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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling 

 

CRISPR-based gene expression has a great potential to control biosynthetic pathways. However, so far, 

for CRISPRa a limited set of scRNAs have been characterised. Here, the authors first use a 

computational approach to characterize the folding of scRNA’s. Comparison with experimental testing 

let’s them conclude that the calculated folding barrier is a good predictor to identify effective scRNAs. 

Next, they focus on a set of 3 orthogonal scRNAs and produce truncated scRNAs in order to tune 

activation levels. From this, they create a library of 64 scRNAs: 3 different binding sites, each targeted 

by scRNA of different lengths to give basal, low, medium and high expression levels. The authors then 

apply this library to control tetrahydrobiopterin biosynthesis as well as lacto-N-tetraose. The 

combinatorial expression analysis allows to identify bottlenecks and improve yields. 

The paper is well written, the figures are very clear, and the supporting information is extensive. I 

appreciate that the authors are also discussing the limitations of their approach. The work is topical 

and an important contribution to the characterization and more wide-spread use of CRISPRa-based 

gene expression control. I therefore support publication. I have some minor questions and feedback: 

• For Fig. 3, you conclude that 1) total expression is limited by host expression capacity and that 2) 

RFP has a deleterious effect. Even though likely to be true, I wonder how you can be sure about 

conclusion 1, given that RFP is always expressed when all three promoters are activated. It seems a 

confounding factor and it would be interesting if the overall level reachable is higher, if RFP would be 

replaced with another reporter. 

• Given the discovery that RFP seems to cause more burden or toxicity than the other fluorescent 

reports, it is a pity that all the characterization has been carried out with RFP. Of course, I don’t 

recommend repeating all the analyses with another fluorescent protein, but I wonder if some of the 

observed properties of J6 could be attributed to the RFP burden/toxicity. For example, that the spacer 

of length 19 performs better than the one of length 20 (Fig. 3). Also, the distinct behaviour and poorer 

prediction of J6 in Fig. S7 might be caused by the choice of reporter. 

• In most figures you used a plate reader to quantify fluorescence, while in Fig. 4 you used flow 

cytometry. What was the rationale behind this choice? Would this figure look different if you normalize 

the fluorescence by OD? 

• Related to this: Did you observe any differences in growth rates between different constructs 

(different reports, different scRNAs, different truncations) or were they the same everywhere? 

• Please specify what carbon source (and at what concentration) was used in the EZ medium. 

• It is good that the sequences are provided, but sequences in a pdf file is really not the best way of 

sharing this information. Please use a more suitable format, such as gb files. 

• I did not see a statement on data and code availability. 

• I highly encourage the authors to share their library of 64 plasmids on Addgene. This will boost the 

useof this method by others. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

In this manuscript, Fontana and colleagues systematically develop methods for the construction of 

efficient multiplex titratable CRISPR gene activation systems from establishing basic design principles 

to demonstrating proof of concept in manipulating a biosynthetic pathway in living cells. Their 

manuscript begins with a brief study of the activity of 14 randomized CRISPRa target sites that drive 

activation of a synthetic promoter. Through a study of thermodynamic parameters, they identify what 

they refer to as ‘barrier energy’ as a strong predictor of guide activity. They then show that the 

activity of three different efficient guides can be reproducibly titrated through truncation of the spacer 

sequence. Furthermore, they show that multiple CRISPRa targets can be activated simultaneously with 



predictable activity by using synthetic promoters with different activation sequences through the 

construction of 64 strains expressing high, medium, or low activity guides for each of three target 

fluorescent proteins. Having established the feasibility of this system, the authors then apply this to 

profiling two biosynthetic pathways, showing how this fine programmable control of gene expression 

can be used to optimize compound production and identify pathway bottlenecks. 

 

Overall, my feeling was that this paper represents a solid and useful piece of engineering, with high 

potential for applications in both basic research and industry. The manuscript is well-written and easy 

to understand, and the conclusions as I understand them appear to be well supported. As my 

expertise is primarily in predicting CRISPR guide efficiency, I will restrict my review largely to this 

portion of the manuscript. 

 

To my knowledge, the authors’ suggested folding barrier parameter is new in the context of CRISPR 

guide efficiency prediction, and based on figure 2d appears to be an excellent predictor of guide 

activity in the authors’ CRISPRa system. I do think it would be helpful to contrast this a bit more 

explicitly with previous approaches though, particularly deltaG_B (Alkan et al., Genome Biology 2018), 

possibly on lines 196 – 208 or in the discussion, as this has been shown to be an important parameter 

for predicting genome editing efficiency (see supplementary note S6 and Figure S12 in Xiang et al, 

Nature Comms 2021) – though it has also been shown not to be a very important feature for bacterial 

CRISPRi (Yu et al., Genome Biology 2024). It took a while for me to understand how the authors’ 

approach differed from the deltaG_U parameter in the deltaG_B calculation, and I feel it would be 

beneficial to make this explicit. It would also be useful to cite the original paper describing the 

findpath algorithm used to identify folding intermediates (Flamm et al., RNA 2000), possibly with a 

brief description or intuition for what this algorithm does. 

