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1 Strong coupling criterion

A variety of criteria for the strong coupling regime are available in the literature.1 The criterion is

often expressed in words as the coupling rate exceeding the damping (molecular and cavity) rates.

Whilst a formal discussion of the different criteria has some merit, in the present context the exact

choice of which of the different criteria to use is not a key issue. What we attempt to do in the

present work is to make a comparison between the criterion we chose (ΩR = 2gN > (K +Γ)/2)

and the emergence of PL associated with the lower polariton in our experiments.
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2 Optical Modes of different cavity structures

It is worth clarifying what we mean here by ‘open’, ‘half’, and ‘full’ cavities. It is perhaps easiest

to begin with the full cavity. The full cavity structure has a high reflectivity metallic mirror both

above and below the molecular layer and is thus capable of supporting optical modes that are

largely confined within the molecular layer (there will be a small degree of leakage of the fields

through the metal mirrors). For the half cavity there is one high reflectivity (metallic) mirror

under the molecular layer, the upper mirror is simply the low reflectivity interface between the

molecular layer and air. Such structures may support well-confined optical modes when the in-

plane wavevector of the mode is greater than the wavevector in air, i.e. in the regime of total

internal reflection. For optical modes of lower wavevector the interface with the air provides

only a weak reflection so that the optical field is no longer as well confined, such modes are

often referred to as half-leaky modes. For the open cavity employed here we have a different

situation. The lower interface between the molecular layer and the silicon substrate provides a

modest degree of reflectivity whilst the interface between the molecular layer and air provides a

somewhat lower reflectivity. Modes within the light line (in-plane wavevector less than that in air)

are poorly confined to the molecular material, such modes are often referred to as leaky modes.

For modes with an in-plane wavevector greater than that in air total internal reflection yields much

more tightly confined modes.

For both the half and open cavities the situation can be rather complex when more than one

mode is supported, such that one or more modes lie inside the light-line (and are thus not well-

confined) and one or more lie beyond the light-line.2
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3 Optical Fourier set-up

Figure S1 shows a schematic of the experimental setup. To measure angle resolved reflectance, a

white light source was focused onto the sample using a 0.8 NA 100x objective lens and the reflected

signal was collected using the same lens. Lens L4 and L5, together, project the back-focal plane

of the objective lens onto either the spectrometer or the camera, depending on the position of the

flip mirror FM2. Lens L6 was a flip-lens used to project the real plane to the spectrometer/camera.

For Photoluminescence (PL) measurements, a beam-expanded diode-pumped 532 nm source was

focused onto the sample using the objective lens, and the PL was collected in the back-scattering

configuration. The laser line was then rejected using spectral edge filters placed after lens L5. For

k∼0 excitation (normal incidence), we place a lens, L7, in the input path such that the laser was

focused onto the back aperture of the objective lens, resulting in an approximate parallel beam with

k∼0 at the sample plane.

Figure S1: Schematic of the Fourier optical setup
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4 Open Cavities

(a)

(f)

(c)(b)
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Figure S2: Open cavity, polymer thickness ∼340 nm. (a) Experimentally measured dispersion,
based on p-polarised reflectance, indicated as a colour plot (see methods re: normalisation). (b)
Calculated reflectance, the white dotted lines represent the limit of the collection numerical aper-
ture used in the experiment (max angle = 55◦). (c) As panel (b) except that in the calculation we
have set the oscillator strength of the dye to zero. (d) Experimentally measured dispersion plot
acquired from photoluminescence data. (e) Calculated absorption in the TDBC-doped layer. In
panels (a-e) the polariton dispersion is shown, as determined from the coupled oscillator model
described in the methods section. The polariton positions are shown as white dashed lines, and the
molecular resonance (2.10 eV) by a black dotted line; just one cavity mode was used in the model
(see panel (c)). (f) Normal incidence line spectra for calculated reflectance, measured PL and cal-
culated absorption. The polariton positions (normal incidence) are indicated by black dashed lines.

