 0.9. The swatches and average luminance values thus generated are shown at the top and the example 
stimulus rendered in those values are shown below. 
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Figure S2: Curvature estimation behavior across all tested shapes 
 

 
 
A. Curvature estimation behavior shown as psychometric curves for the two monkeys (blue and orange lines, 
respectively) for all unique shapes tested (the medial axis of each shape, shown in red in the icons, was not presented to 
the monkeys and is shown for illustration). Each panel shows the comparison between the actual curvature and reported 
curvature in solid lines (in nine bins across the curvature range). Shading indicates SEM within each bin. For each shape 
tested, 10 or 20 curvature values are presented as shown in the icons in the exploded view (in B) for shape 4 as an 
example. Each column represents a unique shape. The first four rows represent orientation variations as shown in the 
icons on the left and in the exploded view. The last two rows similarly represent color variations. Both monkeys tended to 
underestimate high curvature values and overestimate low curvature values. This might be a result of the bounded nature 
of the curvature report and/or anisotropies in curvature representations across the range of curvatures tested. 
B. An exploded view showing all stimuli tested for a single shape. In the text, we use the term ‘shape’ to refer to a full set 
of curvatures with no other parameter changes. Across shapes, the orientation only, the color only, or the entire shape 
(including many other parameters) could change. 
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C. Comparison of absolute behavioral error on the first presentation of a shape (one of 10 shapes used during behavioral 
training) during a recording session and the mean absolute error across the whole session. For both monkeys, the 
distribution of errors (marginal histograms on the right and top) tightens across the session and settles at a median value 
of ~ 0.12. 
D. Same as C but for shapes never seen before during recording or training. The distribution of errors for both monkeys is 
similar to the one seen in C for the first trial and across the session. 
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Figure S3: Recording locations, 
receptive fields, example responses 
to curved shapes, and neuron-wise 
curvature selectivity across shapes. 
 
A. Locations of the multielectrode array 
implantations for the two monkeys.  
B. Locations (dots) and mean size 
(dotted circle) of V1 and V4 receptive 
fields. The black circle indicates the 
stimulus location for an example 
session.  
C. Raster plot and peri-stimulus time 
histogram for a single example trial. 
Each row corresponds to a V1 or V4 
multiunit site. The baseline, stimulus, 
and arc periods (during which spikes are 
counted toward the response) are 
labeled in gray.  
D. Trial-averaged responses for an 
example site in V1 and in V4 for three 
shapes as a function of curvature. 
Solid/dotted lines indicate responses 
during the stimulus/arc period, and 
shading indicates SEM.  
E. Comparison of selectivity (defined as 
how much curvature modulates 
responses of a single shape for one unit; 
see Methods) during stimulus and arc 
periods for all shapes and each V1 and 
V4 site recorded in an example session. 
F. The curvature selectivity shown for all 
shapes tested for all neurons across all 
sessions. The selectivity for curvature 
does not change systematically after the 
onset of the arc in either visual area. 
This was calculated for each shape (2-5; 
mean 3.55), for each recording site (51-
96 for V1, 55-95 for V4), and for each of 
124 sessions, totaling 34827 points for 
V1 and 35537 points for V4. Curvatures 
that elicited the maximum and minimum 
firing during the stimulus epoch were 
kept consistent while calculating 
selectivity during the arc period. Mean 
selectivity is shown in black + symbols; 
V1 selectivity changes from 0.13 to 
0.142, and V4 selectivity changes from 
0.134 to 0.156 after arc onset on 
average. Marginal distributions are 
plotted on the top and right of both 
panels. Gray line indicates the unity line. 
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Figure S4: Curvature is 
robustly encoded in V1 
and V4 population activity. 
(see Figure 1 for choice 
behavior during the same 
sessions) 
 
A. (left) V1 stimulus-evoked 
population response from 77 
neurons recorded during an 
experimental session 
projected onto the first three 
principal components of the 
population space where 
each dimension represents 
the response of one neuron. 
The principal component 
analysis (PCA) is for 
visualization rather than 
formal analysis. Each dot 
represents population 
responses during a single 
stimulus presentation, and 
the dot luminance (black-to-
blue gradient) represents 
the curvature of the stimulus 
(also shown as 
superimposed icons for a 
subset of the presented 
curvatures). The dimmer 
dots represent all 
presentations and brighter 
dots are trial-averaged 
responses of stimuli with 
unique curvature. The solid 
curve represents a 
polynomial fit along the 
curvature representation. 
After training a linear 
decoder to predict curvature 
using neural responses, we 
binned trials by curvature 
and plotted their average 

