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Supp. Figure 1: Quality control metrics of mouse liver hMeDIP-seq libraries

(A) (Left) Representative Bio-analyzer electropherogram of liver hMeDIP-seq library from young input and
5hmC samples (n=4). (Right), same as left but for old liver samples (n=4). AU represents arbitrary
fluorescence units. (B) gPCR analysis for exogenous unmethylated and hydroxymethylated DNA control spike-
ins included in hMeDIP-seq for young and old (n=4 each) samples. Data are presented as mean * SD;
statistical significance was assessed using two-way ANOVA with Sidak's multiple comparisons post-hoc test.
Figure panels (C-G) present QC data from 5hmC and input libraries of young and old (n=4 each) mouse liver
samples, including (C) sequencing depth, (D) percent of alignment rates of 5hmC and input libraries to the
GRCm38/mm10 genome, (E) the number of fragments mapped to the GRCm38/mm10 genome, (F) the length
of mapped fragments extracted from SAM file, and (G) duplication rates. For (C-G), statistical significance was
assessed using two-sided unpaired Welch'’s t-test. (H) Lisa MOTIF analysis using the top 500 genes in young
and old (ranked by gene body 5hmC signal). The top 20 young and old TFs (sorted by p-value) are labeled. (1)
Spearman-rank correlation between young (panel 1) and old (panel 2) gene body 5hmC signal and mRNA FC
(old vs young). Correlation between old vs young (n=4 each) mean gene body 5hmC signal and mRNA FC
between old and young (n=3 each), panel 3. Correlation between random gene body 5hmC values and mRNA
FC (old vs young, panel 4). p = Spearman’s correlation coefficient. p-values were derived from Spearman’s
rank correlation. For all box plots (C-G), the horizontal line within each box represents the 50th, while the
bounds of the box depict the 25th and 75th percentile of the data. The whiskers extend to the minima (the
smallest value within 1.5 times the IQR below the first quartile, excluding outliers) and the maxima (the largest
value within 1.5 times the IQR above the third quartile, excluding outliers). Source data are provided as a

Source Data file.
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Supp. Figure 2: Quality control metrics of mouse liver MeDIP-seq libraries

(A) (Left) Representative Bio-analyzer electropherogram of liver MeDIP-seq library from young input and 5mC
samples (n=4). (Right), same as left but for old liver samples (n=4). AU represents arbitrary fluorescence units.
(B) gPCR analysis for exogenous unmethylated and hydroxymethylated DNA control spike-ins included in
MeDIP-seq for young and old (h=4 each) mouse liver samples. Data are presented as mean + SD; statistical
significance was assessed using a two-way ANOVA with Sidak's multiple comparisons post-hoc test. Figure
panels (C-G) present QC data from 5mC and input libraries of young and old (h=4 each) mouse liver samples,
including (C) sequencing depth, (D) percent of alignment rates of 5mC and input libraries to the
GRCm38/mm10 genome, (E) the number of fragments mapped to the GRCm38/mm10 genome, (F) the length
of mapped fragments extracted from SAM file, and (G) duplication rates. For (C-G), statistical significance was
assessed using two-sided unpaired Welch'’s t-test. For all box plots (C-G), the horizontal line within each box
represents the 50th, while the bounds of the box depict the 25th and 75th percentile of the data. The whiskers
extend to the minima (the smallest value within 1.5 times the IQR below the first quartile, excluding outliers)
and the maxima (the largest value within 1.5 times the IQR above the third quartile, excluding outliers). Source

data are provided as a Source Data file.
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Supp. Figure 3: Age-related differences in 5hmC occur without detectable differences in 5mC

(A) PCA plot obtained using input subtracted 5mC bigWig files of young and old (n=4 each) mouse liver. (B)
Volcano plot of differentially methylated regions (DMRs) between old and young (n=4 each) mouse liver;
identified by QSEA with p < 0.05. Hypo DMRs (FC < -2) are regions with less enrichment in the old and hyper
DMRs (FC = 2) are regions with higher enrichment in the old. (C) Metaplots of young and old (n=4 each) 5mC
signal at the DMRs identified by QSEA. (D) Example genome browser tracks for liver hyper DMRs (two
intergenic regions) and hypo DMRs (Stard13 and Far2). (E) GO terms associated with the DMRs from (B)
using GREAT. The top 5 biological process terms with FDR < 0.05 are shown. (F) Pie charts showing CpG and
genic/intergenic annotations of the DMRs from (B). (G) Metaplot of young and old (n=4 each) mouse liver 5mC
signal over the gene bodies of all mm10 genes; signal quantifications are shown on the side. Statistical
significance was assessed using two-sided unpaired Welch’s t-test. Source data are provided as a Source

Data file.
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Supp. Figure 4: Supplementary for alternative splicing mediates 5hmC’s transcriptionally restrictive
function through decreased binding of splicing factors

