SUPPLEMENTARY INFORMATION

Variants in the *DDX6-CXCR5* autoimmune disease risk locus influence the regulatory network in immune cells and salivary gland

Mandi M. Wiley¹, Bhuwan Khatri¹, Michelle L. Joachims^{1,2}, Kandice L. Tessneer¹, Anna M. Stolarczyk¹, Astrid Rasmussen¹, Juan-Manuel Anaya³, Lara A. Agrawi^{4,5}, Sang-Cheol Bae⁶, Eva Baecklund⁷, Albin Björk⁸, Johan G. Brun^{9,10}, Sara Magnusson Bucher¹¹, Nick Dand¹², Maija-Leena Eloranta⁷, Fiona Engelke¹³, Helena Forsblad-d'Elia¹⁴, Cecilia Fugmann⁷, Stuart B. Glenn¹, Chen Gong¹², Jacques-Eric Gottenberg¹⁵, Daniel Hammenfors¹⁰, Juliana Imgenberg-Kreuz⁷, Janicke Liaaen Jensen⁵, Svein Joar Auglænd Johnsen¹⁶, Malin V. Jonsson⁹, Jennifer A. Kelly¹, Sharmily Khanam², Kwangwoo Kim¹⁷, Marika Kvarnström⁸, Thomas Mandl¹⁸, Javier Martín¹⁹, David L. Morris¹², Gaetane Nocturne^{20,21}, Katrine Brække Norheim¹⁶, Peter Olsson¹⁸, Øyvind Palm²², Jacques-Olivier Pers²³, Nelson L. Rhodus²⁴, Christopher Sjöwall²⁵, Kathrine Skarstein⁹, Kimberly E. Taylor²⁶, Phil Tombleson¹², Gudny Ella Thorlacius⁸, Swamy Venuturupalli²⁷, Edward M. Vital²⁸, Daniel J Wallace²⁷, Kiely M. Grundahl^{1,2}, Lida Radfar²⁹, Michael T. Brennan³⁰, Judith A. James^{2,31}, R. Hal Scofield^{2,31,32}, Patrick M. Gaffney^{1,31}, Lindsey A. Criswell^{26,33}, Roland Jonsson⁹, Silke Appel⁹, Per Eriksson²⁵, Simon J. Bowman³⁴, Roald Omdal^{9,16}, Lars Rönnblom⁷, Blake M. Warner³⁵, Maureen Rischmueller³⁶, Torsten Witte¹³, A. Darise Farris^{2,31}, Xavier Mariette^{20,21}, Caroline H. Shiboski²⁶, Sjögren's International Collaborative Clinical Alliance (SICCA)[#], Marie Wahren-Herlenius^{8,9}, Marta E. Alarcón-Riquelme^{8,37}, PRECISESADS Clinical Consortium[#], Wan-Fai Ng^{38,39}, UK Primary Sjögren's Syndrome Registry[#], Kathy L. Sivils^{2†}, Joel M. Guthridge^{2,31}, Indra Adrianto^{40,41}, Timothy J. Vyse¹², Betty P. Tsao⁴², Gunnel Nordmark⁷, Christopher J. Lessard^{1,31*}

AFFILIATIONS

¹Genes and Human Disease Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA;

²Arthritis and Clinical Immunology Research Program, OMRF, Oklahoma City, Oklahoma, USA;

³Universidad del Rosario, Bogotá, Colombia;

⁴Department of Health Sciences, Kristiania University College, Oslo, Norway;

⁵University of Oslo, Norway;

⁶Hanyang University, Seoul, Republic of Korea;

⁷Uppsala University, Uppsala, Sweden;

⁸Karolinska Institutet, Solna, Sweden;

⁹University of Bergen, Bergen, Norway;

¹⁰Haukeland University Hospital, Bergen, Norway;

¹¹Örebro University, Örebro, Sweden;

¹²King's College London, London, United Kingdom;

¹³Hannover Medical School, Hannover, Germany;

¹⁴University of Gothenburg, Gothenburg, Sweden;

¹⁵Strasbourg University Hospitals, Strasbourg, France;

¹⁶Stavanger University Hospital, Stavanger, Norway;

¹⁷Kyung Hee University, Seoul, Republic of Korea;

¹⁸Lund University, Malmö, Sweden;

¹⁹Instituto de Biomedicina y Parasitología López-Neyra, Granada, Spain; ²⁰Université Paris-Saclay, Paris, France;

²¹Assistance Publique – Hôpitaux de Paris, Hôpital Bicêtre, Paris, France;
²²Oslo University Hospital, Oslo, Norway;

²³LBAI, UMR1227, University of Brest, Inserm, Brest, France;

²⁴University of Minnesota Medical School, Minnesota, USA;

²⁵Linköping University, Linköping, Sweden;

²⁶University of California San Francisco, San Francisco, California, USA;

²⁷Cedars-Sinai Medical Center, Los Angeles, California, USA;

²⁸University of Leeds, Leeds, United Kingdom;

²⁹University of Oklahoma College of Dentistry, Oklahoma City, Oklahoma, USA; ³⁰Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA;

³¹University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA;

³²US Department of Veteran Affairs Medical Center, Oklahoma City, Oklahoma, USA;

³³National Human Genome Research Institute, NIH, Bethesda, Maryland, USA;

³⁴University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom; ³⁵National Institute of Dental and Craniofacial Research, Bethesda, Maryland, USA;

³⁶University of Adelaide, Adelaide, South Australia;

³⁷Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Spain;

³⁸NIHR Newcastle Biomedical Research Centre and NIHR Newcastle Clinical Research Facility, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom;

³⁹Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, United Kingdom;

⁴⁰Center for Bioinformatics, Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, USA;

⁴¹Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA;

⁴²Medical University of South Carolina, Charleston, South Carolina, USA;

[#]A list of consortia investigators and their affiliations appear as a Supplementary Note;

[†]Current Affiliation: Translational Science, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania, USA;

*Corresponding Author: chris-lessard@omrf.org

TABLE OF CONTENTS Page i. Consortium Acknowledgements and Funding* 5 ii. Supplemental Tables a. Supplemental Table 1: Risk and Non-Risk Alleles of Prioritized SNPs from the DDX6-CXCR5 SjD/SLE Risk Locus 8 b. Supplemental Table 2: Patient-Derived EBV B Cell Genotypes... 8 c. Supplemental Table 3: EMSA Probes 9 d. Supplemental Table 4: Luciferase Reporter Assay gBlocks 10-13 e. Supplemental Table 5: 3C-qPCR Primers 14 iii. Supplemental Figures a. Supplemental Figure 1: Fine-mapping of the DDX6-CXCR5 Region in SiD and SLE Immunochip After Imputation 15 b. Supplemental Figure 2: Haplotype Frequency of the DDX6-CXCR5 Risk Region in SiD 16 c. Supplemental Figure 3: Functional Bioinformatic Analyses of Putative Functional SNPs in the DDX6-CXCR5 Risk Region 17 d. Supplemental Figure 4: Allele- and Cell-type Specific Differential Nuclear Protein Affinities of SNPs rs57494551 and rs4938572 ... 18 e. Supplemental Figure 5: Allele- and Cell-type Specific Differential Nuclear Protein Affinities of SNP rs7117261 19 f. Supplemental Figure 6: Allele- and Cell-type Specific Differential Nuclear Protein Affinities of SNP rs4936443 20 g. Supplemental Figure 7: Allele- and Cell-type Specific Differential Nuclear Protein Affinities of SNP rs4938573 21 h. Supplemental Figure 8: Allele- and Cell-type Specific Differential Nuclear Protein Affinities of SNP rs12365699 22 Supplemental Figure 9: Allele- and Cell-type Specific Differential i. Nuclear Protein Affinities of SNP rs10892294 23 Supplemental Figure 10: Allele-specific Promoter and Enhancer İ. Activity of rs10892294 and rs12365699 on the DDX6-CXCR5 Region in 293T cells 24 k. Supplemental Figure 11: Complex Chromatin Architecture Revealed Across the DDX6-CXCR5 Region in Human Primary B Cells 25 Supplemental Figure 12: Complex Chromatin Architecture Ι. Revealed Across the DDX6-CXCR5 Region in Primary Human T Cells 26 m. Supplemental Figure 13: Complex Chromatin Architecture Revealed Across the DDX6-CXCR5 Region in Human Primary Monocytes 27 n. Supplemental Figure 14: Complex Chromatin Architecture Revealed Across the DDX6-CXCR5 Region in Human Primary Macrophages 28

iv.