decoded curvature and SEM (middle left); decoding performance was calculated as the correlation between the actual 
and decoded curvature (here, r=0.89). The same analysis is shown for a simultaneously recorded V4 population of 86 
neurons on the right. 
B. Same as A, for three unique shapes shown on randomly interleaved trials in the same session. The decoding 
performance for each shape is shown under the shape icons in the relevant plots. 
C. Same as A, for the same shape presented in two different orientations. 
D. Same as A, for the same shape presented in three different colors. 
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Figure S5: Quantifying the similarity in curvature estimation 609 
behavior across pairs of shapes. 610 
 611 
A. While the representations of curvature in visual cortex 612 
responses are not typically aligned, the monkey’s curvature 613 
estimation behavior is similar across shapes in the same session. 614 
Each dot is a unique curvature value, and horizontal and vertical 615 
error bars indicate SEM for the two shapes shown as icons. All 616 
behavioral biases are consistent across these shapes (correlation 617 
coefficient, r=0.944). Compare with curvature decoding in V1 and 618 
V4 for the same session in Figure 2. 619 
B. Monkeys’ curvature estimation behavior for any pair of shapes 620 
(unique, orientation-change, and color-change) is consistently 621 
correlated across sessions (mean 0.89, SEM 0.01, 844 shape 622 
pairs). 623 
 624 
  625 
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Figure S6: Shape-general decoders trained on 
responses to shapes differing in color only, orientation 
only, or overall shape are correlated with choices. 
 
Curvature decoded using shape-general or shape-specific 
decoders (calculated in Figure 2D) split by sessions where 
only color, only orientation, or overall shape were varied 
across trials (same splits as in Figure 2F). Curvature 
decoded with shape-general decoders is more correlated 
with the monkey’s choices than curvature decoded with 
shape-specific decoders for all training set variations 
(Wilcoxon signed rank test; p<0.001). 
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Figure S7: Analyzing intercepts of the linear relationship between the actual and decoded saccade reveals that 
V4, but not V1 responses reformat to encode the upcoming saccade. 
 
A. We quantify the extent to which each population reflects the direction of the upcoming eye movement by evaluating the 
intercept of the line relating the decoded to the actual saccade. If the population does not reflect the direction of the 
upcoming eye movement, the intercepts will erroneously depend on the arc location (top left). In this scenario, rightward 
arc shifts will produce a negative intercept (green) and leftward shifts will produce a positive intercept (dark blue). When 
the arc length is varied, the intercepts will be zeros for centrally presented arcs (blues) but will be different negative values 
for rightwards shifted arcs (greens) (bottom left). If the population responses reflect the direction of the upcoming eye 
movement, all intercepts will be zero (top right and bottom right.).  
B. Across experiments, V1 responses reflect the curvature judgment, not the direction of the upcoming eye movement. 
The intercept of the line relating the decoded and actual saccade direction depends on the arc location both before (left) 
and after the onset of the arc (right). Each point represents one combination of shape and arc condition.  
C. Across experiments, V4 responses reflect the direction of the upcoming eye movement. Conventions as in B. Before 
the arc onset, the results are qualitatively similar to V1. Unlike in V1, the saccade direction can be decoded from V4 
responses after the arc onset (as indicated by zero intercepts across arc conditions; right panels). 
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Figure S8: Recurrent neural 
networks (RNNs) can be trained to 
represent continuous variables 
and reformat those 
representations based on 
stimulus-extrinsic inputs in ways 
that could produce saccade-like 
outputs. 
 
A. Schematic of RNN layout. Four 
time-varying signals that indicate the 
fixation spot (“fix”), stimulus 
curvature (“k”), and the two arc 
conditions – arc location (“mid”) and 
arc length (“len”) – are input to the 
network. The network is trained to 
produce saccade outputs (“sac”) 
(shown in D) appropriate for each 
arc condition (shown in C). 
B. The time course and values of 