 

Regarding the computational analysis, the authors mention custom scripts but do not make source 

code available. While the description on e.g. lines 570 – 594 appears comprehensive, it would be very 

helpful if the authors would make their scripts publicly available on github or similar with example 

input files. There are often small details (e.g. exact parameter settings) that can make reproducing 

computational work from text descriptions difficult, and having source code available would be very 

helpful in assuring that others can reproduce the results reported here. This is particularly important 

since the calculation of these kinetic parameters is central to their claims. 

 

Some other more minor points: 

 

Line 214: It has also recently been observed that predictions for eukaryotic genome editing efficiency 

also have very low accuracy for bacterial CRISPRi (Yu at al. Genome Biology 2024) – this could also be 

noted in the discussion on lines 490 to 504, as it suggests the transfer of design rules from eukaryotic 

genome editing applications to other technologies/systems may be problematic in general. 

 

Lines 476 to 478: While I agree with the authors that their results are impressive, to my 

understanding they are derived from a fairly small number of measurements (~15) and this should be 

noted here (particularly when projecting a “near zero” failure rate). Some suggestions for how to 

further test this in the future would be welcome. 

 

Refs: 

Alkan et al. Genome Biology 2018: 

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1534-x 

Xiang et al. Nature Comms 2021: 

https://www.nature.com/articles/s41467-021-23576-0#Sec26 

Yu et al. Genome Biology 2024: https://link.springer.com/article/10.1186/s13059-023-03153-y 

Flamm et al. RNA 2000: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369916/ 

 

 



 

Reviewer #3: 

Remarks to the Author: 

The manuscript reports on the improvement of CRISPRa in E. coli. The authors improved the design 

method for guide RNAs. Although guide RNAs designed by conventional methods sometimes did not 

show the predicted activity due to misfolding, most of those designed by the newly developed method 

showed activity as predicted. CRISPRa has been well developed. The contribution of this manuscript is 

to improve gRNA design. Thus, this study may fit specialized journals focusing on nucleic acids would 

be more appropriate. The authors asserted the study's relevance to chemical production. However, the 

section was not well designed. Pteridine and human milk oligosaccharide, lacto-N-tetraose (LNT) were 

used as examples. The benefits of the method are overestimated because strains that produce trace 

amounts of the targets are used as parents. No titers are even provided for pteridine. Regarding LNT, 

strains producing at the 10-100 mM level have been constructed. But this study used the microM level 

production strain. In Line 452-453, the authors compared yields rather than titers, misleading the 

readers. The titers reported here are too low to compare with those in other papers. But CRISPRa was 

designed to improve titers, not yields in this study, making the comparison of yields rather puzzling. 



Point-by-point response to the reviewers’ comments, reproduced verbatim

Reviewer #1 (Remarks to the Author):

Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling

CRISPR-based gene expression has a great potential to control biosynthetic pathways.
However, so far, for CRISPRa a limited set of scRNAs have been characterised. Here, the
authors first use a computational approach to characterize the folding of scRNA’s. Comparison
with experimental testing let’s them conclude that the calculated folding barrier is a good
predictor to identify effective scRNAs. Next, they focus on a set of 3 orthogonal scRNAs and
produce truncated scRNAs in order to tune activation levels. From this, they create a library of
64 scRNAs: 3 different binding sites, each targeted by scRNA of different lengths to give basal,
low, medium and high expression levels. The authors then apply this library to control
tetrahydrobiopterin biosynthesis as well as lacto-N-tetraose. The combinatorial expression
analysis allows to identify bottlenecks and improve yields.

The paper is well written, the figures are very clear, and the supporting information is extensive.
I appreciate that the authors are also discussing the limitations of their approach. The work is
topical and an important contribution to the characterization and more wide-spread use of
CRISPRa-based gene expression control. I therefore support publication. I have some minor
questions and feedback:

1. For Fig. 3, you conclude that 1) total expression is limited by host expression capacity and
that 2) RFP has a deleterious effect. Even though likely to be true, I wonder how you can be
sure about conclusion 1, given that RFP is always expressed when all three promoters are
activated. It seems a confounding factor and it would be interesting if the overall level reachable
is higher, if RFP would be replaced with another reporter.