0.	Supplemental Figure 15: Complex Chromatin Architecture Revealed Across the <i>DDX6-CXCR5</i> Region in Human Primary	00
	Neutrophils	29
р.	Supplemental Figure 16: Complex Chromatin Architecture	30
a	Supplemental Figure 17: IMPACT Regulatory Element	50
٩.	Probabilities and Corresponding Transcription Factor Elements in	
	Immune Cells	31
r.	Supplemental Figure 18: eQTLs for Five Prioritized SNPs Across	
	Blood, Salivary and Kidney Tissues, and Immune Cells	32
s.	Supplemental Figure 19: Expression Atlas Results for Inc-	
	PHLDB1-1 (ENSG00000255422)	33
c	nalemental Data (and accompanying event workshoots)	
Su	Supplemental Data (see accompanying excer worksheets)	
a.	Immunochin Data in DDY6 CYCP5 Locus (Dataset 1)	
h	Supplemental Data 11 DDA0-CACKO LOCUS (Dataset 1)	
υ.	CXCR5 Locus (Dataset 2)	
C.	Supplemental Data 3: Meta-analysis of SiD and SLE Data in	
-	DDX6-CXCR5 Locus (Merged Datasets 1 and 2)	
d.	Supplemental Data 4: Bayesian Analysis of SjD GWAS and	
	Immunochip Data in DDX6-CXCR5 Locus (Dataset 1)	
e.	Supplemental Data 5: Bayesian Analysis of SjD Immunochip Data in DDX6-CXCR5 Locus (Dataset 3)	
f.	Supplemental Data 6: Bayesian Analysis of SLE Immunochip	
	Data in DDX6-CXCR5 Locus (Dataset 4)	
g.	Supplemental Data 7: Bayesian Analysis of merged SjD and SLE	
	Immunochip Data in DDX6-CXCR5 Locus (Merged Datasets 3	
	and 4) with bioinformatic analysis of the top 100 SNPs	
	(RegulomeDB, HaploReg epimarks, and publications).	

SUPPLEMENTAL NOTE

Consortium Acknowledgments and Funding*:

Α. The PRECISESADS Clinical Consortium is composed of the following members: Lorenzo Beretta¹, Barbara Vigone¹, Jacques-Olivier Pers², Alain Saraux², Valérie Devauchelle-Pensec², Divi Cornec², Sandrine Jousse-Joulin², Bernard Lauwerys³, Julie Ducreux³, Anne-Lise Maudoux³, Carlos Vasconcelos⁴, Ana Tavares⁴, Esmeralda Neves⁴, Raguel Faria⁴, Mariana Brandão⁴, Ana Campar⁴, António Marinho⁴, Fátima Farinha⁴, Isabel Almeida⁴, Miguel Angel Gonzalez-Gay Montecón⁵, Ricardo Blanco Alonso⁵, Alfonso Corrales Martinez⁵, Ricard Cervera⁶, Ignasi Rodríguez-Pintó⁶, Gerard Espinosa⁶, Rik Lories⁷, Ellen De Langhe⁷, Nicolas Huzelmann⁸, Doreen Belz⁸, Torsten Witte⁹, Niklas Baerlecken⁹, Georg Stummvoll¹⁰, Michael Zauner¹⁰, Michaela Lehner¹⁰, Eduardo Collantes¹¹, Rafaela Ortega-Castro¹¹, M^a Angeles Aguirre-Zamorano¹¹, Alejandro Escudero-Contreras¹¹, M^a Carmen Castro-Villegas¹¹, Norberto Ortego¹², María Concepción Fernández Roldán¹², Enrique Raya¹³, Immaculada Jiménez Moleón¹³, Enrique de Ramon¹⁴, Isabel Díaz Quintero¹⁴, Pier Luigi Meroni¹⁵, Maria Gerosa¹⁵, Tommaso Schioppo¹⁵, Carolina Artusi¹⁵, Carlo Chizzolini¹⁶, Aleksandra Zuber¹⁶, Donatienne Wynar¹⁶, Laszló Kovács¹⁷, Attila Balog¹⁷, Magdolna Deák¹⁷, Márta Bocskai¹⁷, Sonja Dulic¹⁷, Gabriella Kádár¹⁷, Falk Hiepe¹⁸, Velia Gerl¹⁸, Silvia Thiel¹⁸, Manuel Rodriguez Maresca¹⁹, Antonio López-Berrio¹⁹, Rocío Aguilar-Quesada¹⁹, Héctor Navarro-Linares¹⁹, Marta E. Alarcon-Riquelme²⁰.

¹Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy; ²Centre Hospitalier Universitaire de Brest, Hospital de la Cavale Blanche, Brest, France; ³Pôle de pathologies rhumatismales systémiques et inflammatoires, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium; ⁴Centro Hospitalar do Porto, Portugal; ⁵Servicio Cantabro de Salud, Hospital Universitario Marqués de Valdecilla, Santander, Spain; ⁶Hospital Clinic I Provicia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; ⁷Katholieke Universiteit Leuven, Belgium; ⁸Klinikum der Universitaet zu Koeln, Cologne, Germany; ⁹Medizinische Hochschule Hannover, Germany; ¹⁰Medical University Vienna, Vienna, Austria; ¹¹Servicio Andaluz de Salud, Hospital Universitario Reina Sofía Córdoba, Spain; ¹²Servicio Andaluz de Salud, Complejo hospitalario Universitario de Granada (Hospital Universitario San Cecilio), Spain; ¹³Servicio Andaluz de Salud, Complejo hospitalario Universitario de Granada (Hospital Virgen de las Nieves), Spain; ¹⁴Servicio Andaluz de Salud, Hospital Regional Universitario de Málaga, Spain; ¹⁵Università degli studi di Milano, Milan, Italy; ¹⁶Hospitaux Universitaires de Genève, Switzerland; ¹⁷University of Szeged, Szeged, Hungary; ¹⁸Charite, Berlin, Germany; ¹⁹Andalusian Public Health System Biobank, Granada, Spain; ²⁰Genyo, Center for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain.

The study was approved by the following ethic committees: Comitato Etico Area 2 (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano and University of Milan); approval no. 425bis Nov 19, 2014, and no. 671_2018 Sep 19, 2018; Klinikum der Universitaet zu Koeln, Cologne, Germany. Geschaftsstelle Ethikkommission; Pôle de pathologies rhumatismales systémiques et inflammatoires, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium. Comité d'Èthique Hospitalo-Facultaire; University of Szeged, Szeged, Hungary. Csongrad Megyei Kormanyhivatal; Hospital Clinic I Provicia, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain. Comité Ética de Investigación Clínica del Hospital Clínic de Barcelona. Hospital Clinic del Barcelona; Servicio Andaluz de Salud, Hospital Universitario Reina Sofía Córdoba, Spain. Comité de Ética e la Investigación de Centro de Granada (CEI – Granada); Centro Hospitalar do Porto, Portugal.

Comissao de ética para a Saude – CES do CHP; Centre Hospitalier Universitaire de Brest, Hospital de la Cavale Blanche, Avenue Tanguy Prigent 29609, Brest, France. Comite de Protection des Personnes Ouest VI; Hospitaux Universitaires de Genève, Switzerland. DEAS – Commission Cantonale d'ethique de la recherche Hopitaux universitaires de Geneve; Andalusian Public Health System Biobank, Granada, Spain; Katholieke Universiteit Leuven, Belgium. Commissie Medische Ethiek UZ KU Leuven /Onderzoek; Charite, Berlin, Germany. Ethikkommission; Medizinische Hochschule Hannover, Germany. Ethikkommission.