(A) Genome browser views of young and old (n=4 each) 5hmC and 5mC signal at endogenous regions used to
design oligo 1 (left) and oligo 2 (right). (B) Overlap between oligo 1 and oligo 2 for 5hmC-enriched proteins
(top) and input-enriched proteins (bottom) when comparing 5hmC vs input. (C) GO analysis using DAVID for
proteins overlapping between oligo 1 and oligo 2 in (B). (D) Heatmap (left) and volcano plot (right) of
differential proteins (p < 0.05) in oligo 1 for the comparison of input-subtracted old 5hmC vs old 5mC and C.
(E) Heatmap (left) and volcano plot (right) of differential proteins (p < 0.05) in oligo 1 for the comparison of
input-subtracted old 5hmC vs young 5mC and C. (F) Heatmap (left) and volcano plot (right) of differential
proteins (p < 0.05) in oligo 2 for the comparison of input-subtracted old 5hmC vs old 5mC and C. (G) Heatmap
(left) and volcano plot (right) of differential proteins (p < 0.05) in oligo 2 for the comparison of input-subtracted
old 5hmC vs young 5mC and C. (H) PCA plot of dRNA-seq data based on normalized transcript counts for
young and old (n=4 each) mouse liver samples. (I) Examples of alternative splicing events in genes with high

5hmC. Shaded area shows a differentially used exon. Source data are provided as a Source Data file.
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Supp. Figure 5: Supplementary for quiescence and senescence drive the increase of 5ShmC with age
and impact cellular function

(A) Dot blot for 5hmC signal using gDNA from serum starvation induced quiescent HepG2 cells; n=2
independent cell cultures sourced from a single vial. + control is 25 ng of young mouse hippocampus gDNA, —
control is water. Quantifications are depicted below. Statistical significance was assessed using two-way
ANOVA with Tukey's multiple comparisons post-hoc test. (B) Representative images of SA-B-gal staining in
proliferating and ETIS, IRIS, and OSIS cells. (C) gPCR analysis of p16, p21, Lmnb1, and II-6 in proliferating
and ETIS, IRIS, and OSIS WI-38 cells. For all groups, n=3 independent cell cultures sourced from a single vial,
statistical significance was assessed using multiple two-sided unpaired t-test with FDR correction (Benjamini,
Krieger, and Yekutieli). (D) BrdU assay of proliferating and ETIS, IRIS, and OSIS WI-38 cells. Statistical
significance was assessed using multiple two-sided unpaired t-test with FDR correction (Benjamini, Krieger,
and Yekutieli). (E) Representative images of DHE staining of young and old (n=1 each, male) mouse liver
sections. (F) DHE mean intensity per nucleus from (E), using data from 5 fields of view for both young and old
liver tissue sections. Horizontal bars represent median; statistical significance was assessed using two-sided
unpaired Welch'’s t-test. (G) Representative images of DHE staining of HepG2 cells treated with indicated
concentrations of H,O; for 2 h. (H) Representative images of DHE staining of HepG2 cells treated with 600 UM
H.O-for 2 h without NAC, sequential 24 h treatment with NAC after 2 h H,O;treatment, or 2 h co-treatment
with NAC followed by 24 h treatment with NAC only. (I) 5hmC dot blot of HepG2 cells from (H). Quantifications
are depicted below. (J) 5hmC dot blot of HepG2 cells treated with H>O- for 24 h. Quantifications are depicted
below. For both (I-J), statistical significance was assessed using a two-way ANOVA with Tukey's multiple
comparisons post-hoc test. Unless noted, all data are presented as mean + SD. For (A, I, J), AU represents

arbitrary fluorescence units. Source data are provided as a Source Data file.
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Supp. Figure 6: Quality control metrics of mouse cerebellum hMeDIP-seq libraries

(A) (Left) Representative Bio-analyzer electropherogram of cerebellum hMeDIP-seq library from young input
and 5hmC samples (n=4 each). (Right), same as left but for old cerebellum samples (n=4 each). AU
represents arbitrary fluorescence units. (B) qPCR analysis of endogenous controls, Gapdh (negative control)
and Sfil (positive control) for young and old (n=4 each) mouse cerebellum samples. Data are presented as
mean * SD; statistical significance was assessed using two-way ANOVA with Sidak's multiple comparisons
post-hoc test. Figure panels (C-G) present QC data of 5hmC and input libraries from young and old cerebellum
samples, including (C) sequencing depth, (D) percent of alignment rates of 5hmC and input libraries to the
GRCm38/mm10 genome, (E) the number of fragments mapped to the GRCm38/mm10 genome, (F) the length
of mapped fragments extracted from the SAM file, and (G) duplication rates. For (C-G), statistical significance
was assessed using two-sided unpaired Welch’s t-test. For all box plots (C-G), the horizontal line within each
box represents the 50th, while the bounds of the box depict the 25th and 75th percentile of the data. The
whiskers extend to the minima (the smallest value within 1.5 times the IQR below the first quartile, excluding
outliers) and the maxima (the largest value within 1.5 times the IQR above the third quartile, excluding

outliers). Source data are provided as a Source Data file.
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Supp. Figure 7: 5hmC'’s transcriptionally restrictive function extends to mouse cerebellum