input and expected output signals. Notably, the fixation, stimulus, and arc conditions are staggered to mimic the timing in 
the monkey task. The relative onsets are also randomized using the same timing distributions. 
C. Legend for the various arc conditions tested. 
D. The expected outputs for each arc condition as trained using backpropagation. 
E. The network states (as visualized by a low dimensional embedding of the hidden layer activations using PCA and QR 
decomposition) before (red line) and after (colored lines) arc onset. We found the curvature and saccade axes by finding 
the linear decoding axes for curvature (before arc onset) and for saccades (after arc onset). Black-to-red dots each 
correspond to increasing curvatures of the stimulus and the projection of this curvature representation on the curvature 
axis is shown in the black-to-red line along the x-axis. The network activations after arc onset are projected onto the same 
dimensions and then used to decode the output/saccade. The projection of network states after arc onset (but before 
fixation offset) for each arc condition is shown in black-to-color lines along the y-axis. The layout of these projections 
recapitulates the expected output of the network (also shown in F). Importantly, the network does not lose the ability to 
read out stimulus curvature while encoding the output before the saccade. 
F. The output of the trained network compared with the stimulus curvature for each arc condition. Compare with D and 
note intersecting points across arc conditions. 
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Figure S9: Convolutional Neural 
Network (CNN) activations can be 
used to extract visual features and 
train RNNs to flexibly align 
representations to behaviorally 
relevant readout axes. 
 
A. We extract visual responses from an 
intermediate layer of a pre-trained 
convolutional neural network (VGG-16). 
We use these responses (picked 
because that layer has been shown to 
be representationally similar to V4) to 
train RNNs as in Figure S3. Visual 
stimuli are created using the same 
methods as described in Figure 1 and 
rendered in the central 91 pixels (RF of 
layer 4 units in VGG16) of the image, 
and visual responses are extracted. The 
dimensionality of activations is reduced 
to 256 to aid in RNN training and linear 
decoding. Two types of training image 
sets were created – 1000 unique shapes 
with randomly varying curvatures (top), 
or 50 unique shapes each with 20 
curvature values (bottom). The testing 
stimuli in both conditions comprised of 
five unique shapes with 20 curvature 

values each. To show that curvature is represented in VGG16 layer 4, we trained a linear decoder using those activations 
in a leave-one-out cross-validated fashion using training images and tested it on the held-out test images. The same 
activations, reduced to 256-dimensions, were used to train RNNs instead of the one-dimensional stimulus input in Figure 
S8. 
B. The trained RNN’s hidden layer activations and output behavior are shown in the two pairs of panels. The top two are 
for the training set with 1000 unique shapes, bottom two are for the training set with 50 unique shapes. In both cases, the 
hidden layer represents the stimulus before arc onset, and the representation reformats to align with the saccade-like axis 
after arc onset. After this realignment, the curvature information is not lost but is still decodable, as in V4 (compare with 
Figure 3 and Figure S8). 
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Figure S10: Recording locations, receptive fields, 
example responses to images used in two-feature 
2AFC task 
 
A. Locations of the multielectrode array implantations for 
the third monkey.  
B. Locations (dots) and mean size (dotted circle) of V4 
receptive fields. The array location yielded relatively 
eccentric RFs and the stimulus (black circle) was chosen 
to overlap with the receptive fields of a majority of the 
recorded units. 
G. Normalized responses of four example multiunits 
recorded simultaneously. The black-red saturation of the 
background of the shape image indicates the normalized 
firing rate of that neuron. Across the array, the shape and 
color selectivity of the neurons varied considerably. 
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Figure S11: Simulations of tuning functions for two 
features can result in very different representational 
geometries. 
A. Gaussian functions for two arbitrary parameters had 
identical distributions of Gaussian amplitude (0.5-1sp/s), 
tuning width/standard deviation (0.1-0.4), and preferred 
value/gaussian mean (0-1). The parameters were drawn 
from uniform distributions. 
B. Two example population geometries created using 
different instantiations of the simulation. Here, varying the 
distribution of tuning widths gives rise to a planar 
representation or a saddle-shaped representation. In both 
cases, the bounded nature of the two features causes 
anisotropies at the edges of the representations causing 
linear decoders to underestimate higher feature values and 
overestimate lower values. 
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Figure S12: Breakdown of accuracies for the color and curvature 
decoders trained on either color task or shape task or all trials 
while decoding color, curvature, or choices 
Decoding accuracies (correlation between actual and decoded values) 
for decoders trained on color (left) and curvature (right) while decoding 
curvature, color, and choice trained and tested across subsets of (A) 
all trials, (B) color task trials, and (C) curvature task trials. Points in B 
and C are identical to those plotted in the scatter diagram in Figure 4H. 
To illustrate that the shape and color axes are consistent across the 
two tasks, we decoded curvature, color, and choice across trials from 
both tasks together (shown in A). Curvature and color decoding 
accuracies were comparable to the accuracies of those trained using 
the individual task trials and choice decoding accuracy was 
approximately halfway between. The open circles/dashed lines depict 
model predictions.  
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