PRECISESADS Study was funded by the Innovative Medicines Initiative of the European Union with grant number 115565 partly supported by the EFPIA Companies (Alarcon-Riquelme).

B. Sjögren's International Collaborative Clinical Alliance (SICCA) is composed of the following members: Cox D¹, Jordan R¹, Lee D¹, DeSouza Y¹, Drury D¹, Do A¹, Scott L¹, Nespeco J¹, Whiteford J¹, Margaret M¹, Sack S¹, Adler I², Smith AC², Bisio AM², Gandolfo MS², Chirife AM², Keszler A², Daverio S², Kambo V², Dong Y³, Jiang Y³, Xu D³, Su J³, Du D³, Wang H³, Li Z³, Xiao J³, Wu Q³, Zhang C³, Meng W³, Zhang J³, Johansen S⁴, Hamann S⁴, Schiødt J⁴, Holm H⁴, Ibsen P⁴, Manniche AM⁴, Kreutzmann SP⁴, and Villadsen J⁴, Sugai S⁵, Masaki Y⁵, Sakai T⁵, Shibata N⁵, Honjo M⁵, Kurose N⁵, Nojima T⁵, Kawanami T⁵, Sawaki T⁵, Fujimoto K⁵, Odell E⁶, Morgan P⁶, Fernandes-Naglik L⁶, Varghese-Jacob B⁶, Ali S⁶, Adamson M⁶, Seghal S⁷, Mishra R⁷, Bunya V⁷, Massaro-Giordano M⁷, Abboud SK⁷, Pinto A⁷, Sia YW⁷, Dow K⁷, Akpek E⁸, Ingrodi S⁸, Henderson W⁸, Gourin C⁸, Keyes A⁸, Srinivasan M⁹, Mascarenhas J⁹, Das M⁹, Kumar A⁹, Joshi P⁹, Banushree R⁹, Kim U⁹, Babu B⁹, Ram A⁹, Saravanan R⁹, Kannappan KN⁹, Kalyani N⁹, Criswell LA¹, Shiboski SC¹, Baer A⁸, Challacombe S⁶, Lanfranchi H², Schiødt M⁴, Umehara H⁵, Vivino F⁷, Zhao Y³, Dong Y³, Greenspan D¹, Heidenreich AM², Helin P⁴, Kirkham B⁶, Kitagawa K⁵, Larkin G⁶, Li M³, Lietman T¹, Lindegaard J⁴, McNamara N¹, Sack K¹, Shirlaw P⁶, Sugai S⁵, Vollenweider C², Whitcher J¹, Wu A¹, Zhang S³, Zhang W³, Greenspan JS¹, Daniels TE¹, **Shiboski CH¹**, Criswell LA¹⁰.

¹University of California San Francisco, San Francisco, CA, USA; ²University of Buenos Aires and German Hospital, Buenos Aires, Argentina; ³Peking Union Medical College Hospital, Beijing, China; ⁴Rigshospitalet, Copenhagen, Denmark; ⁵Kanazawa Medical University, Ishikawa, Japan; ⁶King's College London, London, UK; ⁷University of Pennsylvania, Philadelphia, Pennsylvania, USA; ⁸Johns Hopkins University, Baltimore, Maryland, USA; ⁹Aravind Eye Hospital, Madurai, India; ¹⁰National Human Genome Research Institute, NIH, Bethesda, Maryland, USA.

SICCA Study was funded by the National Institutes of Health (NIH): N01DE32636 (SICCA), HHSN26S201300057C (SICCA), U01DE028891 (SICCA), R03DE029800 (SICCA), U01HG004446 (SICCA-GWAS), P30AR070155 (SICCA-GWAS).

Genotype data from the Sjögren's International Collaborative Clinical Alliance (SICCA) Registry was obtained through dbGAP accession number phs000672.v1.p1. This study was supported by the National Institute of Dental and Craniofacial Research (NIDCR), the National Eye Institute, and the Office of Research on Women's Health through contract number N01-DE-32636. Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health (NIH) to the Johns Hopkins University (contract numbers HHSN268200782096C, HHSN268201100011I, HHSN268201200008I). Funds for genotyping were provided by the NIDCR through CIDR's NIH contract. Assistance with data cleaning and imputation was provided by the University of Washington. SICCA thanks investigators from the following studies that provided DNA samples for genotyping: the Genetic Architecture of Smoking and Smoking Cessation, Collaborative

Genetic Study of Nicotine Dependence (phs000404.v1.p1); Age-Related Eye Disease Study (AREDS) - Genetic Variation in Refractive Error Substudy (phs000429.v1.p1); and National Institute of Mental Health's Human Genetics Initiative (phs000021.v3.p2, phs000167.v1.p1). SICCA thanks the many clinical collaborators and research participants who contributed to this research.

C. The UK Primary Sjögren's Syndrome Registry is composed of the following **members:** Wan-Fai Ng¹, Simon J. Bowman², Bridget Griffiths³, Frances Hall⁴, Elalaine C. Bacabac⁵, Robert Moots⁵, Kuntal Chadravarty⁶, Shamin Lamabadusuriya⁶, Michele Bombardieri⁷, Constantino Pitzalis⁷, Nurhan Sutcliffe⁷, Nagui Gendi⁸, Rashidat Adeniba⁸, John Hamburger⁹, Andrea Richards⁹, Saaeha Rauz¹⁰, Sue Brailsford¹, Joanne Logan¹¹, Diamuid Mulherin¹¹, Paul Emery¹², Alison McManus¹², Colin Pease¹², Alison Booth¹³, Marian Regan¹³, Theodoros Dimitroulas¹⁴, Lucy Kadiki¹⁴, Daljit Kaur¹⁴, George Kitas¹⁴, Mark Lloyd¹⁵, Lisa Moore¹⁵, Esther Gordon¹⁶, Cathy Lawson¹⁶, Monica Gupta¹⁷, John Hunter¹⁷, Lesley Stirton¹⁷, Gill Ortiz¹⁸, Elizabeth Price¹⁸, Gavin Clunie¹⁹, Ginny Rose¹⁹, Sue Cuckow¹⁹, Susan Knight²⁰, Deborah Symmons²⁰, Beverley Jones²⁰, Shereen Al-Ali¹, Andrew Carr¹, Katherine Collins¹, Andini Natasari¹, Philip Stocks¹, Jessica Tarn¹, Ian Corbett³, Christine Downie³, Suzanne Edgar³, Marco Carrozzo³, Francisco Figuereido³, Heather Foggo³, Dennis Lendrem³, Iain Macleod³, Philip Mawson³, Sheryl Mitchell³, Adrian Jones²¹, Peter Lanyon²¹, Alice Muir²¹, Paula White²², Steven Young-Min²², Susan Pugmire²³, Saravanan Vadivelu²³, Annie Cooper²⁴, Marianne Watkins²⁴, Anne Field²⁵, Stephen Kaye²⁵, Devesh Mewar²⁵, Patricia Medcalf²⁵, Pamela Tomlinson²⁵, Debbie Whiteside²⁵, Neil McHugh²⁶, John Pauling²⁶, Julie James²⁶, Nike Olaitan²⁶, Mohammed Akil²⁷, Jayne McDermott²⁷, Olivia Godia²⁷, David Coady²⁸, Elizabeth Kidd²⁸, Lynne Palmer²⁸, Bhaskar Dasgupta²⁹, Victoria Katsande²⁹, Pamela Long²⁹, Charles Li³⁰, Usha Chandra³¹, Kirsten MacKay³¹, Stefano Fedele³², Ada Ferenkey-Koroma³², Ian Giles³², David Isenberg³², Helena Maconnell³², Stephen Porter³², Paul Allcoat³³, John Mclaren³³.