Given the discovery that RFP seems to cause more burden or toxicity than the other fluorescent
reports, it is a pity that all the characterization has been carried out with RFP. Of course, I don’t
recommend repeating all the analyses with another fluorescent protein, but I wonder if some of
the observed properties of J6 could be attributed to the RFP burden/toxicity. For example, that
the spacer of length 19 performs better than the one of length 20 (Fig. 3). Also, the distinct
behaviour and poorer prediction of J6 in Fig. S7 might be caused by the choice of reporter.

The reviewer raises interesting points and we present additional data that provide further
illumination on these questions in new Supplementary Figures 8a and 10b. Our view is that
each set of output genes has a slightly different limit on total expression, depending on the
burden of the specific genes. Consistent with this view, reductions in J6-RFP output are only
observed in the highest-expression strain (high-high-high) (original Figure 4b and new
Supplementary Figure 8). Output sets including RFP may have lower expression limits than
other output sets, meaning that changing RFP to another reporter could indeed generate more
total expression.

We elaborate these points in the legend of Supplementary Figure 8a as follows:



The expression of high RFP results in the indicated expression defect in GFP (left group)
and BFP (second group from left) outputs, but the defect is much smaller or zero when
observing effects of high GFP or BFP expression on RFP output (middle and
second-from-left groupings, respectively). RFP’s relative resilience to expression defect
suggests that it has dominant expression burden relative to the other outputs in this set.
Only when all three outputs are highly expressed (left bar of rightmost grouping) is a
substantial defect in RFP expression observed, suggesting that total combined
expression could also play a role at high levels of these outputs.

As we now clarify in the results section, for individual characterization of promoters, we used
RFP in all cases in an attempt to minimize differences in output inherent to different reporter
proteins. Still, only J3 showed the spacer length 19 > spacer length 20 phenomenon, and only
J6 exhibited the extra truncation sensitivity (Figure 3c and Supplementary Figure 7). We believe
this means that these effects are not solely attributable to the use of RFP as the reporter (Figure
4b and new Supplementary Figure 10b). Overall, the relative outputs generated by the spacer
truncations are consistent across promoters irrespective of the reporter protein. The difficulty in
predicting the global impact of any given expressed protein is an important motivation for
investigating intermediate expression levels when developing multi-gene expression programs
(Discussion).

2. In most figures you used a plate reader to quantify fluorescence, while in Fig. 4 you used flow
cytometry. What was the rationale behind this choice? Would this figure look different if you
normalize the fluorescence by OD?

As now explained in the Methods, the rationale for using flow cytometry to measure RFP, GFP
and BFP expression was practical: the flow cytometer allows for clearer separation and
quantification of the three colors than the plate reader (Biotek Synergy HTX) used for the other
experiments. Representative flow cytometry data for 9 selected fluorescent expression
programs and an empty vector control are now presented in new Supplementary Figure 17.
New Supplementary Figure 10b presents fluorescence normalized by OD for 19 selected strains
measured with a monochromator-equipped plate reader (Biotek Synergy H1). For the strains
tested, plate reader measurements showed high correlation to the original flow cytometry data
when similarly normalized (r = 0.9822 for GFP, r = 0.913 for BFP, and r = 0.9884 for RFP) (new
Supplementary Figure 10).

3. Related to this: Did you observe any differences in growth rates between different constructs
(different reports, different scRNAs, different truncations) or were they the same everywhere?

We did new experiments to investigate the growth of multiple strains from the triple-fluorescent
reporter library, and observed indistinguishable growth rates across the strains tested. This
information is now included in a new Supplementary Figure 10c-d as growth data for 20 of the
library members. Eight of the chosen strains express high levels of RFP and 2 of the strains
express medium levels of RFP. We do not observe noticeable differences in growth within this
set compared to the 2 chosen strains that express low levels of RFP or the 7 strains chosen
with off-target (OT) guides for J6-RFP. As now written in the caption for Supplementary Figure



10c, we conclude that RFP expression burden in these conditions is not large enough to affect
growth rate.

4. Please specify what carbon source (and at what concentration) was used in the EZ medium.

We have added explicit notes of carbon sources used and concentrations in each experiment in
the Methods section. We used 2 g/L glucose in all EZ medium, with exception of the LNT
production experiments, in which additional sugar was added as a substrate (10 g/L glucose)
and additional lactose (2 g/L) as a feedstock.

5. It is good that the sequences are provided, but sequences in a pdf file is really not the best
way of sharing this information. Please use a more suitable format, such as gb files.

We have now provided .gb files of selected plasmids as supplementary files, in addition to the
sequence tables.

6. I did not see a statement on data and code availability.

We thank the reviewer for noting this omission, and we have updated data and code availability.