In figure S2 we show, in the upper row, dispersion data based on reflectance for the open

cavity, i.e. for a ∼340 nm TDBC-doped PVA layer on a silicon substrate. On the left (a) we

show the measured reflectance, in the middle the calculated reflectance (b), and in (c) we again

show the calculated reflectance, but this time we set the oscillator strength of the dye to zero.

In the lower row we again show a dispersion plot, panel (d), this time based on the measured

photoluminescence. In panel (e) we show the calculated absorption in the TDBC-doped PVA
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layer, whilst in panel (f) we show normal incidence line spectra for the calculated reflectance,

the measured photoluminescence and the calculated absorption in the TDBC. The white dashed

lines in panels (a-e) indicate the positions of the polariton modes as determined from our coupled

oscillator model (see methods), the polariton positions at normal incidence are indicated in panel

(f) by black dashed lines. Further details are given in the figure caption.

Looking first at the reflectance, panels (a) and (b), the presence of modes of the open cavity

system is indicated by regions of low reflectivity (blue). Also shown are the positions of the

polaritons as determined by our coupled oscillator model (details in methods). We see that overall

there is a reasonable match between the experimental data, the calculated data, and the coupled

oscillator model (which here employed a single cavity resonance). The calculated dispersion for a

‘no resonance’ cavity and the ‘no resonance’ coupled oscillator model is shown in panel (c). Here

‘no resonance’ cavity and ‘no resonance’ coupled oscillator model refer to the oscillator strength

being set to zero.

From the modelling we determine that in this case there are three photonic modes to consider,

with de-tunings (relative to the molecular resonance) of -1.5, -0.32, and +0.85 eV, having beta

values of 1.7, 1.6 and 1.9 respectively (β is a parameter that ensures the no-resonance cavity

dispersion is correctly included in the coupled oscillator model). Note that these modes were

determined by looking at data spanning a greater frequency range than shown here. The reduced

oscillator strength is 0.14, and the splitting is ΩR = 0.50±0.03 eV. From figure S2(c) we find the

mode width to be K = 0.50±0.02 eV.

In figure S3 we show, in the upper row, dispersion data based on reflectance for the open cavity,

i.e. for a ∼1030 nm TDBC-doped PVA layer on a silicon substrate. The sample was similar to that

used for the open cavity data shown in figure 2 of the main manuscript, the primary difference being

that here the thickness of the cavity was 1030 nm rather than 340 nm used for the sample discussed

in the main manuscript. On the left (a) we show the measured reflectance, in the middle the

calculated reflectance (b), and in (c) we again show the calculated reflectance, but this time set the
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Figure S3: Open Cavity (1030 nm). In panel (a) we show an experimentally measured dispersion,
based on p-polarised reflectance, indicated as a colour plot (see methods re: normalisation). In
panel (b) we show the calculated reflectance, the white dotted lines represent the limit of the
collection numerical aperture used in the experiment. Panel (c) is the same as panel (b) except
that in the calculation we have set the oscillator strength of the dye to zero. In panel (d) we show
an experimentally measured dispersion plot acquired from photoluminescence data. In panel (e) we
show the calculated absorption in the TDBC-doped layer. In panels (a-e) the polariton dispersion
is shown, as determined from the coupled oscillator model described in the methods section. The
polariton positions are shown as white dashed lines, and the molecular resonance (2.10 eV) by
a black dotted line; three cavity modes were used in the model (see panel (c)), and the polymer
thickness was ∼1030 nm. In panel (f) the polariton positions (normal incidence) are indicated by
black dashed lines.

oscillator strength of the dye to zero. In the lower row we again show a dispersion plot, panel (d),

this time based on the measured photoluminescence. In panel (e) we show the calculated absorption

in the TDBC-doped PVA layer, whilst in panel (f) we show normal incidence line spectra for

the measured reflectance, the measured photoluminescence and the calculated absorption in the