¹Newcastle University, Newcastle upon Tyne, UK: ²University Hospital Birmingham, Birmingham, UK; ³Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; ⁴Addenbrooke's Hospital, Cambridge, UK; ⁵Aintree University Hospitals, Liverpool, UK: ⁶Barking, Havering and Redbridge NHS Trust, Barking, UK: ⁷Bart and the London NHS Trust, London, UK; ⁸Basildon Hospital, Basildon, UK; ⁹Birmingham Dental Hospital, Brimingham, UK; ¹⁰Birmingham & Midland Eye Centre, Birmingham, UK; ¹¹Cannock Chase Hospital, Cannock, UK; ¹²Chapel Allerton Hospital, Leeds, Leeds, UK; ¹³Derbyshire Royal Infirmary, Derby, UK; ¹⁴Dudley Group of Hospitals NHS Foundation Trust, Dudley, UK; ¹⁵Frimley Park Hospital, Frimley Park, UK; ¹⁶Harrogate District Foundation Trust Hospital, Harrogate, UK; ¹⁷Gartnavel General Hospital, Glasgow, UK; ¹⁸Great Western Hospital, Swindon, UK; ¹⁹Ipswich Hospital NHS Trust, Ipswich, UK: ²⁰Macclesfield District General Hospital & Arthritis Research UK Epidemiology Unit, Manchester, Manchester, UK; ²¹Nottingham University Hospital, Nottingham, UK; ²²Portsmouth Hospitals NHS Trust, Portsmouth, UK; ²³Queen's Elizabeth Hospital, Gateshead, Gateshead, UK; ²⁴Royal Hampshire County Hospital, Winchester, UK; ²⁵Royal Liverpool University Hospital, Liverpool, UK; ²⁶Royal National Hospital for Rheumatic Diseases, Bath, UK; ²⁷Sheffield Teaching Hospitals NHS Trust, Sheffield, UK; ²⁸Sunderland Royal Hospital, Sunderland, UK; ²⁹Southend University Hospital, Southend, UK; ³⁰Royal Surrey Hospital, Guildford, UK; ³¹Torbay Hospital, Torbay, UK; ³²University College Hospital & Eastman Dental Institute, London, UK; ³³Whyteman's Brae Hospital, Kirkaldy, Fife, UK.

The UK Primary Sjögren's Syndrome Registry was funded by the Medical Research Council (G080062; W-F.N.), and the British Sjögren's Syndrome Association (W-F.N.). This work also received infra-structure support from the NIHR Newcastle Biomedical Research Centre, Newcastle and NIHR Newcastle Clinical Research Facility.

SNP Name	Reference Allele	Alternative Allele	Non-Risk	Risk	Notes
rs57494551	C (major)	T (minor)	Т	С	Reference is risk allele
rs10892294	G (major)	C (minor)	С	G	Reference is risk allele
rs4936443	C (minor)	T (major)	С	Т	
rs4938572	C (minor)	T (major)	С	Т	
rs7117261	T (minor)	C (major)	Т	С	
rs4938573	C (minor)	T (major)	С	Т	
rs12365699	G (major)	A (minor)	G	А	

Supplemental Table 2: Patient-Derived EBV B Cell Genotypes

Cell Line	Haplotype	Allele	Application Used
p1000068-2	Heterozygous		Luciferase & EMSA (pooled)
p1000069-5	Heterozygous		Luciferase & EMSA (pooled)
p1000334-2	Heterozygous		Luciferase & EMSA (pooled)
p1000181-5	Homozygous	Minor allele (1) Non-Risk	Luciferase & EMSA (pooled), 3C
p1000370-0	Homozygous	Minor allele (1) Non-Risk	3C
p1000373-7	Homozygous	Major allele (2) Risk	Luciferase & EMSA (pooled)
p1000333-5	Homozygous	Major allele (2) Risk	Luciferase & EMSA (pooled), 3C
p1000161-0	Homozygous	Major allele (2) Risk	3C

EMSA Probe Name		Sequence
rs57494551-altT-F	Non-Risk	TTCCTCCTGCCGACCCTGCTGCGCACCACATTTCCGCCTCCTCCAGGCGCTCC
rs57494551-altT-R	Non-Risk	GGAGCGCCTGAGAGGAGGCGAATATAG <mark>A</mark> AATGTGGTGCGCAGCAGGGTCGGCAGGAGGAA
rs57494551-refC-F	Risk	TTCCTCCTGCCGACCCTGCTGCGCACCACATT <mark>C</mark> CTATATTCGCCTCCTCTCAGGCGCTCC
rs57494551-refC-R	Risk	GGAGCGCCTGAGAGGAGGCGAATATAG <mark>G</mark> AATGTGGTGCGCAGCAGGGTCGGCAGGAGGAA
rs10892294-altC-F	Non-Risk	GGTTTCCTGCCACTAGTCAATCTGCAGA <mark>C</mark> ACTTTTATTGATTCTTGAAAATACAACTGTG
rs10892294-altC-R	Non-Risk	CACAGTTGTATTTTCAAGAATCAATAAAAGT <mark>G</mark> TCTGCAGATTGACTAGTGGCAGGAAACC
rs10892294-refG-F	Risk	GGTTTCCTGCCACTAGTCAATCTGCAGA <mark>G</mark> ACTTTTATTGATTCTTGAAAATACAACTGTG
rs10892294-refG-R	Risk	CACAGTTGTATTTTCAAGAATCAATAAAAGT <mark>C</mark> TCTGCAGATTGACTAGTGGCAGGAAACC
rs4936443-refC-F	Non-Risk	AGGTTTAGTTTGCCTGGAGAGAAACAGGC <mark>C</mark> GGAGAGAGACTGCGGCCTCCCTAGGGTCTT
rs4936443-refC-R	Non-Risk	AAGACCCTAGGGAGGCCGCAGTCTCTCTCCC
rs4936443-altT-F	Risk	AGGTTTAGTTTGCCTGGAGAGAAACAGGC <mark>T</mark> GGAGAGAGACTGCGGCCTCCCTAGGGTCTT
rs4936443-altT-R	Risk	AAGACCCTAGGGAGGCCGCAGTCTCTCTCCCAGCCAAACTAAACCT
rs4938572-refC-F	Non-Risk	CGGCAAATTCCTCCAGCTCAGTGGCTGCTGGG <mark>C</mark> AGCAGCACAGCCGGTTTCTCTCAAGGG
rs4938572-refC-R	Non-Risk	CCCTTGAGAGAAACCGGCTGTGCTGCT <mark>G</mark> CCCAGCAGCCACTGAGCTGGAGGAATTTGCCG
rs4938572-altT-F	Risk	CGGCAAATTCCTCCAGCTCAGTGGCTGCTGGG <mark>T</mark> AGCAGCACAGCCGGTTTCTCTCAAGGG
rs4938572-altT-R	Risk	CCCTTGAGAGAAACCGGCTGTGCTGCT <mark>A</mark> CCCAGCAGCCACTGAGCTGGAGGAATTTGCCG
rs7117261-refT-F	Non-Risk	CCCTTCTTTCCTGTCCCTGGGCACTTCCC <mark>T</mark> GGCTGCTCTCTTTCCCCACTGCCCAGCCCA
rs7117261-refT-R	Non-Risk	TGGGCTGGGCAGTGGGGAAAGAGAGCAGCC <mark>A</mark> GGGAAGTGCCCAGGGACAGGAAAGAAGGG
rs7117261-altC-F	Risk	
rs7117261-altC-R	Risk	TGGGCTGGGCAGTGGGGAAAGAGAGCAGCC <mark>G</mark> GGGAAGTGCCCAGGGACAGGAAAGAAGGG
rs4938573-refC-F	Non-Risk	TCACTTGTGTAATTCATCAACAAACTTTA <mark>C</mark> TGAGCACCTAATAGGCACTGAGTGTTTTCG
rs4938573-refC-R	Non-Risk	CGAAAACACTCAGTGCCTATTAGGTGCTCA <mark>G</mark> TAAAGTTTGTTGATGAATTACACAAGTGA
rs4938573-altT-F	Risk	TCACTTGTGTAATTCATCAACAAACTTTA <mark>T</mark> TGAGCACCTAATAGGCACTGAGTGTTTTCG
rs4938573-altT-R	Risk	CGAAAACACTCAGTGCCTATTAGGTGCTCA <mark>A</mark> TAAAGTTTGTTGATGAATTACACAAGTGA
rs12365699-refG-F	Non-Risk	TCATTTGGAAACCTCTCTCGGAGGAGCTCC <mark>G</mark> TGATCAAGGTGCAGATGCGGCAGGTGGGC
rs12365699-refG-R	Non-Risk	GCCCACCTGCCGCATCTGCACCTTGATCACGGGAGCTCCTCCGAGAGAGGTTTCCAAATGA
rs12365699-altA-F	Risk	TCATTTGGAAACCTCTCTCGGAGGAGCTCC <mark>A</mark> TGATCAAGGTGCAGATGCGGCAGGTGGGC
rs12365699-altA-R	Risk	GCCCACCTGCCGCATCTGCACCTTGATCA <mark>T</mark> GGAGCTCCTCCGAGAGAGGTTTCCAAATGA