The new sections read:

“Data supporting the findings of this work are available within the paper and its
Supplementary Information files. A reporting summary for this article is available as a
Supplementary Information file. The data sets generated and analyzed in this study are
available from the corresponding author upon request. The source data for Figs. 2-6 and
Supplementary Figs. 1, 3-5, and 7-16 are provided as a Source Data file.”

And

“Custom Python code to analyze input RNAs and generate the energetic parameters
described in this work is available on GitHub
(https://github.com/carothersresearch/gRNA_screen_docker) and can be run directly in
that environment using a Codespace or locally using a Docker image.”

7. I highly encourage the authors to share their library of 64 plasmids on Addgene. This will
boost the useof this method by others.

We agree! The 64-plasmid library is under the deposition process to Addgene together with the
pathway plasmids used in this study. This Addgene set is the same set of plasmids for which we
are now providing the .gb sequence files.

Reviewer #2 (Remarks to the Author):

In this manuscript, Fontana and colleagues systematically develop methods for the construction
of efficient multiplex titratable CRISPR gene activation systems from establishing basic design
principles to demonstrating proof of concept in manipulating a biosynthetic pathway in living
cells. Their manuscript begins with a brief study of the activity of 14 randomized CRISPRa target
sites that drive activation of a synthetic promoter. Through a study of thermodynamic
parameters, they identify what they refer to as ‘barrier energy’ as a strong predictor of guide



activity. They then show that the activity of three different efficient guides can be reproducibly
titrated through truncation of the spacer sequence. Furthermore, they show that multiple
CRISPRa targets can be activated simultaneously with predictable activity by using synthetic
promoters with different activation sequences through the construction of 64 strains expressing
high, medium, or low activity guides for each of three target fluorescent proteins. Having
established the feasibility of this system, the authors then apply this to profiling two biosynthetic
pathways, showing how this fine programmable control of gene expression can be used to
optimize compound production and identify pathway bottlenecks.

Overall, my feeling was that this paper represents a solid and useful piece of engineering, with
high potential for applications in both basic research and industry. The manuscript is well-written
and easy to understand, and the conclusions as I understand them appear to be well supported.
As my expertise is primarily in predicting CRISPR guide efficiency, I will restrict my review
largely to this portion of the manuscript.

1. To my knowledge, the authors’ suggested folding barrier parameter is new in the context of
CRISPR guide efficiency prediction, and based on figure 2d appears to be an excellent predictor
of guide activity in the authors’ CRISPRa system. I do think it would be helpful to contrast this a
bit more explicitly with previous approaches though, particularly deltaG_B (Alkan et al., Genome
Biology 2018), possibly on lines 196 – 208 or in the discussion, as this has been shown to be an
important parameter for predicting genome editing efficiency (see supplementary note S6 and
Figure S12 in Xiang et al, Nature Comms 2021) – though it has also been shown not to be a
very important feature for bacterial CRISPRi (Yu et al., Genome Biology 2024). It took a while
for me to understand how the authors’ approach differed from the deltaG_U parameter in the
deltaG_B calculation, and I feel it would be beneficial to make this explicit. It would also be
useful to cite the original paper describing the findpath algorithm used to identify folding
intermediates (Flamm et al., RNA 2000), possibly with a brief description or intuition for what this
algorithm does.

We thank the reviewer for all of the helpful suggestions and we now provide additional
elaboration along all of these points in the Results and Discussion sections. As the reviewer
noted, we found that Folding Barrier, which characterizes the rate at which scRNAs can convert
between the MFE structure and the active structure, has the most predictive power among all of
the parameters we examined. The Alkan et al. ∆GH parameter is similar to our Binding Energy,
which had poor predictive power of bacterial CRISPRa, and their ∆GU was similar to our Folding
Energy, but only considered the energy of unfolding the spacer sequence RNA. Folding Energy,
on the other hand, considers the full scRNA sequence and thus includes the energy necessary
to fold the scRNA from an inactive structure (e.g. when the spacer sequence binds to a
complementary sequence internal to the Cas9 handle, as in Supplementary Figure 6) into the
active structure. We believe that Folding Energy has better predictive power than Binding
Energy because it accounts for the impact of all of the guide RNA sequence in determining the
likelihood of folding into the active structure.

