Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice

Qilin Guo^{1,2}, Davide Gobbo¹, Na Zhao^{1,3}, Hong Zhang⁴, Nana-Oye Awuku⁵, Qing Liu¹, Li-Pao Fang^{1,2}, Tanja M. Gampfer⁶, Markus R. Meyer⁶, Renping Zhao⁴, Xianshu Bai^{1,2}, Shan Bian⁷, Anja Scheller^{1,2}, Frank Kirchhoff^{1,2*}, Wenhui Huang^{1,2*}

- 1. Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- 2. Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421 Homburg, Germany
- 3. Institute of Anatomy and Cell Biology, University of Saarland, 66421, Homburg, Germany
- 4. Biophysics, CIPMM, University of Saarland, 66421 Homburg, Germany
- 5. Molecular Neurophysiology, CIPMM, University of Saarland, 66421 Homburg, Germany
- 6. Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
- 7. Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China

(*) For correspondence:

Frank Kirchhoff: Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany

Email: frank.kirchhoff@uks.eu

Wenhui Huang: Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421 Homburg, Germany

Email: wenhui.huang@uks.eu

Supplementary information in this PDF file contains Supplementary Figures 1–11 with legends and Supplementary Table 1.

Supplementary Fig. 1: Peripheral LPS challenge evokes rapid neuroinflammatory responses and glial reaction.

a Changes of marker genes for astrocytes (*Gfap*), microglia (*Itgam*), pericytes (*Pdgfrb*), and OPCs (*Pdgfra*) in the cortex after PBS/LPS injection (n = 3 mice per group).

b, **c** Expression levels of several chemokines and proinflammatory cytokines in the cortex after PBS/LPS injection (n = 3 mice per group).

Summary data are presented as the mean \pm SEM. Statistical significance in a-c were assessed by two-way ANOVA, Fisher's LSD test; *P < 0.05, **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Fig. 2: Adenosine evokes upregulation of inflammation-related genes in the brain via A1AR signaling.

a-c Expression of inflammation-related genes were enhanced in the mouse cortex six hours post adenosine, NECA, and CPA injections (n = 3 mice per group).

d Representative images of immunoreactivity of c-Fos in Sox9⁺ astrocytes and NeuN+ neurons in the mouse cortex upon LPS and A1AR antagonist (DPCPX) injection (left). c-Fos expression in astrocytes and neurons was reduced by DPCPX (right) (n = 3 mice per group).

e Representative images of immunolabeled nuclear p65⁺ microglia and CD31⁺ blood vessels upon LPS and A1AR antagonist (DPCPX) injection (left). Nuclear p65⁺ microglia and perivascular microglia were reduced by DPCPX (right) (n = 4 mice in LPS+Veh group, n = 3 mice in LPS+DPCPX group).

f CPA further upregulated the inflammation-related genes in the cortex induced by a peripheral LPSlow (1 mg/kg, i.p.) injection. (n = 3 mice per group).

g DPCPX administration reduced the inflammation-related genes in the cortex induced by a peripheral LPShigh (5mg/kg, i.p.) injection. (n = 3 mice per group).

h, **i** Inflammation-related gene expressions were reduced in the cortex of *Adora1* cKO mice at 6 hours post NECA and CCPA injection compared to ctl mice (n = 3 mice per group in (G), n = 6 mice per group in (H)).

j, **k** Inflammation-related gene expressions were not altered in the cortex of mice with specific ablation of *Adora1* in microglia (using Cx3CR1-CreERT2 mice) and oligodendrocyte precursor cells/pericytes (using NG2-CreERT2 mice, only Ccl2 was reduced).

Summary data are presented as the mean \pm SEM. Statistical significance in **a**-**k** was assessed by two-tailed unpaired Student's t test; *P<0.05, **P<0.01, ***P<0.001. Source data are provided as a Source Data file.