Supplemental Table 3: EMSA Probes

Supplemental Table 4: Luciferase Reporter Assay gBlocks

	ACCCTCTGGTACCTGTTATTGACCCGCAAGGCCTACTGCAATCAAGCAGCGGCCGGT
ប្	TTGCTTCTAAACCGAGCCCTCCAATACAGCATGTCCCTGCCGCCCCCTATAGGGCCG
-ie	CCTCGTACCCTATAACCTCCACCATCATCCCCCTAAGTCCTTGCCGCCCCCTTCGGCC
51.	TCATATTCCCTCATCTTCGATAAAGCTACTCCGAGTACTTAGCCTGTTCCTCCTGCCGA
45	CCCTGCTGCGCACCACATT <mark>C</mark> CTATATTCGCCTCCTCTCAGGCGCTCCCACCCCACAC
49,	AGCTGCCGACCGCCTTCCTCCCCAGGCCCGGCCAGGCCTTAGGCCTCCGCCCGAGA
21	GTCCCCCAGAGCCGGCCCGGGGGGGCTCCCCACAGCCCCCAAAGCACCGCTGACCT
LS.	CGACCCCACCACCTCACCCCAAGCCTCGCGACTCGGGCCCGTGTCCTACCAACGAG
	GCCACTCCCGCTCGGCACCCTCGGTCCTTTATAAGCTTTGTTGAC
	ACCCTCTGGTACCTGTTATTGACCCGCAAGGCCTACTGCAATCAAGCAGCGGCCGGT
E	TTGCTTCTAAACCGAGCCCTCCAATACAGCATGTCCCTGCCGCCCCCTATAGGGCCG
alt	CCTCGTACCCTATAACCTCCACCATCATCCCCCTAAGTCCTTGCCGCCCCCTTCGGCC
51.	TCATATTCCCTCATCTTCGATAAAGCTACTCCGAGTACTTAGCCTGTTCCTCCTGCCGA
45	CCCTGCTGCGCACCACATT T CTATATTCGCCTCCTCTCAGGCGCTCCCACCCCACACA
49.	GCTGCCGACCGCCTTCCTCCCCAGGCCCGGCCAGGCCTTAGGCCTCCGCCCGAGAG
21	TCCCCCAGAGCCGGCCCGGGGGGGCTCCCCACAGCCCCCAAAGCACCGCTGACCTC
ĽŠ	GACCCCACCACCTCACCCCAAGCCTCGCGACTCGGGCCCGTGTCCTACCAACGAGG
	CCACTCCCGCTCGGCACCCTCGGTCCTTTATAAGCTTTGTTGAC
	TTCTCCTTGGTACCGGGTATTTTCCAAGTTAGTTCAGGGGCAGTTGCCGAGGAATAAC
U U	ACTGATGGGGGTTCACACTATGGCGATCTTGTTGAACTGCCTGATGTTGGTTTGTGTA
.ef	ATCTGCCCCCTTTGTGCCCAAGAACCTGTGACAAGATTCTGCTTCTGACAACCTTCTG
4-1	TGCAGGGGTAGCGACAGGAGTCTGAACAATCATTAAGTGTCCAGCCCTGGTTTCCTG
29	
92	
08	
s.	
-	
	TTCTCCTTGGTACCGGGTATTTTCCAAGTTAGTTCAGGGGCAGTTGCCGAGGAATAAC
0	
alto	
4-8	
29	
92	
08	
s1	
-	
U	
ref	
44	
36	
49	
rs	
	Green=rs49385/2

Supplementary Table 4 Continued

l3-altT	GCTGGAGGGTACCAAAGGCCTGGAGAGCTCCCAGCGCCCTCTGAGACATGGCTCCA GGTCACACAGCCCAAAGCCTTGGCCTGTTTTGTACGTGGACGGGGCAAAGAGAACAC CCTCGCCGCTTCTCTCTGCCTTTAGCAGGGCTGTAGGAAACCCCCACCAGAGACCTC CAGCTTGGAGAGAGAGAGAGTGGAACAGCCCTCTGGAAGCAAGTTACCCACAGGTTTA
rs49364/	CGGCAAATTCCTCCAGCTCAGTGGCTGCTGGGCAGAGAGAG
rs4938572-refC	GCCTTGGCGGTACCCTGTTTTGTACGTGGACGGGGCAAAGAGAACACCCTCGCCGCT TCTCTCTGCCTTTAGCAGGGCTGTAGGAAACCCCCACAGAGACCTCCAGCTTGGAG AGGAAAGAGTGGAACAGCCCTCTGGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGG AGAGAAACAGGC GGAGAGAGACTGCGGCCTCCCTAGGGTCTTCTGACGGCAAATT CCTCCAGCTCAGTGGCTGCTGGGC AGCAGCAGCCGGTTTCTCTCAAGGGCACAC CCCACACCCGCGTCACTGTGCACTAGCCTCAGATGACAGACA
rs4938572-altT	GCCTTGGCGGTACCCTGTTTTGTACGTGGACGGGGCAAAGAGAACACCCTCGCCGCT TCTCTCTGCCTTTAGCAGGGCTGTAGGAAACCCCCACCAGAGACCTCCAGCTTGGAG AGGAAAGAGTGGAACAGCCCTCTGGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGG AGAGAAACAGGC GGAGAGAGACTGCGGCCTCCCTAGGGTCTTCTGACGGCAAATT CCTCCAGCTCAGTGGCTGCTGGGTAGCAGCACAGCCGGTTTCTCTCAAGGGCACACC CCACACCCGCGTCACTGTGCACTAGCCTCAGATGACAGACA
rs7117261-refT	GCTCAGTGGTACCGGCTGCTGGGCAGCAGCAGCAGCCGGTTTCTCTCAAGGGCACAC CCCACACACCGCGTCACTGTGCACTAGCCTCAGATGACAGACA
rs7117261-altC	GCTCAGTGGTACCGGCTGCTGGGCAGCAGCAGCAGCCGGTTTCTCTCAAGGGCACAC CCCACACACCGCGTCACTGTGCACTAGCCTCAGATGACAGACA