We have updated our Discussion section to include additional references and explanations to
provide context by focusing on how the parameters in our work differ from parameters as in



Alkan et al., 2018. The revised Discussion section now has a paragraph that reads (changes in
bold):

The Folding Barrier metric outperformed current state-of-the-art gRNA design
tools in its ability to predict CRISPRa activity21,31. There are many possible explanations
for the inability of existing models to apply to bacterial CRISPRa systems. It remains an
open question whether guide RNA design rules derived from one function in one
system, most commonly genome editing in eukaryotes, can be transferred to
other functions and systems such as CRISPR gene regulation in prokaryotes.
First, many of these models account for genome structure, which will vary greatly
between eukaryotes and prokaryotes80,81. Second, in regression models trained on large
gene editing datasets, it is difficult to decouple gRNA efficiency from feedback on gene
expression as part of the overall gene regulatory network, and therefore the predictions
of these models may not be readily transferable between organisms. Third, the models
underlying these gRNA design tools were trained on unmodified gRNAs and do not
capture potential folding effects of extended RNA elements included in scRNAs for
bacterial CRISPRa. These models could likely be improved by incorporating biophysical
parameters in their predictions. Finally, considerations of nucleic acid interactions in
gRNA design models tend to focus on the thermodynamics of spacer-DNA interactions,
and neglect other important aspects of gRNA folding30. For instance, a number of
studies that model the thermodynamics of gRNA-Cas9-DNA complex formation
employ parameters describing the impact of structure within the spacer sequence
(e.g. ∆GU) and of spacer-target hybridization (e.g. ∆GH)30,82,83. Here, the conceptually
similar parameter Binding Energy does not predict bacterial CRISPRa as well as
Folding Energy and Net Binding Energy, which consider the spacer sequence in
the context of the full scRNA sequence and structure (Supplementary Fig. S6).
Developing models that combine solely sequence-based kinetic folding parameters with
heuristics from large-scale functional screening should further improve our ability to
design modified guide RNAs for bacterial CRISPRa.

We also included more detail about defective scRNAs in the Binding Energy paragraph of the
Results section, lines 204-207. The paragraph now includes:

“These failures might be explained by interactions between the spacer and the
dCas9-binding handle, which are not accounted for in Binding Energy but are included in
Folding Energy and Folding Barrier due to consideration of the entire scRNA sequence.”

In addition to the following citations, we included Flamm et al. in places where findpath and
ViennaRNA are mentioned, particularly this line in the Methods:

“Folding Barrier was calculated by using the folding trajectories identified by Findpath28

to predict the barrier height for the direct refolding pathway from the MFE structure to the
active structure.”

All of the suggested references are now included in the manuscript as references 28, 30 (was
29 in the original submission), 82, and 83, respectively.

https://www.zotero.org/google-docs/?6EaGhJ
https://www.zotero.org/google-docs/?59HFCd
https://www.zotero.org/google-docs/?oVHGQU
https://www.zotero.org/google-docs/?OqqCti
https://www.zotero.org/google-docs/?ohGSKK


28. Flamm et al. RNA 2000: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369916/

30. Yu et al. Genome Biology 2024:
https://link.springer.com/article/10.1186/s13059-023-03153-y

82. Alkan et al. Genome Biology 2018:
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1534-x

83. Xiang et al. Nature Comms 2021:

https://www.nature.com/articles/s41467-021-23576-0#Sec26

2. Regarding the computational analysis, the authors mention custom scripts but do not make
source code available. While the description on e.g. lines 570 – 594 appears comprehensive, it
would be very helpful if the authors would make their scripts publicly available on github or
similar with example input files. There are often small details (e.g. exact parameter settings) that
can make reproducing computational work from text descriptions difficult, and having source
code available would be very helpful in assuring that others can reproduce the results reported
here. This is particularly important since the calculation of these kinetic parameters is central to
their claims.

The source code is now provided on GitHub
(https://github.com/carothersresearch/gRNA_screen_docker); it can be run directly in that
environment using a Codespace or locally using a Docker image.

Some other more minor points:

3. Line 214: It has also recently been observed that predictions for eukaryotic genome editing
efficiency also have very low accuracy for bacterial CRISPRi (Yu at al. Genome Biology 2024) –
this could also be noted in the discussion on lines 490 to 504, as it suggests the transfer of
design rules from eukaryotic genome editing applications to other technologies/systems may be
problematic in general.

As suggested, and as above, we have now included this point in the Discussion on lines
496-499. The revised section includes:

“It remains an open question whether guide RNA design rules derived from one function
in one system, most commonly genome editing in eukaryotes, can be transferred to
other functions and systems such as CRISPR gene regulation in prokaryotes.”

4. Lines 476 to 478: While I agree with the authors that their results are impressive, to my
understanding they are derived from a fairly small number of measurements (~15) and this
should be noted here (particularly when projecting a “near zero” failure rate). Some suggestions
for how to further test this in the future would be welcome.

We apologize for the confusion, and we edited the discussion on lines 480-482 to make this
clearer. The predictions were actually made from 39 total measurements (“the original J3
sequence, the 14 randomly selected targets described above, and 24 additional scRNAs
designed to have Folding Barriers ranging from 5 to 35 kcal/mol”). The revised section now
reads:

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-018-1534-x
https://github.com/dalbabur/gRNA_screen_public


“We found that a single kinetic parameter, Folding Barrier, can accurately predict
bacterial CRISPRa across a broad range of expression levels, with a failure rate of zero
for the set of 39 scRNA designs tested.”