Supplementary Fig. 3: Generation and validation of astrocyte-specific A1AR deficient mice.

a Schematic illustration of mouse breeding for astrocyte-specific A1AR deficient mice (*Adora1* cKO) and experiment plan. GLAST-CreERT2 (GLAC) mice were crossed to floxed *Adora1* mice. RiboTag mice were also introduced to the breeding for specifically and directly purify translated mRNA from astrocytes without sorting cells.

b Representative image of RiboTag expression (indicated by HA-tag) in Sox9⁺ astrocytes. Scale bar = 50 μm.

c *Adora1* expression in astrocytes was reduced in *Adora1*^{fl/wt} (het) and *Adora1* cKO mice one week after tamoxifen injection by using qPCR (n = 3 mice per group).

d *Adora1* expression in astrocytes was reduced in *Adora1* cKO mice 9 weeks after tamoxifen injection by using RNA-Seq (n = 3 mice per group).

Summary data are presented as the mean \pm SEM. Statistical significance in **c** was assessed using a one-way ANOVA, Fisher's LSD test; statistical significance in d was assessed using two tailed unpaired Student's t test, *P < 0.05, **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Fig. 4: Functional validation of astrocyte-specific A1AR deficient mice by Ca²⁺ imaging.

a, **b** Schematic illustration of mouse breeding for Ca^{2+} imaging and experiment plan. GLACxA1AR^{fl/fl} mice were crossed to Rosa26-GCaMP3 mice. GLACxA1AR^{fl/fl}xRosa26-GCaMP3 mice were treated with tamoxifen at 4 weeks and used for *ex vivo* Ca^{2+} imaging at 13 weeks of age. Coronal brain slices were incubated in TTX (tetrodotoxin). During recording the A1AR agonist CPA (1 µM) was applied focally. Sulforhodamine 101 (SR101, 4 µg/ml) was mixed with CPA to indicate the drug application.

c Images showing the change of Ca²⁺ activity during the recording in ctl and *Adora1 cKO*mice. Notably, CPA application evoked high Ca²⁺ increase in ctl mice which was not observed in *Adora1* cKO mice, functionally confirming the deletion of A1ARs in astrocytes. The rightmost images show automatically detected regions of interests (ROIs) with dynamic Ca²⁺ activities by a custom-made tool MSparkles.

d Heatmap plot showing amplitude and duration of spontaneous Ca²⁺ events detected from all ROIs.

e Six ROIs were selected to show the characteristics of Ca²⁺ events.

f, **g** Analyses of Ca^{2+} events in ctl (n = 15 slices from 3 mice) and *Adora1* cKO (n = 6 slices from 3 mice) slices mice before (as baseline) and after CPA application using MSparkles.

Summary data are presented as the mean \pm SEM. Statistical significance in **f**, **g** was assessed using two tailed unpaired Student's t test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Source data are provided as a Source Data file.

Supplementary Fig. 5: Activation of A1AR evokes upregulation of inflammation-related genes in primary astrocytes.

a Schematic illustration of drug application to primary astrocytes. Created with BioRender.com released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International license.

b, **c** CCPA application significantly increased expression levels of several chemokines (e.g., *Cxcl1*, *Cxcl10*, *Ccl5*), whereas CV1808 (non-selective antagonist of A2ARs) did not cause significant expression alterations of all the tested inflammation-related genes.

Summary data are presented as the mean \pm SEM, n = 4 individual primary cultures. Statistical significance of each gene expression in **b**, **c** was assessed using two tailed unpaired Student's t test, ns: not significant, *P < 0.05, **P < 0.01. Source data are provided as a Source Data file.

Supplementary Fig. 6: A1AR-deficient astrocytes are less reactive to the peripheral LPS challenge.

a Heatmap of cell type-specific marker gene expression showed immunoprecipitation (IP) of RiboTag enriched astrocyte-specific genes.

b PCA (principal component analysis) of the RNA-seq dataset (n = 3 mice per group).

c-e Volcano plots showing gene expression changes in *Adora1* cKO group compared to ctl group at 0 hpi, 6 hpi, 24 hpi.

f Heatmap of marker genes for A1/A2 astrocytes.

