Adenosine triggers early astrocyte reactivity that provokes microglial responses and
drives the pathogenesis of sepsis-associated encephalopathy in mice
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Supplementary Fig. 1: Peripheral LPS challenge evokes rapid neuroinflammatory
responses and glial reaction.

a Changes of marker genes for astrocytes (Gfap), microglia (ltgam), pericytes (Pdgfrb), and OPCs
(Pdgfra) in the cortex after PBS/LPS injection (n = 3 mice per group).

b, ¢ Expression levels of several chemokines and proinflammatory cytokines in the cortex after
PBS/LPS injection (n = 3 mice per group).

Summary data are presented as the mean + SEM. Statistical significance in a-c were assessed
by two-way ANOVA, Fisher's LSD test; *P <0.05, **P <0.01, ***P <0.001. Source data are
provided as a Source Data file.
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Supplementary Fig. 2: Adenosine evokes upregulation of inflammation-related genes in
the brain via A1AR signaling.

a-c Expression of inflammation-related genes were enhanced in the mouse cortex six hours post
adenosine, NECA, and CPA injections (n = 3 mice per group).

d Representative images of immunoreactivity of c-Fos in Sox9* astrocytes and NeuN+ neurons
in the mouse cortex upon LPS and A1AR antagonist (DPCPX) injection (left). c-Fos expression
in astrocytes and neurons was reduced by DPCPX (right) (n = 3 mice per group).

e Representative images of immunolabeled nuclear p65* microglia and CD31* blood vessels upon
LPS and A1AR antagonist (DPCPX) injection (left). Nuclear p65" microglia and perivascular
microglia were reduced by DPCPX (right) (n = 4 mice in LPS+Veh group, n = 3 mice in
LPS+DPCPX group).

f CPA further upregulated the inflammation-related genes in the cortex induced by a peripheral
LPSlow (1 mg/kg, i.p.) injection. (n = 3 mice per group).
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g DPCPX administration reduced the inflammation-related genes in the cortex induced by a
peripheral LPShigh (5mg/kg, i.p.) injection. (n = 3 mice per group).

h, i Inflammation-related gene expressions were reduced in the cortex of Adora1 cKO mice at 6
hours post NECA and CCPA injection compared to ctl mice (n = 3 mice per group in (G), n =6
mice per group in (H)).

j,» k Inflammation-related gene expressions were not altered in the cortex of mice with specific
ablation of Adora? in microglia (using Cx3CR1-CreERT2 mice) and oligodendrocyte precursor
cells/pericytes (using NG2-CreERT2 mice, only Ccl2 was reduced).

Summary data are presented as the mean + SEM. Statistical significance in a-k was assessed

by two-tailed unpaired Student’s t test; *P <0.05, **P <0.01, ***P <0.001. Source data are
provided as a Source Data file.
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Supplementary Fig. 3: Generation and validation of astrocyte-specific A1AR deficient mice.

a Schematic illustration of mouse breeding for astrocyte-specific A1AR deficient mice (Adora
cKO) and experiment plan. GLAST-CreERT2 (GLAC) mice were crossed to floxed Adora? mice.
RiboTag mice were also introduced to the breeding for specifically and directly purify translated
mMRNA from astrocytes without sorting cells.

b Representative image of RiboTag expression (indicated by HA-tag) in Sox9* astrocytes. Scale
bar = 50 ym.

¢ Adora1 expression in astrocytes was reduced in Adora1™ (het) and Adora? cKO mice one
week after tamoxifen injection by using gPCR (n = 3 mice per group).

d Adora1 expression in astrocytes was reduced in Adora’ cKO mice 9 weeks after tamoxifen
injection by using RNA-Seq (n = 3 mice per group).

Summary data are presented as the mean + SEM. Statistical significance in ¢ was assessed using
a one-way ANOVA, Fisher's LSD test; statistical significance in d was assessed using two tailed

unpaired Student’s t test, *P <0.05, **P <0.01, ***P <0.001. Source data are provided as a
Source Data file.
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Supplementary Fig. 4: Functional validation of astrocyte-specific A1AR deficient mice by
Ca?" imaging.

a, b Schematic illustration of mouse breeding for Ca?" imaging and experiment plan.
GLACxA1AR" mice were crossed to Rosa26-GCaMP3 mice. GLACxA1AR""xRosa26-GCaMP3
mice were treated with tamoxifen at 4 weeks and used for ex vivo Ca?* imaging at 13 weeks of
age. Coronal brain slices were incubated in TTX (tetrodotoxin). During recording the A1AR
agonist CPA (1 pyM) was applied focally. Sulforhodamine 101 (SR101, 4 pug/ml) was mixed with
CPA to indicate the drug application.