Supplementary Table 4 Continued

eappiemen	
	ACTACTGGTACCGATTTACATATCACACATGTGCTCATCCATC
ပ္	GIIGACIGUICGUGUIGUUIGUGIIUUIGGUAUIGIGUAGGGIIAIAATUIAGIAG
ē	GAAAGACCTGACAAGGTCACAGATGTCAGTACTGAAAGGAAGAGTAGGGTAGATGGC
i i i	
82	ATTCATCAACAAACTTTA <mark>C</mark> TGAGCACCTAATAGGCACTGAGTGTTTTCGTGTATTGATC
33	ACGCATTGATCCTCACAATAACCTTTGAGATGGGTTGTGCCATTTACACAGGGCGAAG
46	AAGAGAGACTGGCCACTGTCACAGCTACTGATATCCAAGCTGAGATCCAAAGCTC
S	
	AGAGCCAAACTCAGACCCACCCCAGAAGCTTATTTCC
	ACTACTGGTACCGATTTACATATCACACATGTGCTCATCCATC
L	GTTGACTGCTCGCGCTGCCCTGCGTTCCTGGCACTGTGCAGGGTTATAATCTAGTAG
E	CAAAGACCTGACAAGGTCACAGATGTCACTACTGAAAGGAAGAGTAGGGTAGATGGC
- a	
73	
22	ATTCATCAACAAACTTTA <mark>T</mark> TGAGCACCTAATAGGCACTGAGTGTTTTCGTGTATTGATC
38	ACGCATTGATCCTCACAATAACCTTTGAGATGGGTTGTGCCATTTACACAGGGCGAAG
49	
Š	
-	CTCTGCTTCTCCTGATGAGAATGAGCACCACAGGCAGGCCACAGAAAAACACCCCAGG
	AGAGCCAAACTCAGACCCACCCCAGAAGCTTATTTCC
	CACAAGAGGTACCGCCGTTGGCGGGATTTCCCATTGTCCCCCTTGGGTAGGTA
(5	
Ŭ Ŭ	CAGGIGGEIGEICEATEICIGEACEICEAGEGECEGICEEAEIGICAGEAGEE
	CIGICCCCIACIGCIGIGICAICAAIIACICICAGGIGCCIGGCCCCACCCA
6	CCCCCACCTTGCAGCCCCGAAGGCTTCCTTCCTGGGGCAGCAGGGCCGAGTCATTT
66	GGAAACCTCTCTCGGAGGAGCTCC <mark>G</mark> TGATCAAGGTGCAGATGCGGCAGGTGGGCCG
55	
33	GCCTCAATCATGTCTCCCAATGCGGCGGCGGGGGGGGGG
12	TCACCTCTGCCTTGGGCCTGGCTCACTTTCACTGCTGAGTTAGTT
S	TGATGATGCCGCTTCAGCATCTTTTTTCTTCGGCGTTTCCTGCTCCTTTGTTTTCAAGG
	CACAAGAGGTACCGCCGTTGGCGGGGATTTCCCATTGTCCCCCTTGGGTAGGTA
. ₹	CAGGTGGCTGCTCCATCTCTGCCACCTCCAGCGCCGGTCCCACTGTGTCAGCAGCC
a	CTGTCCCCTACTGCTGTGTCATCAATTACTCTCAGGTGCCTGGCCCCCACCCA
-6	CCCCCACCTTGCAGCCCCGAAGGCTTCCTTCCTGGGGCAGCAGGGCCGAGTCATTT
69	
22	GGAAACCTCTCTCGGAGGAGCTCC <mark>A</mark> TGATCAAGGTGCAGATGCGGCAGGTGGGCCG
36	GCCTCAATCATGTCTCCAATTGCGACGGTGAATGCGGTGAGGAGTTTCGTTGGCCCA
12	TCACCTCTGCCTTGGGCCTGGCTCACTTTCACTGCTGAGTTAGTT
ي.	TGATGATGCCGCTTCAGCATCTTTTTTTTTCTTCGGCGTTTCCTGCTCCTTTGTTTTCAAGG
-	
	TACTETIGECTIGECCACTETIGEGECAAGETTACCCAAG
	ICIGAGAGGIACCCAIGGCICCAGGICACACAGCCCAAAGCCIIGGCCIGIIIIGIA
	CGTGGACGGGGCAAAGAGAACACCCTCGCCGCTTCTCTCTGCCTTTAGCAGGGCTGT
	GGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAGA
	IGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGG
×	AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACACCGCGTCACTGTGCACT
<u>s</u>	AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG
Ľ Ř	
L L	
ž	AGCIGCIGAGGCCAGCIIGGGGCCCCIICIIICCIGICCCIGGGCACIICCC <mark>I</mark> GGCI
=	GCTCTCTTTCCCCACTGCCCAGCCCAAGGAGTCCCCTCTGCAGCTGACCCGGGTTCA
▼	GCCTCCAGAACAGCGAGTTCCACAGCCCTGAAGCCTGGCCATCGTCCCTTTTCTGGA
	Reg=rs4936443_Non-risk (C)
	Green=rs4938572 Non-risk (C)
	Blue=rs7117261 Non-risk (T)

Supplementary Table 4 Continued

TCTGAGAGGTACCCATGGCTCCAGGTCACACAGCCCAAAGCCTTGGCCTGTTTGTA CGTGGACGGGGCAAAGAGAACACCCTCGCCGCTTCTCTCTGCCTTTAGCAGGGGCTGT AGGAAACCCCCACCAGAGACCTCCAGCTTGGAGAGGAAAGAGTGGAACAGCCCTCT GGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAAACAGGC GGAGAGAGAC TGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGG AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCCACACCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA			
CGTGGACGGGGCAAAGAGAACACCCTCGCCGCTTCTCTCTGCCTTTAGCAGGGCTGT AGGAAACCCCCACAGAGACCTCCAGCTTGGAGAGAGAAGAGTGGAACAGCCCTCT GGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAAACAGGC GGAGAGAGAC TGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGG AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA			TCTGAGAGGTACCCATGGCTCCAGGTCACAGCCCCAAAGCCTTGGCCTGTTTTGTA
AGGAAACCCCCACCAGAGACCTCCAGCTTGGAGAGGAAAGAGTGGAACAGCCTCT GGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAAACAGGCTGGAAGAGAGAC TGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGGT AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACACCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA			CGTGGACGGGGCAAAGAGAACACCCTCGCCGCTTCTCTCTGCCTTTAGCAGGGCTGT
GGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAAACAGGC GGAGAGAGAG TGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGG AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACCCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCAAGGAGTCCCCTCTGCAGCTGACCCGGGTTCA GCCTCCAGAACAGCGAGTTCCACAGCCCTGAAGCCTGGCCATCGTCCCTTTCTGGA CACTGGACTGGTTCATAGGGCTCAGTGCCCTGCGGCCATCGTCCCTTTTCTGGA CACTGGACTGGTTCATAGGGCTCAGTGCCCTGCGGCCTTCTCCCCACCACAGGC CTGGGAGGGGCAAGAAGCAAGCTTACCAGTT Ref=rs4936443_Risk (T) Green=rs4938572_Risk (T) Blue=rs7117261_Risk (C)			AGGAAACCCCCACCAGAGACCTCCAGCTTGGAGAGGAAAGAGTGGAACAGCCCTCT
TGCGGCCTCCCTAGGGTCTTCTGACGGCAAATTCCTCCAGCTCAGTGGCTGCTGGGT AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACACCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTGCCCGGGTTCA GCCTCCAGAACAGCGAGTTCCACAGCCCAAGGAGTCCCCTCTGCAGCTGACCCGGGTTCA GCCTCCAGAACAGCGAGTTCCACAGCCCTGAAGCCTGGCCATCGTCCCTTTTCTGGA CACTGGACTGG			GGAAGCAAGTTACCCACAGGTTTAGTTTGCCTGGAGAGAAACAGGCTGGAGAGAGA
AGCAGCACAGCCGGTTTCTCTAAGGGCACACCCCACACACCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA			
AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCCACACCCGCGTCACTGTGCACT AGCCTCAGATGACAGACAAGCCTTTCACAAGACTCTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA			
AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA			AGCAGCACAGCCGGTTTCTCTCAAGGGCACACCCCACACCCGCGTCACTGTGCACT
ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA		¥	AGCCTCAGATGACAGACAAGCCTTTCACAAGACTTTTGTGGCACTGTTCATTTCTGAG
AGCTGCTGAGGCCAGCTTGGGGCCCCTTCTTTCCTGTCCCTGGGCACTTCCCCGGCT GCTCTCTTTCCCCACTGCCCAGCCCA		kis	ACCTTCTCTATGATGAGCTCAAACTGCTTACCTCAGAGAAGAAACTGCGTGCACAGAA
GCTCTCTTTCCCCACTGCCCAGCCCAAGGAGTCCCCTCTGCAGCTGACCCGGGTTCA GCCTCCAGAACAGCGAGTTCCACAGCCCTGAAGCCTGGCCATCGTCCCTTTCTGGA CACTGGACTGG		All R	
GCCTCCAGAACAGCGAGTTCCACAGCCCTGAAGCCTGGCCATCGTCCCTTTCTGGA CACTGGACTGG			GCTCTCTTTCCCCACTGCCCAGCCCCAAGGAGTCCCCTCTGCAGCTGACCCGGGTTCA
CACTGGACTGGTTCATAGGGCTCAGTGCCCTGCGGCTTTCTCCCCCACCACAGGC CTGGGAGGGGCAAGAAGCAAGCTTACCAGTT Red=rs4936443_Risk (T) Green=rs4938572_Risk (T) Blue=rs7117261_Risk (C)			GCCTCCAGAACAGCGAGTICCACAGCCCTGAAGCCIGGCCATCGTCCCTTTTCTGGA
CTGGGAGGGGCAAGAAGCAAGCTTACCAGTT Red=rs4936443_Risk (T) Green=rs4938572_Risk (T) Blue=rs7117261_Risk (C)			
Reg=rs4936443_Risk (T) Green=rs4938572_Risk (T) Blue=rs7117261_Risk (C)			
Red=rs4936443_Risk (T) Green=rs4938572_Risk (T) Blue=rs7117261_Risk (C)			
Green=rs4938572_Risk (T) Blue=rs7117261_Risk (C)			Red=rs4936443_Risk (T)
Blue=rs7117261_Risk (C)			Green=rs4938572 Risk (T)
			Blue=rs7117261_Risk (C)