(A) PCA plot obtained using input subtracted 5hmC bigWig files of young and old (h=4 each) mouse liver. (B)
Volcano plot of DHMRs between old and young (h=4 each) mouse cerebellum; identified by QSEA with p <
0.05. Hypo DHMRs (FC < -2) are regions with less enrichment in the old and hyper DHMRs (FC 2 2) are
regions with higher enrichment in the old. (C) Metaplots of young and old (h=4 each) 5hmC signal at the
DHMRs in (B). (D) Example genome browser tracks for cerebellum hyper DHMRs (Hist1h2be and Pcdhgal)
and hypo DHMRs (Tecprl and Atp2b2). (E) GO terms associated with the DHMRs from (B) using GREAT. The
top 5 biological process terms with FDR < 0.05 are shown. (F) Pie charts showing CpG and genic/intergenic
annotations of the DHMRs from (B). (G) Metaplot of young and old (n=4 each) 5hmC signal over the gene
bodies of all mMm10 genes; 5hmC signal quantifications are shown on the side. Statistical significance was

assessed using two-sided unpaired Welch’s t-test. Source data are provided as a Source Data file.
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Supp. Figure 8: Gene body 5hmC restricts the magnitude of transcriptional changes during cerebellum
aging

(A) Metaplots of young and old (n=4 each) merged 5hmC signal over the gene bodies with low (n=5900),
intermediate (n=5900), and high (h=5900) average mRNA counts for young (left) and old (right) samples (n=4
each). (B) Metaplots of young and old (n=4 each) cerebellum 5hmC signal over gene bodies with minimal (left)
and maximal (right) expression change between old and young (n=4 each). Quantifications are depicted below;
statistical significance was assessed using two-sided unpaired Welch'’s t-test. (C) Box plots showing the
distribution of various genic features for the genes with minimal and maximal expression changes between old
and young (n=4 each) mice. Statistical significance was assessed using two-sided unpaired Welch’s t-test.

Source data are provided as a Source Data file.
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Supp. Figure 9: Supplementary for human tissues also show 5ShmC-mediated transcriptional restriction
(A) Distribution of sex and age groups among GTEx donors analyzed in this study. (B) (Left) Heatmap output
from ImpulseDE2 with monotonous and transiently changing genes with age in the brain. (Middle) normalized
MRNA count of brain-specific and brain-differential genes from (left). (Right) GO plots associated with the
brain-specific and brain-differential genes. (C) (Left) Heatmap output from ImpulseDE2 with monotonous and
transiently changing genes with age in the heart. (Middle) normalized mRNA count of heart-specific and heart-
differential genes from (left). (Right) GO plots associated with the heart-specific and heart-differential genes.
(D) (Left) Heatmap output from ImpulseDEZ2 with monotonous and transiently changing genes with age in the
liver. (Middle) normalized mRNA count of liver-specific and liver-differential genes from (left). (Right) GO plots
associated with the liver-specific and liver-differential genes. Data are presented as mean + SEM. Statistical
significance was assessed using one-way ANOVA test (without post-hoc comparisons). An asterisk (*)
indicates transiently downregulated (*down) or upregulated (*up) genes. Terms without asterisks denote
monotonously downregulated (down) or upregulated (up) genes. Source data are provided as a Source Data

file.
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Supp. Figure 10: 5hmC is downregulated in response to high-fat diet and disulfiram

(A) Schematic of diet regimen for standard and HFD. (B) Dot blot for 5hmC signal in gDNA isolated from mice
liver fed on either a SD or HFD (n=6 each). + control is 200 ng of young mouse hippocampus gDNA, — control
is water. (C) 5hmC quantification from dot blot (B) stratified by type of diet. (D) Same as (C) except stratified by
type of diet and sex. For (C-D), data are presented as mean + SD; statistical significance was assessed using
two-way ANOVA with Sidak's multiple comparisons post-hoc test. AU represents arbitrary fluorescence units.
(E) Schematic of diet regimen for HFD and DSF drug treatment. (F) Dot blot for 5hmC signal in gDNA isolated
from mice liver according to the procedure outlined in (E); 3-month HFD, 3-month SD (n=9), 6-month HFD
(n=9), 3-month HFD with low DSF (n=9), and 3-month HFD with high DSF (n=8). (G) (Left), quantification of
5hmC signal from (F) stratified by type of diet; statistical significance was assessed using one-way ANOVA
with Tukey’s multiple comparisons post-hoc test. (Right), same as (left) except stratified by type of diet and
sex. Statistical significance was assessed using two-way ANOVA with Tukey’s multiple comparisons post-hoc
test. For (G, both panels), data are presented as mean + SD. AU represents arbitrary fluorescence units.

Source data are provided as a Source Data file. Illustration credit: Endosymbiont GmbH.

20