Supplementary Fig. 7: Transcriptomic data analysis reveals A1AR-deficient astrocytes are less reactive to the peripheral LPS challenge.

a Mean profile representation of the temporal gene expression pattern for each cluster in **Fig. 4a**. Data points correspond to 0 hpi, 6 hpi, 24 hpi.

b Metascape pathways for each cluster in **Fig. 4a** generated by Metascape analysis.

c List of prediction of transcription regulators following expression pattern of sub-clusters in Fig.4a.

Supplementary Fig. 8: Astrocytic A1AR deficiency reduces BBB disruption and neutrophil infiltration post peripheral LPS injection.

a Representative images of immunolabeled Iba1⁺ microglia and CD31⁺ blood vessels at 24 hpi. Arrowheads indicate perivascular microglia. Scale bar = $20 \,\mu$ m.

b Proportion of perivascular microglia was increased in *Adora1* cKO mice compared to ctl mice (n = 4 mice in ctl and *Adora1* cKO at 0 hpi, n = 5 mice in ctl at 6 hpi, n = 3 mice in *Adora1* cKO at 6 hpi, n = 6 mice in ctl at 24 hpi, n = 4 mice in *Adora1* cKO at 24 hpi).

c CD31⁺ area was not altered in Adora1 cKO and ctl mice at 0 hpi, 6 hpi, 24 hpi.

d EB extravasation was reduced in the brains of *Adora1* cKO mice compared to ctl mice which were injected with EB at 0 hpi and analyzed at 24 hpi (n = 3 mice per group).

e Gating strategy for different cell types from brain cell suspension.

f Proportion of infiltrated immune cell (monocytes, neutrophils, and T cells) was reduced in the brain of cKO mice at 6 hpi, except macrophages.

g Statistical analysis of the ratio of specific immune cell subtypes in the immune cell subset (single cells). One dot stands for one mouse. (n = 3 ctl and *Adora1* cKO mice at 0 hpi; n = 6 ctl mice and 4 *Adora1* cKO mice at 6 hpi).

h Representative images of immunolabeled of Ly6B⁺ neutrophils in the brain parenchyma at 24 hpi. Scale bars = $20 \,\mu$ m.

i The density of Ly6B⁺ cells was reduced in the brain of *Adora1* cKO mice compared to ctl mice at 24 hpi (n = 7 ctl mice and 8 *Adora1* cKO mice).

Summary data are presented as the mean ± SEM. Statistical significance in **b**, **c**, **g** were assessed using a two-way ANOVA, Fisher's LSD test. Statistical significance in **d**, **i** was assessed using

two-tailed unpaired Student's t test, ns: not significant, *P < 0.05, **P < 0.01, ***P < 0.001. Source data are provided as a Source Data file.

Supplementary Fig. 9: Astrocytic A1AR deficiency reduces overall neuroinflammation upon LPS challenge which is attenuated by enhancing Gi signaling.

a LCN2 expression was reduced in Adora1 cKO compared to ctl 24 hpi by Western blot.

b, **c** The expression of 111 cytokines in the cortex of ctl and *Adora1* cKO mice was measured by a proteomic profiling assay at 24 h after PBS or LPS injection. Cytokine expression was reduced in the cortex of *Adora1* cKO group compared to ctl (PBS) group (samples from 3 mice were mixed for each group).

d, **e** The expression of 40 cytokines in the cortex of AAV-infected ctl and *Adora1* cKO mice was measured by a proteomic profiling assay 24 hours after LPS and CNO injection. Enhancing Gi signaling in *Adora1* cKO mice increased cytokine expression after LPS and CNO injection (samples from 3 mice were pooled for each group).

Summary data are presented as the mean \pm SEM. Statistical significance in **a** were assessed by two-way ANOVA, Fisher's LSD test, ns: not significant, *P < 0.05, **P < 0.01. Source data are provided as a Source Data file.