¢ Images showing the change of Ca?* activity during the recording in ctl and Adora? cKOmice.
Notably, CPA application evoked high Ca?* increase in ctl mice which was not observed in Adora1
cKO mice, functionally confirming the deletion of A1ARs in astrocytes. The rightmost images show
automatically detected regions of interests (ROIs) with dynamic Ca?* activities by a custom-made
tool MSparkles.

d Heatmap plot showing amplitude and duration of spontaneous Ca?* events detected from all
ROls.

e Six ROIs were selected to show the characteristics of Ca?* events.

f, g Analyses of Ca?* events in ctl (n = 15 slices from 3 mice) and Adora? cKO (n = 6 slices from
3 mice) slices mice before (as baseline) and after CPA application using MSparkles.

Summary data are presented as the mean + SEM. Statistical significance in f, g was assessed

using two tailed unpaired Student’s t test, *P <0.05, **P <0.01, ***P <0.001, ****P <0.0001.
Source data are provided as a Source Data file.
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Supplementary Fig. 5: Activation of A1AR evokes upregulation of inflammation-related
genes in primary astrocytes.

a Schematic illustration of drug application to primary astrocytes. Created with BioRender.com
released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license.

b, ¢ CCPA application significantly increased expression levels of several chemokines (e.g.,
Cxcl1, Cxcl10, Ccl5), whereas CV1808 (non-selective antagonist of A2ARs) did not cause
significant expression alterations of all the tested inflammation-related genes.

Summary data are presented as the mean + SEM, n = 4 individual primary cultures. Statistical
significance of each gene expression in b, ¢ was assessed using two tailed unpaired Student’s t
test, ns: not significant, *P < 0.05, **P < 0.01. Source data are provided as a Source Data file.
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Supplementary Fig. 6: A1AR-deficient astrocytes are less reactive to the peripheral LPS

challenge.

a Heatmap of cell type-specific marker gene expression showed immunoprecipitation (IP) of
RiboTag enriched astrocyte-specific genes.

b PCA (principal component analysis) of the RNA-seq dataset (n = 3 mice per group).
c-e Volcano plots showing gene expression changes in Adora? cKO group compared to ctl group

at 0 hpi, 6 hpi, 24 hpi.

f Heatmap of marker genes for A1/A2 astrocytes.
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Supplementary Fig. 7: Transcriptomic data analysis reveals A1AR-deficient astrocytes are
less reactive to the peripheral LPS challenge.

a Mean profile representation of the temporal gene expression pattern for each cluster in Fig. 4a.
Data points correspond to 0 hpi, 6 hpi, 24 hpi.

b Metascape pathways for each cluster in Fig. 4a generated by Metascape analysis.

c List of prediction of transcription regulators following expression pattern of sub-clusters in Fig.
4a.

11



b c i
octl octl o ctl — octl
& o Adorat cKO o Adora1 cKO o Adorat cKO NE o Adora? cKO
< 40 32 €10
8 £ ** =
= = © 5 [
- g S30{ s s 2 5z 7 s 8
" 5] © — 5. & ° £3 2
Q E 2 = o8 G 6
o = © 20 3% 16 c
= T = o o 22 3 4
5 2 2 °of | 22 3
= @ o 10 = 8 e 5
2 w tn
K 0 0 3 0
0 hpi 6 hpi 24 hpi 0 hpi 6 hpi 24 hpi 0-24h O
e |

w*1 Immnue cells =0 : CNS-associated|
subset 2006 /\ i . phagocytes
o Singlecell ° g | Microglia.agh
3 o
o sox B
I ;
B T
FSC-A
f g octl o AdoralcKO
. . ) ) 364 X 69
0 hpi 6 hpi 0 hpi 6 hpi 2 <
. 02 44 2 44
o Neutrophils| . 3 7
[}
— M 4 1
T o ‘:i 2] Z 2]
R g £
’ monocytes| ° Sl 3 0
P R = z
6 g6
*
105 1!)5 i - °
o X o0 2
2 . ‘ pee I
X 1 41 o F 41 ns
® 10 4 n o ©
S H &, | ns
S ]
S A - e =2 ° g21 —
<0 0 0 8 ﬁ o -g- -
© _—— °
g o= b o ldesl || 8 LA
Ly6C oh 6h = Ooh 6h