Reviewer #3 (Remarks to the Author):

The manuscript reports on the improvement of CRISPRa in E. coli. The authors improved the
design method for guide RNAs. Although guide RNAs designed by conventional methods
sometimes did not show the predicted activity due to misfolding, most of those designed by the
newly developed method showed activity as predicted. CRISPRa has been well developed. The
contribution of this manuscript is to improve gRNA design.

1. Thus, this study may fit specialized journals focusing on nucleic acids would be more
appropriate.

We respectfully disagree. As written in our cover letter accompanying the original submission,
by developing a novel approach to computational guide RNA design, we were able to use rules
learned in our previous work (Fontana & Dong et al., 2020 Nat. Comm. PMID: 32238808, Alba
Burbano & Cardiff et al., 2023 Proc. Natl. Acad. Sci. PMID: 37463216) to create orthogonal
CRISPR activation systems for bacteria. This work represents a crucial step toward the goal of
engineering genome-wide CRISPRa/i programs because we can now design functional
multi-guide programs without trial-and-error experimentation. Through its modular system of
synthetic promoters, this work demonstrates the immediate utility of multi-guide programs for
biosynthetic profiling and metabolic pathway optimization. And, the manuscript describes
state-of-the-art tools and workflows compatible with model- and data-driven
design-build-test-learn cycles, creating entirely new routes for engineering larger and more
complex programs. Based on these broad implications and the wide applicability of our tools, we
believe this work is appropriate for the audience of Nature Communications.

2. The authors asserted the study's relevance to chemical production. However, the section was
not well designed. Pteridine and human milk oligosaccharide, lacto-N-tetraose (LNT) were used
as examples. The benefits of the method are overestimated because strains that produce trace
amounts of the targets are used as parents. No titers are even provided for pteridine.

We respectfully disagree with the reviewer's premise. As now written about extensively in the
Discussion section (also see below), it is extremely common in early stage metabolic
engineering to start from strains that can produce trace levels of the target. A major challenge
for the field is to effectively and efficiently optimize production from such starting points. We
selected these particular pathways as experimental testbeds to investigate the utility of our new
tools for biosynthetic profiling as would be common in early-stage metabolic engineering and
optimization campaigns. When starting these campaigns, there is no way to know the levels of
enzyme expression that will give the highest levels of production. Our tools and approaches
provide a new route for efficiently searching expression design spaces. Underscoring the
importance of these kinds of tools and approaches, we see that the highest levels of expression
(High-High-High in our language) do not correspond to the highest levels of production in either
the biopterin or LNT biosynthetic systems.

https://pubmed.ncbi.nlm.nih.gov/32238808/
https://pubmed.ncbi.nlm.nih.gov/37463216/


As suggested by the reviewer, we converted pteridine fluorescence into titers (concentration in
production culture) and updated our figures and source data (updated Fig. 5 and new
Supplementary Fig. 16). This update does not alter the key conclusion, as noted above, that the
highest pteridine titers did not come from the highest levels of expression. We observed
production levels up to 200 mg/L of pteridine within the set. We note that, in the literature,
biopterin production titers from the same metabolic pathway in yeast yielded 1-5 mg/L
(Ehrenworth et al., 2015 ACS Synth. Biol. PMID: 26214239), significantly lower than the titers
achieved here.

3. Regarding LNT, strains producing at the 10-100 mM level have been constructed. But this
study used the microM level production strain. In Line 452-453, the authors compared yields
rather than titers, misleading the readers. The titers reported here are too low to compare with
those in other papers. But CRISPRa was designed to improve titers, not yields in this study,
making the comparison of yields rather puzzling.

As now written in the Results and Discussion sections, the test-tube titers achieved here (2.5
mM) are similar to test-tube titers achieved elsewhere (4.2 mM) even though that study used
5-fold more lactose feedstock. Thus, our optimized strains obtain 3-fold higher yield compared
to that previous work at the test-tube scale typical of early-stage strain development (see
Discussion paragraphs below). We also note that improvements in yield explain the underlying
mechanism that led to higher LNT titer in our system when the bottleneck identified through
biosynthetic profiling was resolved.