Supplementary Fig. 10: A1AR antagonist treatment ameliorated depression-like behavior of mice post LPS injection.

a Schematic illustration. Ctl mice were injected with DPCPX at the early phase of systemic inflammation and were used in open-field test at 24 h post LPS injection.

b Representative trajectory analysis of Vehicle (Veh) and DPCPX-treated mice in 10 min in the open-field test at 24 hpi.

c DPCPX treated mice displayed increased locomotion compared to vehicle ctl mice at 24 hpi (n = 8 mice in LPS+Veh group, n = 12 mice in LPS+DPCPX group).

Summary data are presented as the mean \pm SEM in **c**. Statistical significance in **c** was assessed using two-tailed unpaired Student's t test. ns: not significant, **P < 0.01. Source data are provided as a Source Data file.

Supplementary Fig. 11: Graphical abstract.

Graphical abstract was created with BioRender.com released under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International license.

Supplementary Table 1: key resources

REAGENT or RESOURCE	SOURCE	IDENTIFIER			
Antibodies					
Goat anti-Sox9 (1:500)	R&D Systems	Cat# AF3075			
Rabbit anti-Iba1 (1:1000)	Wako	Cat# 019-19741			
Goat anti-Iba1 (1:500)	abcam	Cat# ab5076			
Mouse anti-NeuN (1:500)	Millipore	Cat# MAB377			
Rat anti-CD31 (1:100)	, BD Pharmingen	Cat# 550274			
Rat anti-Lv6B (1:500)	Bio Rad	Cat# MCA771GT			
Mouse anti-HA (1:500)	Bioleaend	Cat# 901513			
Goat anti-LCN2 (1:1000)	R&D Systems	Cat# AF1857			
Chicken anti-GFP (1:1000)	Thermo Fisher Scientific	Cat# 10524234			
Rabbit anti-p-STAT3 (1:1000)	Cell Signaling Technology	Cat# 9145			
Rabbit anti-NF-kappaB p65 (1:500)	Cell Signaling Technology	Cat# 8242			
Guinea pig anti-cFos (1:4000)	Svnaptic Svstems	Cat# 226004			
Brilliant Violet 421™ anti-mouse CD45 Antibody	Biolegend	Cat# 103133			
APC anti-mouse Lv-6G Antibody	Biolegend	Cat# 127613			
PerCP anti-mouse/human CD11b Antibody	Biolegend	Cat# 101229			
PE/Cvanine7 anti-mouse I v-6C Antibody	Biolegend	Cat# 128017			
APC/Cvanine7 anti-mouse CD3 Antibody	Biolegend	Cat# 100221			
Brilliant Violet 421™ Rat IgG2b, κ Isotype Ctrl	Biolegend	Cat# 400639			
Antibody	Diologona				
APC Rat IgG2a, κ Isotype Ctrl Antibody	Biolegend	Cat# 400511			
PerCP Rat IgG2b, κ Isotype Ctrl Antibody	Biolegend	Cat# 400629			
PE/Cyanine7 Rat IgG2c, κ Isotype Ctrl Antibody	Biolegend	Cat# 400721			
APC/Cvanine7 Rat IgG2b, κ Isotype Ctrl Antibody	Biolegend	Cat# 400623			
Donkey anti-rabbit IgG (H+L) cross-adsorbed	5				
secondary antibody, Alexa Fluor 488 (1:1000)	Thermo Fisher Scientific	Cat# A-21206;			
Donkey anti-rabbit IoG (H+L) cross-adsorbed					
secondary antibody. Alexa Fluor 546 (1:1000)	Thermo Fisher Scientific	Cat# A10040:			
Donkey anti-rabbit IgG (H+L) cross-adsorbed		,			
secondary antibody, Alexa Fluor 647 (1:1000)	Thermo Fisher Scientific	Cat# A-31573;			
Donkey anti-goat IgG (H+L) cross-adsorbed					
secondary antibody, Alexa Fluor 488 (1:1000)	Thermo Fisher Scientific	Cat# A-11055;			
Donkey anti-goat IgG (H+L) cross-adsorbed		,			
secondary antibody. Alexa Fluor 546 (1:1000)	Thermo Fisher Scientific	Cat# A-11056:			
Donkey anti-goat IgG (H+L) cross-adsorbed					
secondary antibody. Alexa Fluor 647 (1:1000)	Thermo Fisher Scientific	Cat# A-21447:			
Donkey anti-mouse InG (H+L) cross-adsorbed		. ,			
secondary antibody. Alexa Fluor 488 (1:1000)	Thermo Fisher Scientific	Cat# A-21202:			
Donkey anti-mouse InG (H+L) cross-adsorbed		••••••			
secondary antibody. Alexa Fluor 546 (1:1000)	Thermo Fisher Scientific	Cat# A10036:			
Donkey anti-mouse InG (H+L) cross-adsorbed					
secondary antibody Alexa Fluor 647 (1.1000)	Thermo Fisher Scientific	Cat# A-31571			
Donkey anti-Guinea Pig IgG (H+I) secondary					
antibody Alexa Fluor 647-AffiniPure (1:1000)	Jackson ImmunoResearch Labs	Cat# 706-605-148 [.]			
Donkey anti-chicken IdV (IdC) (H+I) secondary		Gut# 700-000-140,			
antibody Alexa Eluor 488 (1:1000)	Thermo Fisher Scientific	Cat# 478948			
Cv5 AffiniBuro Donkov Anti Bat IaC (H+L)		Gut# 11 0040,			
(1.1000)	Jackson ImmunoResearch Labs	Cat# 712-175-150·			
Drugs Chemicals and Kits		$\int dt_m r r r z^{-1} r J^{-1} J J J,$			
APCP	Tocris Bioscience	Cat# 3633			
NBMPR	Sigma-Aldrich	Cat# N2255			
Dipyridamolo	Sigma Aldrich	Cat# 102200			
Сирупцанное	Sigma Aldrich	Cat# D9700			
Linna	Sigma Aldrich	Cat# 1100			
louotupericiume	Sigma-Alunch	Cal# 1100			