Supplementary Fig. 8: Astrocytic A1AR deficiency reduces BBB disruption and neutrophil
infiltration post peripheral LPS injection.

a Representative images of immunolabeled Iba1* microglia and CD31* blood vessels at 24 hpi.
Arrowheads indicate perivascular microglia. Scale bar = 20 ym.

b Proportion of perivascular microglia was increased in Adora1 cKO mice compared to ctl mice
(n =4 mice in ctl and Adora1 cKO at 0 hpi, n = 5 mice in ctl at 6 hpi, n = 3 mice in Adora1 cKO at
6 hpi, n = 6 mice in ctl at 24 hpi, n = 4 mice in Adora1 cKO at 24 hpi).

¢ CD31* area was not altered in Adora? cKO and ctl mice at 0 hpi, 6 hpi, 24 hpi.

d EB extravasation was reduced in the brains of Adora? cKO mice compared to ctl mice which
were injected with EB at 0 hpi and analyzed at 24 hpi (n = 3 mice per group).

e Gating strategy for different cell types from brain cell suspension.

f Proportion of infiltrated immune cell (monocytes, neutrophils, and T cells) was reduced in the
brain of cKO mice at 6 hpi, except macrophages.

g Statistical analysis of the ratio of specific immune cell subtypes in the immune cell subset (single
cells). One dot stands for one mouse. (n = 3 ctl and Adora? cKO mice at 0 hpi; n = 6 ctl mice and
4 Adora1 cKO mice at 6 hpi).

h Representative images of immunolabeled of Ly6B* neutrophils in the brain parenchyma at 24
hpi. Scale bars = 20 ym.

i The density of Ly6B* cells was reduced in the brain of Adora? cKO mice compared to ctl mice
at 24 hpi (n = 7 ctl mice and 8 Adora1 cKO mice).

Summary data are presented as the mean + SEM. Statistical significance in b, ¢, g were assessed
using a two-way ANOVA, Fisher's LSD test. Statistical significance in d, i was assessed using
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two-tailed unpaired Student’s t test, ns: not significant, *P < 0.05, **P <0.01, ***P <0.001. Source
data are provided as a Source Data file.
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Supplementary Fig. 9: Astrocytic A1AR deficiency reduces overall neuroinflammation
upon LPS challenge which is attenuated by enhancing Gi signaling.

a LCN2 expression was reduced in Adora1 cKO compared to ctl 24 hpi by Western blot.

b, ¢ The expression of 111 cytokines in the cortex of ctl and Adora1 cKO mice was measured by
a proteomic profiling assay at 24 h after PBS or LPS injection. Cytokine expression was reduced
in the cortex of Adora? cKO group compared to ctl (PBS) group (samples from 3 mice were mixed
for each group).

d, e The expression of 40 cytokines in the cortex of AAV-infected ctl and Adora? cKO mice was
measured by a proteomic profiling assay 24 hours after LPS and CNO injection. Enhancing Gi
signaling in Adora1l cKO mice increased cytokine expression after LPS and CNO injection
(samples from 3 mice were pooled for each group).

Summary data are presented as the mean + SEM. Statistical significance in a were assessed by
two-way ANOVA, Fisher's LSD test, ns: not significant, *P <0.05, **P <0.01. Source data are
provided as a Source Data file.

14



a c
YOV oy W o LPS+Veh o LPS+DPCPX

- A

0 2 4 24 " [hours]
YLPS (5 mg/kg, i.p.) Y Open field test

1000 200+

B3
)
. . u —_—
Y DPCPX (2 mg/kg, i.p.) §analysis 3 750 % 150
> (]
b 8 = ns
LPS+Veh LPS+DPCPX z 500+ 3 100
; S Q c
b, “y c — o
| £ 250- e 50{
= 2 E o
< ! o = o %
N ©
~ e o & o
X ’ ,“} -

Supplementary Fig. 10: A1AR antagonist treatment ameliorated depression-like behavior
of mice post LPS injection.

a Schematic illustration. Ctl mice were injected with DPCPX at the early phase of systemic
inflammation and were used in open-field test at 24 h post LPS injection.

b Representative trajectory analysis of Vehicle (Veh) and DPCPX-treated mice in 10 min in the
open-field test at 24 hpi.