Primer Name	Primer Sequence
rs57494551 Anchor	CTCCACTCAAGATGGCGAAA
1-rs57494551 3C Short Range Primer Control	ACTGAAGAAAGTAGGGGCGG
2-rs57494551	GACACAGGAAACCTGAGGGA
3-rs57494551	GTGCATTCATGATTGTTGCC
4-rs57494551	TTGGTGAGCTGTGATTGAGC
5-rs57494551	AGTCCCTTCCAGAGGGTTTT
6-rs57494551	TTGGTTACAGATTACACCTTGT
7-rs57494551	TCCTTCCTGATCAATGTCCC
8-rs57494551	TGAAGGTAACAGTGGCCCTT
9-rs57494551	AGGTGCATGTTGCTGTCAAG
10-rs57494551	CAAGGCTCTGGGAGAGAGG
11-rs57494551	CAAGGCTCTGGGAGAGAGG
12-rs57494551	TTAGCGTGGGATACAAAGCC
13-rs57494551	TTCCTGTATTCCAATTTCCCC
14-rs57494551	TTCTCCACTCACCCCAAACT
15-rs57494551	GAGGTGCTGGAGTATCTGGG
rs4938572 Anchor	TGTAATGGGGTGTTGGGTCC
1-rs4938572 3C Short Range Primer Control	TCCTTCCTGATCAATGTCCC
2-rs4938572	TGACTTTGTGATCCAGCTGC
3-rs4938572	CTCCACTCAAGATGGCGAAA
4-rs4938572	CAAGGCTCTGGGAGAGAGG
5-rs4938572	TTTCCCTTCAAGAGAGCCAG
6-rs4938572	GCATAGAAAGGTGCTTTGGG
7-rs4938572	CTCTCCCCACTGAGTCCTCA
8-rs4938572	GAGGTGCTGGAGTATCTGGG
9-rs4938572	AAATCTTCCTTCCCAGCCTG
10-rs4938572	GTCTGAGGGTTCCTGAAGGA
11-rs4938572	CATATCCTGGGCCTTCACTG
12-rs4938572	AGGACAGTCAGAGAGCGTCAG

Supplemental Table 5: 3C-qPCR Primers

SUPPLEMENTAL FIGURES & LEGENDS

Supplemental Figure 1. Fine mapping of the *DDX6-CXCR5* region in SjD and SLE Immunochip data after imputation. (A-C) Logistic regression analysis was performed on (A) DS3-SjD (1916 SjD cases; 6194 controls), (B) DS4-SLE (3762 SLE cases; 6194 controls), and (C) DS3+DS4 (merged SjD and SLE) after quality control and imputation, identifying the top SNPs (e.g., index SNPs indicated in bold) of the *DDX6-CXCR5* association. SNPs prioritized for bioinformatic screening in this study are indicated in black; five SNPs prioritized for functional characterized are labeled in red. (D-F) Posterior probability distributions of SNPs in the *DDX6-CXCR5* region of (D) DS3, (E) DS4, and (F) DS3+DS4. SNPs with highest posterior probability are indicated. Pairwise (r^2) analysis for DS3-SjD (A, D) was based on the second most significant SNP because the most significant SNP was not in linkage disequilibrium (LD) with the haplotype.

Supplemental Figure 2. Haplotype frequency of the *DDX6-CXCR5* risk region in SjD. (A,D) Co-inheritance (D') and (B,E) pairwise linkage disequilibrium (r^2) were assessed across the *DDX6-CXCR5* risk haplotype of SjD without (A-C) or with (D-F) rs480958. (C,F) Haplotype organization and frequencies of the index SNPs from the meta-analyses, SNPs previously reported as associated with SjD and/or SLE, and SNPs with strong bioinformatic functional evidence are shown.

Supplemental Figure 3. Functional bioinformatic analyses of putative functional SNPs in the *DDX6-CXCR5* risk region. RegulomeDB, HaploReg 4.1, UCSC genome browser, GTEx, and ENCODE were used to assess the predicted histone marks and regulatory elements positioned at the indicated SNPs in 31 cell types and tissues. Total number of enhancer marks (H3K4me1, H3K27ac) or promoter marks (H3K4me3, H3K9ac) are also indicated. RegulomeDB scores, total number of eQTLs, proteins bound by ChIP, altered regulatory motifs, and DNase I HS clusters from HaploReg are depicted. White boxes indicate that no epimarks were found. Five SNPs (red) exhibit compounding bioinformatic evidence of function and were prioritized for functional interrogation.

Supplemental Figure 4. Allele- and cell-type specific differential nuclear protein affinities of SNPs rs57494551 and rs4938572. (A-B) Radiolabeled electromobility shift assays (EMSA) were performed using oligonucleotides containing the non-risk (NR) or risk (R) allele of rs57494551 and nuclear extracts from (A) THP1 and Jurkat cells or (B) Daudi cells. (C-D) Radiolabeled EMSAs were performed using oligonucleotides containing the NR or R allele of rs4938572 and nuclear extracts from (A) THP1 and Jurkat cells or (B) Daudi cells. For all panels, probes incubated in the absence of nuclear lysate were used as negative control (Lanes 1, 2). Cold competitors were used to assess non-specific binding (Lanes 5, 6). Images are representative of n>6 biological replicates. Bands indicated by numbered orange or green circles were quantified by densitometry and analyzed using paired t-test; p-values are indicated.

