Supplementary Figure Legends

Supplementary Figure S1. Additional evidence from Figure 2 supporting the conclusion that *N*-PPG (50 mg/kg x 9 days) induced partial normalization of HD brain transcriptomes and pathways toward WT. **A.** Pearson's linear correlation ($R_P = +0.75$, p<0.05) between Log2-fold changes (Log2FC) in treated HD/control HT (HT/H) and control WT/HD (W/H) mean gene ratios (n=1611 SDE gene set, Suppl. Table S1). **B.** Normalization of set of 1611 SDE mean gene ratios with inset of heat map showing extent of normalization for three mouse brain transcripts (Th, Drd1, Adora2a) known to be dysregulated during HD disease progression and significantly downregulated in Veh treated R6/2 mice relative to Veh treated WT mice. **C.** Gene set enrichment analysis (GSEA) showing normalized enrichment scores (NES) from transcriptomes of *N*-PPG vs. vehicle treated WT mouse brains. **D.** Statistical excess of overlapping GSEA pathways (up- and down-regulated) indicating pathway normalization in *N*-PPG treated HD (R6/2) mouse brains relative to ward those of WT mouse brains.

Supplementary Figure S2. Repeated weight, motor performance and survival measurements of HD R6/2 mice orally gavaged with either Veh (n=9) or 50 mg/kg *N*-PPG (n=8) for 14 days (also schematically shown in Figure 3A). A. No significant change in body weights during or after Veh or *N*-PPG treatments. **B.** No significant change in median 14.3 weeks of survival after Veh or *N*-PPG treatments. **C.** No significant change in metabolic cage measurement at 12 weeks of overall O₂ consumption, CO₂ production, food consumption or energy expenditure. **D.** No significant change in grip strength, rotarod coordination or hindlimb clasp measured at indicated time points during and after Veh or *N*-PPG treatments.

Supplementary Figure S3. Breakdown of all metabolites commonly measured in tissues (blood, brain/cerebellum, kidney) of Veh and *N*-PPG treated HD R6/2 mice, as schematically shown in Figure 3A. Of the 536 tissue analytes quantifiable by our metabolomic platform, 260 were common to all three tissue types; the 39 classified as either amino acids or amino acid-related metabolites were the subject of further analysis (Figure 3B, Suppl. Table S3).

Supplementary Figure S4. Differential metabolic cage effects on WT mice during and after *N*-PPG treatments (Veh, 100 mg/kg, or 200 mg/kg daily x 8 weeks followed by 8 weeks off all treatments), schematically shown in Figure 6A. During treatment cage measurements showed significant *N*-PPG induced increases in CO₂ production, O₂ consumption, and energy expenditure (kcal/h), which largely reversed by 8 weeks after treatment cessation.

Supplementary Figure S5. Unsupervised clustering of the amino acid-related metabolites measured in blood, brain (cerebellum) and kidney tissues of WT mice collected 8 weeks after Veh or *N*-PPG (100 mg/kg) treatment, schematically shown in Figure 6A. Only the blood samples showed significant changes in proline, sarcosine and 20 other amino acid-related metabolites, suggesting a complex systemwide rebound response to the earlier *N*-PPG treatment.

Α

WT Vehicle R6/2 Vehicle	R6/2 N-PPG R5/2 Vehicle		WT Vehicle R6/2 Vehicle	R6/2 N-PPG R6/2 Vehicle	
		/			Adora2a
					Camk2n1
					Lamp5
					Krt80 Slc6a2
					Fgf3
					Npr1
		/			Trh
					Gpr83 Scube1
					Tmem132d
					Drd1

D

Brain transcriptome GSE Normalized Enrichment Scores (NES): WT N-PPG vs. WT Vehicle treated

В

Excess overlap of brain transcriptome GSEA pathways between R6/2 N-PPG vs. R6/2 Vehicle and WT Vehicle vs. R6/2 Vehicle mice

С

Suppl. Figure S2

200

260 common to blood.	39 common	
Class	Number of metabolites	Amino acids (
Acylcarnitines	37	Ala
Alkaloids	1	Arg
Aminoacids	20	Asn
Aminoacids Related	19	Asp
Bile Acids	1	Cys
Biogenic Amines	6	Gln
Carboxylic Acids	1	Glu
Carboxylic Acids	14	Gly
Ceramides	14	His
Cholesterol Esters	2	lle
Diacylglycerols	6	Leu
Fatty Acids	3	Lvs
Glycerophospholipids	81	Met
Glycosylceramides	11	Phe
Indoles Derivatives	1	Pro
Nucleobases Related	2	Ser
Sphingolipids	14	Thr
Sugars	1	Trp
Triacylglycerols	39	Tyr
Vitamins & Cofactors	1	Val
		Vdl

39 common to blood, brain and kidney

Amino acids (20)	Amino acid-related (19)
Ala	1-Met-His
Arg	3-Met-His
Asn	5-AVA
Asp	AABA
Cys	ADMA
Gln	alpha-AAA
Glu	Anserine
Gly	Betaine
His	Carnosine
lle	Cit
Leu	Creatinine
Lys	Cystine
Met	HArg
Phe	HCys
Pro	Orn
Ser	ProBetaine
Thr	SDMA
Тгр	t4-OH-Pro
Tyr	Taurine
Val	

Suppl. Figure S4

Suppl. Figure S5

VEH _ WT