¢ DPCPX treated mice displayed increased locomotion compared to vehicle ctl mice at 24 hpi (n
= 8 mice in LPS+Veh group, n = 12 mice in LPS+DPCPX group).

Summary data are presented as the mean + SEM in c. Statistical significance in ¢ was assessed
using two-tailed unpaired Student’s t test. ns: not significant, **P < 0.01. Source data are provided
as a Source Data file.
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Supplementary Fig. 11: Graphical abstract.
Graphical abstract was created with BioRender.com released under a Creative Commons

Attribution-NonCommercial-NoDerivs 4.0 International license.
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Supplementary Table 1: key resources

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Goat anti-Sox9 (1:500) R&D Systems Cat# AF3075
Rabbit anti-Ilba1 (1:1000) Wako Cat# 019-19741
Goat anti-lba1 (1:500) abcam Cat# ab5076
Mouse anti-NeuN (1:500) Millipore Cat# MAB377
Rat anti-CD31 (1:100) BD Pharmingen Cat# 550274
Rat anti-Ly6B (1:500) Bio Rad Cat# MCA771GT
Mouse anti-HA (1:500) Biolegend Cat# 901513
Goat anti-LCN2 (1:1000) R&D Systems Cat# AF1857
Chicken anti-GFP (1:1000) Thermo Fisher Scientific Cat# 10524234
Rabbit anti-p-STAT3 (1:1000) Cell Signaling Technology Cat# 9145
Rabbit anti-NF-kappaB p65 (1:500) Cell Signaling Technology Cat# 8242
Guinea pig anti-cFos (1:4000) Synaptic Systems Cat# 226004
Brilliant Violet 421™ anti-mouse CD45 Antibody Biolegend Cat# 103133
APC anti-mouse Ly-6G Antibody Biolegend Cat# 127613
PerCP anti-mouse/human CD11b Antibody Biolegend Cat# 101229
PE/Cyanine7 anti-mouse Ly-6C Antibody Biolegend Cat# 128017
APC/Cyanine7 anti-mouse CD3 Antibody Biolegend Cat# 100221
Brilliant Violet 421™ Rat IgG2b, k Isotype Ctrl Biolegend Cat# 400639
Antibody

APC Rat IgG2a, k Isotype Ctrl Antibody Biolegend Cat# 400511
PerCP Rat IgG2b, « Isotype Ctrl Antibody Biolegend Cat# 400629
PE/Cyanine7 Rat IgG2c, « Isotype Ctrl Antibody Biolegend Cat# 400721
APC/Cyanine7 Rat IgG2b, k Isotype Ctrl Antibody  Biolegend Cat# 400623

Donkey anti-rabbit IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 488 (1:1000)
Donkey anti-rabbit IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 546 (1:1000)
Donkey anti-rabbit IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 647 (1:1000)
Donkey anti-goat IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 488 (1:1000)
Donkey anti-goat IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 546 (1:1000)
Donkey anti-goat IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 647 (1:1000)
Donkey anti-mouse IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 488 (1:1000)
Donkey anti-mouse IgG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 546 (1:1000)
Donkey anti-mouse 1gG (H+L) cross-adsorbed
secondary antibody, Alexa Fluor 647 (1:1000)
Donkey anti-Guinea Pig IgG (H+L) secondary
antibody, Alexa Fluor 647-AffiniPure (1:1000)
Donkey anti-chicken IgY (IgG) (H+L) secondary
antibody, Alexa Fluor 488 (1:1000)
Cy5-AffiniPure Donkey Anti-Rat IgG (H+L)
(1:1000)

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Thermo Fisher Scientific

Jackson ImmunoResearch Labs

Thermo Fisher Scientific

Jackson ImmunoResearch Labs

Cat# A-21206;
Cat#t A10040;

Cat# A-31573;
Cat# A-11055;
Cat# A-11056;
Cat#t A-21447;
Cat#t A-21202;
Cat# A10036;

Cat# A-31571;

Cat# 706-605-148;

Cat# A78948;

Cat# 712-175-150;

Drugs, Chemicals, and Kits

APCP

NBMPR
Dipyridamole
EHNA
lodotubericidine

Tocris Bioscience
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich
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Adenosine