The Results section has now been updated in the following paragraph (changes in bold):

To increase β-1,3-galactosyltransferase activity, we replaced WbgO with the GalT
enzyme from Chromobacterium violaceum (CvGalT), an enzyme with faster turnover.73

We placed CvGalT under J6 control in the LNT pathway plasmid and paired it with the
previously highest-producing scRNA library strain (medium-lacY, high-lgtA,
high-CvGalT). Compared to the corresponding WbgO strain, the CvGalT strain produced
a 5- to 10-fold increase in supernatant LNT titer, while LNT II accumulation decreased 5-
to 20-fold, with the precise effect depending on the feedstock concentration (Figure 6e).
These paired effects reflect the higher ability of CvGalT to bind and convert LNT II before
it is exported to accumulate in the supernatant74. The highest supernatant titer achieved
from the CvGalT-containing system increased to 2.52 mM LNT (1.78 g/L), compared
to 0.576 mM (0.407 g/L) from the WbgO-containing system. This improvement
reflects a 4.4-fold increase in mol/mol yield on lactose from 0.099 to 0.432.
Relieving the bottleneck identified by our biosynthetic profiling approach therefore
resulted in significantly more LNT production by improving the efficiency of the
β-1,3-galactosyltransferase reaction.

The discussion has been extensively re-written to explain the role of biosynthetic profiling in a
metabolic engineering campaign and to more explicitly compare the production titers obtained in
our manuscript with other work in the literature. The high titers given by the reviewer were
obtained in scaled-up, typically fed-batch, bioreactor conditions (Liao et al. 2023 [PMID:
37467490], Zhu et al. 2021 [PMID: 34436880], Sugita and Koketsu 2022 [PMID: 35426313] for

https://www.zotero.org/google-docs/?rFUKM9
https://www.zotero.org/google-docs/?NaoAhW


example), which is significantly different from the small-scale, test-tube expression profiling
demonstrated in our manuscript. We do not believe that direct comparisons of titer are as
important as the demonstration of new tools and approaches for achieving these titers. In this
study we aim not to maximize titer, but to explore the production landscape across intermediate
levels of pathway expression as a starting point for later-stage process development.
Nonetheless, we note that our test tube titers of 1.78 g/L LNT from 2 g/L of lactose compare
very favorably to the 2.96 g/L of LNT from 5-fold higher concentrations of lactose (10 g/L)
reported elsewhere for test-tube production (Sugita and Koketsu 2022). We also believe it is
useful to discuss yield as part of this comparison due to the 5-fold differences in feedstock
levels.

The Discussion section has now been updated as follows (changes in bold):

Optimal multi-gene pathway expression could be influenced by many factors,
possibly including total burden, enzyme imbalance, or toxic enzyme or metabolite
effects. The difficulty in predicting these systems-level interactions means that finding
global production optima often requires exploring large design spaces85. Toward this
end, we successfully developed a scRNA library that can implement all combinations of
four truncation-defined expression levels across three chosen genes, totaling 64
possible expression programs. For each of the pathways we examined, we found the
optimal production to occur at non-maximal expression levels in at least one channel of
expression (rfp, sr, and lacY in Figures 4, 5, and 6, respectively). Production from these
pathways therefore maps ruggedly to the underlying design space of enzyme
expression, and systematically profiling these effects revealed high-producing strains
and also pathway bottlenecks potentially sensitive to optimization. Pursuing bottleneck
optimization in the LNT pathway with an improved enzyme variant pushed
test-tube-scale titers into g/L magnitude (1.78 g/L). At the scale of test tubes typical
of early-stage strain development, Sugita and Koketsu reported 2.96 g/L LNT74, a
similar but higher titer than observed here. Notably, the previous study used 10
g/L lactose feedstock (0.143 mol/mol yield on lactose) compared to only 2 g/L in
the present work (0.432 mol/mol), representing a 3-fold higher yield from the
combinatorial CRISPRa system.

Well-tuned multi-gene expression programs identified though biosynthetic
profiling provide starting points for later-stage optimization through genome
engineering and process development25. A major challenge for the field is to
effectively and efficiently optimize production from such starting points. Although
beyond the scope of the current study, groups applying such efforts have often
achieved 1-5 g/L LNT production titers in shake flasks and 5-50 g/L production in
fed-batch bioreactors86. As an illustration, 8-fold increases in LNT titer (from 3.11
g/L to 25.4 g/L) and >2-fold increases in LNT yield on lactose (from 0.301 mol/mol
to 0.773 mol/mol) were seen when scaling up a strain from 25 mL shake flask
cultures to 1 L fed-batch bioreactor conditions, respectively87. We expect that
similar increases in titer could be achieved by cultures of our optimized strain
scaled up to similar fed-batch conditions.

https://www.zotero.org/google-docs/?L12SEU
https://www.zotero.org/google-docs/?29YCvD
https://www.zotero.org/google-docs/?hVCNqa
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https://www.zotero.org/google-docs/?OKMvVj