Adenosine	Sigma-Aldrich	Cat# A9251
DPCPX	abcam	Cat# ab120396
CPA	abcam	Cat# ab120398
CCPA	Tocris Bioscience	Cat# 1705
NECA	Tocris Bioscience	Cat# 1691
Evans blue	Sigma-Aldrich	Cat# E2129
Lipopolysaccharides from Escherichia coli O55:B5	Sigma-Aldrich	Cat# L2880
Sulforhodamine 101	Thermo Fisher Scientific	Cat# S359
Proteome Profiler Mouse Cytokine Array Kit,		
Panel A	R&D Systems	Cat# ARY006
Proteome Profiler Mouse XL Cytokine Array	R&D Systems	Cat# ARY028
Adenosine Assay Kit (Fluorometric)	abcam	Cat# ab211094
RNeasy Micro Kit	QIAGEN	Cat# 74004
Omniscript RT Kit	QIAGEN	Cat# 205113
Cycloheximide	Sigma-Aldrich	Cat# C7698
DL-Dithiothreitol	Sigma-Aldrich	Cat# D0632
Heparin sodium salt from porcine intestinal	-	
mucosa	Sigma-Aldrich	Cat# H5515
Clozapine N-oxide dihydrochloride (CNO)	Tocris Bioscience	Cat# 6329
Tamoxifen	Carbobution	Cat# CC99648
Sucrose	Sigma-Aldrich	Cat# S0389
TRIZMA [®] base	Sigma-Aldrich	Cat# T1503
Hot Start Tag EvaGreen® gPCR Mix (No ROX)	Axon	Cat# 27490
2-Mercaptoethanol	Sigma-Aldrich	Cat# M3148
Hanks' Balanced Salt solution	Sigma-Aldrich	Cat# H6648
NP40	Sigma-Aldrich	Cat# 74385
Recombinant RNasin™ Ribonuclease Inhibitor	Promega	Cat# N2515
cOmplete™ Protease Inhibitor Cocktail	Roche	Cat# 11836145001
Dvnabeads™ Protein G for Immunoprecipitation	Thermo Fisher Scientific	Cat# 10004D
UltraPure™ 1M Tris-HCl buffer. pH 7.5	Thermo Fisher Scientific	Cat# 15567027
KCI (2 M), RNase free	Thermo Fisher Scientific	Cat# AM9640G
MaCl ₂ (1 M)	Thermo Fisher Scientific	Cat# AM9530G
PBS. pH7.4	Thermo Fisher Scientific	Cat# 10010023
Tetrodotoxin Citrate (TTX)	Alomone Labs	Cat# T-550
Miglyol [®] 812	Caesar & Loretz	Cat# 3274
Ketabel 100 mg/ml	bela-pharm	Ketamin
Xylazine 2%	Baver	Rompun
Buprenorphine	Indivior	Cat# IND00979
Devamethasone		
Triton X-100	Sigma-Aldrich	Cat# T8787
1' 6-Diamidin-2-phenylindol (DAPI)	Sigma-Aldrich	Cat# D95/2
	olgina vianon	000+2
Mouse: C57BL/6N		N/A
	(Seemmell et al. 2002)	
Mouse, Alac	(Scallmenter, 2005)	
Mouse, Glast-GreER12	(MOT et al., 2000)	N/A
Mouse: Cascill-GreeR12	(Jung et al., 2000)	N/A
Mouse, Cspy4-CleER12	(Finally et al., 2014)	
Mouse: Ribo ray mice (Ripzznk)	(Sall 2 et al., 2009)	N/A N/A
Virusos	(Faukert et al., 2014)	N/A
¥11 U3C3		
	giπ from Yulong Li (Peking	N1/A
AAVZ/D GTAABUTD-GKABAdo VII'US	University, UN)	IN/A
rAAV-GFAP-hM4D(Gi)-mCherry-WPREs,		
AAV2/5	VTA Wuhan	PT-1091
	gift from André Zeug (Hannover	N1/A
AAV2/5-GFAP-IOIOMAIO VIIUS	wedical School)	N/A