DPCPX

CPA

CCPA

NECA

Evans blue

Lipopolysaccharides from Escherichia coli 055:B5
Sulforhodamine 101

Proteome Profiler Mouse Cytokine Array Kit,
Panel A

Proteome Profiler Mouse XL Cytokine Array
Adenosine Assay Kit (Fluorometric)

RNeasy Micro Kit

Omniscript RT Kit

Cycloheximide

DL-Dithiothreitol

Heparin sodium salt from porcine intestinal
mucosa

Clozapine N-oxide dihydrochloride (CNO)
Tamoxifen

Sucrose

TRIZMA® base

Hot Start Taq EvaGreen® gPCR Mix (No ROX)
2-Mercaptoethanol

Hanks' Balanced Salt solution

NP40

Recombinant RNasin™ Ribonuclease Inhibitor
cOmplete™ Protease Inhibitor Cocktail
Dynabeads™ Protein G for Immunoprecipitation
UltraPure™ 1M Tris-HCI buffer, pH 7.5

Sigma-Aldrich

abcam

abcam

Tocris Bioscience
Tocris Bioscience
Sigma-Aldrich
Sigma-Aldrich

Thermo Fisher Scientific

R&D Systems
R&D Systems
abcam
QIAGEN
QIAGEN
Sigma-Aldrich
Sigma-Aldrich

Sigma-Aldrich

Tocris Bioscience
Carbobution
Sigma-Aldrich
Sigma-Aldrich

Axon

Sigma-Aldrich
Sigma-Aldrich
Sigma-Aldrich

Promega

Roche

Thermo Fisher Scientific
Thermo Fisher Scientific

Cat# A9251
Cat# ab120396
Cat# ab120398
Cat# 1705
Cat# 1691

Cat# E2129
Cat# L2880
Cat# S359

Cat# ARY006
Cat# ARY028
Cat# ab211094
Cat# 74004
Cat# 205113
Cat# C7698
Cat# D0632

Cat# H5515
Cat# 6329
Cat# CC99648
Cat# S0389

Cat# T1503

Cat# 27490

Cat# M3148

Cat# H6648

Cat# 74385

Cat# N2515

Cat# 11836145001
Cat# 10004D

Cat# 15567027

KCI (2 M), RNase free Thermo Fisher Scientific Cat# AM9640G
MgCl2 (1 M) Thermo Fisher Scientific Cat# AM9530G
PBS, pH7.4 Thermo Fisher Scientific Cat# 10010023
Tetrodotoxin Citrate (TTX) Alomone Labs Cat# T-550
Miglyol® 812 Caesar & Loretz Cat# 3274
Ketabel 100 mg/ml bela-pharm Ketamin
Xylazine 2% Bayer Rompun
Buprenorphine Indivior Cat# IND00979
Dexamethasone
TritonX-100 Sigma-Aldrich Cat# T8787
4',6-Diamidin-2-phenylindol (DAPI) Sigma-Aldrich Cat# D9542
Mouse lines
Mouse: C57BL/6N N/A
Mouse: A1ARA (Scammell et al., 2003) N/A
Mouse: Glast-CreERT2 (Mori et al., 2006) N/A
Mouse: Cx3cr1-CreERT2 (Jung et al., 2000) N/A
Mouse: Cspg4-CreERT2 (Huang et al., 2014) N/A
Mouse: RiboTag mice (RIp22HA) (Sanz et al., 2009) N/A
Mouse: Rosa 26-CAG-Is|-GCAMP3 (Paukert et al., 2014) N/A
Viruses

gift from Yulong Li (Peking
AAV2/5 GfaABC1D-GRABAdo Virus University, CN) N/A
rAAV-GFAP-hM4D(Gi)-mCherry-WPREs,
AAV2/5 VTA Wuhan PT-1091

gift from André Zeug (Hannover
AAV2/5-GFAP-tdtomato virus Medical School) N/A
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Deposited Data

Raw and analyzed data

This paper

GSE248275

Software and Algorithms

ImageJ

Imaris

Zen
Msparkles

GraphPad Prism 10

R statistical programming environment
Bioconductor

HISAT2

FastQC

FeatureCounts

DESeq2

Pheatmap

ClusterProfiler

Metascape

(Schneideretal., 2012)