Broadly speaking, biosynthetic profiling using trans-acting scRNAs can greatly
reduce the time needed to tune multi-gene programs, compared to traditional cis-acting
tools like promoter, RBS, or ribozyme libraries88,89. We expect that the combinatorial
scRNA library described here will provide a straightforward approach to identifying
production maxima and optimizing burdensome pathways or toxic intermediate
accumulation, ahead of later-stage optimization. In the future, this approach could be
extended to non-model hosts with metabolic and physiological capabilities suitable for
next-generation bioproduction applications90–92.
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors have addressed all my questions and comments in a satisfactory manner. I support 

publication. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The authors have thoughtfully responded to my previous review, and thoroughly address the two main 

comments I had: 1) further discussing previously used energy parameters in the literature, and 2) 

make their source code available. I have no further comments. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

I appreciate the authors’ detailed responses. While I appreciate the significant improvements made in 

CRISPRa design and the elucidation of metabolic bottlenecks in the biosynthesis pathways examined, I 

still maintain my initial perspective. Only three genes are overexpressed for LNT production. The 

authors used the CRISPRa method to identify the bottleneck in these three steps. However, in real 

production strains, more than three genes need to be overexpressed. In the LNT production, more 

than three genes have to be expressed to increase UDP-GlcNAc and UDP-Gal pools in addition to the 

three steps from lactose (e.g., 10.1021/acs.jafc.2c02423, 10.1021/acs.jafc.3c02997). As for biopterin, 

the authors only focused on the three steps from GTP. Additionally, in most biological production 

systems (e.g., Artemisinic acid (Amyris), 1,4-butanediol (Genomatica)), multiple genes must be 

expressed. While the authors’ CRISPRa method can effectively identify bottlenecks in systems with 

only three genes are overexpressed, it would be challenging to utilize this complex method in systems 

where dozens of genes are expressed. Thus, it fits better in a journal specializing in nucleic acids. 

Once again, I appreciate the thoroughness of the authors’ response and the efforts made to address 

concerns raised during the review process. 



REVIEWER COMMENTS

Point-by-point responses to Reviewer #3’s comments are provided in blue text.

Reviewer #1 (Remarks to the Author):

The authors have addressed all my questions and comments in a satisfactory manner. I support
publication.

Reviewer #2 (Remarks to the Author):

The authors have thoughtfully responded to my previous review, and thoroughly address the
two main comments I had: 1) further discussing previously used energy parameters in the
literature, and 2) make their source code available. I have no further comments.

Reviewer #3 (Remarks to the Author):

I appreciate the authors’ detailed responses. While I appreciate the significant improvements
made in CRISPRa design and the elucidation of metabolic bottlenecks in the biosynthesis
pathways examined, I still maintain my initial perspective. Only three genes are overexpressed
for LNT production. The authors used the CRISPRa method to identify the bottleneck in these
three steps. However, in real production strains, more than three genes need to be
overexpressed. In the LNT production, more than three genes have to be expressed to increase
UDP-GlcNAc and UDP-Gal pools in addition to the three steps from lactose (e.g.,

 



10.1021/acs.jafc.2c02423, 10.1021/acs.jafc.3c02997). As for biopterin, the authors only focused
on the three steps from GTP. Additionally, in most biological production systems (e.g.,
Artemisinic acid (Amyris), 1,4-butanediol (Genomatica)), multiple genes must be expressed.
While the authors’ CRISPRa method can effectively identify bottlenecks in systems with only
three genes are overexpressed, it would be challenging to utilize this complex method in
systems where dozens of genes are expressed. Thus, it fits better in a journal specializing in
nucleic acids.

Once again, I appreciate the thoroughness of the authors’ response and the efforts made to
address concerns raised during the review process.

We emphasize that the major advance of our work is the CRISPR sgRNA-promoter design
method, the systematic characterization, and demonstration of immediate practical utility in
multiple metabolic pathways. From this foundation, it is straightforward to construct additional
promoters and target additional genes. This paper’s design advance, particularly avoiding
trial-and-error experimentation in gRNA design, will help precipitate the very improvements
toward large pathway development that the reviewer is hoping for and considers challenging.

We have revised the manuscript to highlight these points. The major revisions include two new
paragraphs in the Discussion (lines 552-573) and new Supplementary Figure 18 (lines 368-397
in Supplement). This new content explains in detail how our approach can be readily extended
to construct larger programs with additional target genes.

We further emphasize that our existing three gene system has already enabled important new
insights into metabolic pathway engineering, as described in detail in the manuscript. Tellingly,
we have already received multiple requests for access to the genetic constructs and software
developed here, pointing to overall interest in the system. We look forward to others’ application
of CRISPR control to new pathways, as well as the expansion of this approach to larger
pathways. We suggest that taken together, our work represents a substantial advance that is
appropriate for the broad readership of Nature Communications.
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