Deposited Data					
Raw and anal	yzed data	This paper	GSE248275		
Software and	l Algorithms				
ImageJ		(Schneideretal., 2012)	https://imagej.nih.gov/ ij/ https://imaria.gvingt.c		
Imaris		Bitplane	nttps://imaris.oxinst.c		
iniano		Diplano	https://www.zeiss.co		
			m/microscopy/de/pro		
Zon		Zoioo	dukte/software/zeiss-		
Zen		Zeiss	https://gitlab.com/Geb		
Msparkles		(Stopper et al., 2023)	hard/MSparkles/		
GraphPad Pri	sm 10	GraphPad Software	.com/		
		R Foundation for Statistical	https://www.r-		
R statistical p	rogramming environment	Computing	project.org/		
Piecenductor		(Huber et al. 2015)	https://bioconductor.o		
DIOCOLIGUCIO		(Huber et al., 2015)	ig/ http://daehwankimlab.		
HISAT2		(Kim et al., 2019)	github.io/hisat2/		
			https://www.bioinform		
FaatOC		(Androws, 2010)	atics.babraham.ac.uk/		
FasiQC		(Andrews, 2010)	https://rnnh.github.io/		
			bioinfo-		
_			notebook/docs/featur		
FeatureCount	S	(Liao et al., 2014)	eCounts.html		
			nilps://bioconducior.o		
			release/bioc/html/DE		
DESeq2		(Love et al., 2014)	Seq2.html		
			https://cran.r-		
Pheatman		(Kolde 2010)	project.org/web/packa		
пеашар		(10106, 2019)	https://bioconductor.o		
			rg/packages/release/		
			bioc/html/clusterProfil		
ClusterProfile	r	(Yu et al., 2012)	er.html		
Metascape		(Zhou et al., 2019)	/////inelascape.org		
		(, https://www.noldus.co		
EthoVision X1	T 11.5	Noldus Technology	m/		
		Mathworks	https://de.mathworks.		
IVIA I LAD		Mathworks	https://www.wavemetr		
lgor pro		Wavemetrics	ics.com/		
D . I			https://www.biorender		
Biorender		Biorender	.com/		
Primer seque	ences				
Gene	Primer	Sequence	Purpose		
Actb	Forward	CTTCCTCCCTGGAGAAGAGC	RT-qPCR		
	Reverse	ATGCCACAGGATTCCATACC			
Cxcl1	Forward	AGACCATGGCTGGGATTCAC	RT-qPCR		
	Reverse	CTCGCGACCATTCTTGAGTGT			
Cxcl10	Forward	AAGTGCTGCCGTCATTTTCT	RT-aPCR		
-	Reverse	GTGGCAATGATCTCAACACG	1 -		
Ccl2	Forward	GTTGGCTCAGCCAGATGCA	RT-aPCR		
00.2					