Bitplane

Zeiss
(Stopper et al., 2023)

GraphPad Software

R Foundation for Statistical
Computing

(Huber et al., 2015)

(Kim et al., 2019)

(Andrews, 2010)

(Liao et al., 2014)

(Love et al., 2014)

(Kolde, 2019)

(Yuetal., 2012)

(Zhou et al., 2019)

https://imagej.nih.gov/
ij/
https://imaris.oxinst.c
om/
https://www.zeiss.co
m/microscopy/de/pro
dukte/software/zeiss-
zen.html
https://gitlab.com/Geb
hard/MSparkles/
https://www.graphpad
.com/

https://www.r-

project.org/
https://bioconductor.o

rg/
http://daehwankimlab.
github.io/hisat2/
https://www.bioinform
atics.babraham.ac.uk/
projects/fastqc/
https://rmnh.github.io/
bioinfo-
notebook/docs/featur
eCounts.html
https://bioconductor.o
rg/packages/
release/bioc/html/DE
Seqg2.html
https://cran.r-
project.org/web/packa
ges/pheatmap/
https://bioconductor.o
rg/packages/release/
bioc/html/clusterProfil
er.html
https://metascape.org
/
https://www.noldus.co

EthoVision XT 11.5 Noldus Technology m/
https://de.mathworks.
MATLAB Mathworks com/
https://www.wavemetr
Igor pro Wavemetrics ics.com/
https://www.biorender
Biorender Biorender .com/
Primer sequences
Gene Primer Sequence Purpose
Actb Forward CTTCCTCCCTGGAGAAGAGC RT-gPCR
Reverse ATGCCACAGGATTCCATACC
Cxclt Forward AGACCATGGCTGGGATTCAC RT-gPCR
Reverse CTCGCGACCATTCTTGAGTGT
Cxcl10 Forward AAGTGCTGCCGTCATTTTCT RT-gPCR
Reverse GTGGCAATGATCTCAACACG
Ccl2 Forward GTTGGCTCAGCCAGATGCA RT-gPCR
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https://www.r-project.org/
https://www.r-project.org/

Ccl5

Len2

Tnf

I1a

I11b

116

Gfap

Pdgfra

Pdgfrb

ltgam

GCaMP3 Kl
GCaMP3 KI
GCaMP3 WT
GCaMP3 WT
GLAST
GLAST Ki
GLAST WT
HA

HA

A1AR
A1ARKI
A1AR WT

Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Forward
Reverse
Reverse
Forward
Reverse
Forward
Reverse
Reverse

AGCCTACTCATTGGGATCATCTTG
TGCCCACGTCAAGGAGTATTT
TCTCTGGGTTGGCACACACTT
ATGTCACCTCCATCCTGGTC
CACACTCACCACCCATTCAG
CCACCACGCTCTTCTGTCTAC
AGGGTCTGGGCCATAGAACT
CGCTTGAGTCGGCAAAGAAAT
CTTCCCGTTGCTTGACGTTG
TGCCACCTTTTGACAGTGATG
TGATGTGCTGCTGCGAGATT
GAGTGGCTAAGGACCAAGACC
AACGCACTAGGTTTGCCGA
TGGAGGAGGAGATCCAGTTC
AGCTGCTCCCGGAGTTCT
TCCTTCTACCACCTCAGCGAG
CCGGATGGTCACTCTTTAGGAAG
ATGAATCGCTGCTGGGCGCTCTTC
TCAAAGGAGCGGATGGAGTGGTCG
ATGGACGCTGATGGCAATACC
TCCCCATTCACGTCTCCCA
CACGTGATGACAAACCTTGG
GGCATTAAAGCAGCGTATCC
CTCTGCTGCCTCCTGGCTTCT
CGAGGCGGATCACAAGCAATA
GAGGCACTTGGCTAGGCTCTGAGGA
GGTGTACGGTCAGTAAATTGGACAT
GAGGAGATCCTGACCGATCAGTTGG
GGGAGGCTTGCTGGATATG
TTTCCAGACACAGGCTAAGTACAC
CTTTGCCCTCAGCTGGCTACCG
ATCGGAATTCGCTAGCTTCGGC
TTCTCGGGGTCAGGAGAGCACC

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

RT-gPCR

genotyping PCR

genotyping PCR

genotyping PCR

genotyping PCR

genotyping PCR
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