Supplemental Figure 5. Allele- and cell-type specific differential nuclear protein affinities of SNPs rs7117261. (A-C) Radiolabeled electromobility shift assays (EMSA) were performed using oligonucleotides containing the non-risk (NR) or risk (R) allele of rs7117261 and nuclear extracts from (A) EBV B and A253 cells, (B) Daudi cells, or (C) THP1 and Jurkat cells. For all panels, probes incubated in the absence of nuclear lysate were used as negative control (Lanes 1, 2). Cold competitors were used to assess non-specific binding (Lanes 5, 6). Images are representative of n>6 biological replicates. Bands indicated by numbered orange or green circles were quantified by densitometry and analyzed using paired t-test; p-values are indicated.

Supplemental Figure 6. Allele- and cell-type specific differential nuclear protein affinities of SNPs rs4936443. (A-C) Radiolabeled electromobility shift assays (EMSA) were performed using oligonucleotides containing the non-risk (NR) or risk (R) allele of rs4936443 and nuclear extracts from (A) EBV B and A253 cells, (B) Daudi cells, or (C) THP1 and Jurkat cells. For all panels, probes incubated in the absence of nuclear lysate were used as negative control (Lanes 1, 2). Cold competitors were used to assess non-specific binding (Lanes 5, 6). Images are representative of n>6 biological replicates. Bands indicated by numbered orange or green circles were quantified by densitometry and analyzed using paired t-test; p-values are indicated.

Supplemental Figure 7. Allele- and cell-type specific differential nuclear protein affinities of SNPs rs4938573. (A-C) Radiolabeled electromobility shift assays (EMSA) were performed using oligonucleotides containing the non-risk (NR) or risk (R) allele of rs4938573 and nuclear extracts from (A) EBV B and A253 cells, (B) Daudi cells, or (C) THP1 and Jurkat cells. For all panels, probes incubated in the absence of nuclear lysate were used as negative control (Lanes 1, 2). Cold competitors were used to assess non-specific binding (Lanes 5, 6). Images are representative of n>6 biological replicates. Bands indicated by numbered orange or green circles were quantified by densitometry and analyzed using paired t-test; p-values are indicated.

Supplemental Figure 8. Allele- and cell-type specific differential nuclear protein affinities of SNPs rs12365699. (A-B) Radiolabeled electromobility shift assays (EMSA) were performed using oligonucleotides containing the non-risk (NR) or risk (R) allele of rs12365699 and nuclear extracts from (A) Daudi and Jurkat cells or (B) THP 1. For all panels, probes incubated in the absence of nuclear lysate were used as negative control (Lanes 1). Images are representative of n>6 biological replicates. Bands indicated by numbered orange or green circles were quantified by densitometry and analyzed using paired t-test; p-values are indicated.

Supplemental Figure 9. Allele- and cell-type specific differential nuclear protein affinities of SNPs rs10892294. (A-B) Radiolabeled electromobility shift assays (EMSA) were performed using oligonucleotides containing the non-risk (NR) or risk (R) allele of rs10892294 and nuclear extracts from (A) Daudi and Jurkat cells or (B) THP1 cells. For all panels, probes incubated in the absence of nuclear lysate were used as negative control (Lanes 1). Images are representative of n>6 biological replicates. Bands indicated by numbered orange or green circles were quantified by densitometry and analyzed using paired t-test; p-values are indicated.

Supplemental Figure 10. Allele-specific promoter and enhancer activity of rs10892294 and rs12365699 on the *DDX6-CXCR5* region in 293T cells. gBlocks carrying the non-risk or risk alleles of (A) rs10892294 or (B) rs12365699 were cloned into a promoter-less (pGL4.14; noP) or minimal promoter (pGL4.26; minP) luciferase vector. Plasmids were transfected into 293T cells. Luciferase activity was measured after 24 hours and normalized to the Renilla transfection control and then the vector-only control; reported as Relative Luciferase Activity. Statistical comparisons were performed using a paired t-test; p-values are indicated.

Supplemental Figure 11. Complex chromatin architecture revealed across the *DDX6-CXCR5* **region in human primary B cells.** SjD GWAS association (top panel), publicly available epigenomic enrichment, and promoter-capture Hi-C looping data (red lines) across the *DDX6-CXCR5* region in human primary B cells are shown. Vertical grey lines indicate the locations of rs57494551 or rs4938572, respectively.

Supplemental Figure 12. Complex chromatin architecture revealed across the *DDX6-CXCR5* region in primary human T cells. SjD GWAS association (top panel) and publicly available epigenomic enrichment across the *DDX6-CXCR5* region in human primary (A) CD4⁺ T cells and (B) CD8⁺ T cells. Vertical grey lines indicate the locations of rs57494551 or rs4938572, respectively. Promoter-capture Hi-C looping (purple lines) contrasts the summary 3C-qPCR results reported in Figure 6 (red lines); 3C-qPCR line thickness indicates relative interaction frequency (RIF).

Supplemental Figure 13. Complex chromatin architecture revealed across the *DDX6-CXCR5* region in human primary monocytes. SjD GWAS association (top panel) and publicly available epigenomic enrichment across the *DDX6-CXCR5* region in human primary monocytes. Vertical grey lines indicate the locations of rs57494551 or rs4938572, respectively. Summary 3C-qPCR results reported in Figure 6 are also shown (red lines); line thickness indicates relative interaction frequency (RIF).

Supplemental Figure 14. Complex chromatin architecture revealed across the *DDX6-CXCR5* **region in human primary macrophages.** SjD GWAS association (top panel), publicly available epigenomic enrichment, and promoter-capture Hi-C looping data (red lines) across the *DDX6-CXCR5* region in human primary **(A)** M0, **(B)** M1, and **(C)** M2 macrophages. Vertical grey lines indicate the locations of rs57494551 or rs4938572, respectively.

Supplemental Figure 15. Complex chromatin architecture revealed across the DDX6-*CXCR5* region in human primary neutrophils. SjD GWAS association (top panel), publicly available epigenomic enrichment, and promoter-capture Hi-C looping data (red lines) across the *DDX6-CXCR5* region in human neutrophils. Vertical grey lines indicate the locations of rs57494551 or rs4938572, respectively.

Supplemental Figure 16. Complex chromatin architecture revealed across the *DDX6-CXCR5* **region in human 293T cells.** SjD GWAS association (top panel) and publicly available epigenomic enrichment across the *DDX6-CXCR5* region in 293T cells. Vertical grey lines indicate the locations of rs57494551 or rs4938572, respectively. Summary 3C-qPCR results reported in Figure 6 are also shown (red lines); line thickness indicates relative interaction frequency (RIF).

Number of Transcription Factors & IMPACT Scores

Supplemental Figure 17. IMPACT regulatory element probabilities and corresponding transcription factor elements in immune cells. IMPACT uses transcription factor binding sites (TF) to predict the locations of regulatory sites across the genome. Image shows predicted IMPACT regulatory elements for GM12878 B cell line and primary human T cells, macrophages, monocytes, regulatory T cells (Treg), Th1 cells, and Th2 cells. The location of the rs57494551 and rs4938572 are indicates as vertical grey lines.

Supplemental Figure 18. eQTLs for five prioritized SNPs across blood, salivary and kidney tissue, and immune cells. eQTL values from GTEx in minor salivary gland, blood, kidney tissue, EBV B cells, and human primary immune cells in genes upstream and downstream of the *DDX6-CXCR5* interval for (A) rs57494551, (B) rs4936443, (C) rs4938572, (D) rs7117261, (E) rs4938573. Vertical lines separate different cell types. Horizontal lines highlight interesting genes such as *CXCR5*, *DDX6*, *Inc-PHLDB1-1*, *TRAPPC4*, and *IL10RA*.

Supplemental Figure 19. Expression Atlas results for Inc-PHLDB1-1 (ENSG00000255422). RNA-seq results from Expression Atlas (<u>https://www.ebi.ac.uk/gxa/home</u>) published studies where increases in *Inc-PHLDB1-1* (ENSG00000255422) expression are in red and decreased expression are in blue. Superscripts are used to depict experiments with multiple plotted conditions.