	Reverse	AGCCTACTCATTGGGATCATCTTG	
Ccl5	Forward	TGCCCACGTCAAGGAGTATTT	RT-qPCR
	Reverse	TCTCTGGGTTGGCACACACTT	
Lcn2	Forward	ATGTCACCTCCATCCTGGTC	RT-qPCR
	Reverse	CACACTCACCACCCATTCAG	
Tnf	Forward	CCACCACGCTCTTCTGTCTAC	RT-qPCR
	Reverse	AGGGTCTGGGCCATAGAACT	
ll1a	Forward	CGCTTGAGTCGGCAAAGAAAT	RT-qPCR
	Reverse	CTTCCCGTTGCTTGACGTTG	
ll1b	Forward	TGCCACCTTTTGACAGTGATG	RT-qPCR
	Reverse	TGATGTGCTGCTGCGAGATT	
116	Forward	GAGTGGCTAAGGACCAAGACC	RT-qPCR
	Reverse	AACGCACTAGGTTTGCCGA	
Gfap	Forward	TGGAGGAGGAGATCCAGTTC	RT-qPCR
	Reverse	AGCTGCTCCCGGAGTTCT	
Pdgfra	Forward	TCCTTCTACCACCTCAGCGAG	RT-qPCR
	Reverse	CCGGATGGTCACTCTTTAGGAAG	
Pdgfrb	Forward	ATGAATCGCTGCTGGGCGCTCTTC	RT-qPCR
	Reverse	TCAAAGGAGCGGATGGAGTGGTCG	
ltgam	Forward	ATGGACGCTGATGGCAATACC	RT-qPCR
	Reverse	TCCCCATTCACGTCTCCCA	
GCaMP3 KI	Forward	CACGTGATGACAAACCTTGG	genotyping PCR
GCaMP3 KI	Reverse	GGCATTAAAGCAGCGTATCC	
GCaMP3 WT	Forward	CTCTGCTGCCTCCTGGCTTCT	genotyping PCR
GCaMP3 WT	Reverse	CGAGGCGGATCACAAGCAATA	
GLAST	Forward	GAGGCACTTGGCTAGGCTCTGAGGA	genotyping PCR
GLAST KI	Reverse	GGTGTACGGTCAGTAAATTGGACAT	
GLAST WT	Reverse	GAGGAGATCCTGACCGATCAGTTGG	
HA	Forward	GGGAGGCTTGCTGGATATG	genotyping PCR
HA	Reverse	TTTCCAGACACAGGCTAAGTACAC	
A1AR	Forward	CTTTGCCCTCAGCTGGCTACCG	genotyping PCR
A1AR KI	Reverse	ATCGGAATTCGCTAGCTTCGGC	
A1AR WT	Reverse	TTCTCGGGGTCAGGAGAGCACC	