TDBC. The white dashed lines in panels (a-e) indicate the positions of the polariton modes as

determined from our coupled oscillator model (see methods), the polariton positions at normal

incidence are indicated in panel (f) by black dashed lines. Further details are given in the figure

caption.
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Looking first at the reflectance, panels (a) and (b), the presence of modes of the open cavity

system is indicated by regions of low reflectivity (blue). Also shown are the positions of the po-

laritons as determined by our coupled oscillator model (details in methods). We see that overall

there is a reasonable match between the experimental data, the calculated data, and the coupled

oscillator model (which here employed three cavity resonances). The calculated dispersion for a

‘bare’ cavity and the ‘bare’ coupled oscillator model is shown in panel (c). Here ‘bare’ refers to

the oscillator strength in the Lorentz oscillator model being set to zero.

From the modelling we determine that in this case there four photonic modes to consider,

with de-tunings of -0.7, -0.33, +0.07, and +0.46 eV, having beta values of 1.4, 1.2, 1.1 and 1.1

respectively. We determine that in this case the reduced oscillator strength is 0.25, the splitting is

Ω= 0.67±0.04 eV. Panel (d) shows the measured photoluminescence dispersion, we see that there

is no sign of any influence of polaritons on the photoluminescence for this open cavity. Finally, to

investigate the absorption we made further use of transfer matrix modelling, the results are shown

in panel (e).
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5 Half Cavities
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Figure S4: Half cavity, polymer thickness ∼ 600 nm. (a) Experimentally measured dispersion,
based on p-polarised reflectance, indicated as a colour plot (see methods re: normalisation). (b)
calculated reflectance, the white dotted lines represent the limit of the collection numerical aper-
ture used in the experiment. (c) As panel (b) except that in the calculation we have set the oscillator
strength of the dye to zero. (d) Experimentally measured dispersion plot acquired from photolu-
minescence data. (e) Calculated absorption in the TDBC-doped layer. In panels (a-e) the polariton
dispersion is shown, as determined from the coupled oscillator model described in the methods
section. The polariton positions are shown as white dashed lines, and the molecular resonance
(2.10 eV) by a black dotted line; just one cavity mode was used in the model (see panel (c)). (f)
Normal incidence line spectra for the calculated reflectance, the measured photoluminescence and
the calculated absorption in the TDBC. The polariton positions (normal incidence) are indicated
by black dashed lines.

Figure S6 shows data from a 600 nm TDBC-doped PVA layer on a gold-coated silicon sub-

strate. Looking first at the reflectance, panels (a) and (b), the presence of the modes of the half

cavity system are again indicated by regions of low reflectivity (blue). Also shown are the posi-

tions of the polaritons as determined by our coupled oscillator model, where we made use of two

cavity modes. We note that overall the match between the experimental data, the calculated data,
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and the coupled oscillator model are not as good as they were for the open cavity. The calculated

dispersion for a ‘no-resonance’ cavity and the ‘no-resonance’ coupled oscillator model is shown

in panel (c).

From the modelling we determine that in this case there are four photonic modes to consider,

with de-tunings (relative to the molecular resonance of -1.1, -0.42, +0.15, and +0.80 eV, having

beta values of 1.1, 1.1, 1.2 and 1.2 respectively. We determine that in this case the reduced os-

cillator strength is 0.14, and the splitting is Ω = 0.50± 0.03 eV. The width of the ‘no-resonance’

cavity modes in this case is K = 0.25±0.01 eV. Panel (d) shows the measured photoluminescence

dispersion.

Figure S5 shows data from a 1630 nm TDBC-doped PVA layer on a gold-coated silicon sub-

strate. Looking first at the reflectance, panels (a) and (b), the presence of modes of the half cavity

system are again indicated by regions of low reflectivity (blue). Also shown are the positions of

the polaritons as determined by our coupled oscillator model, where we made use of three cavity

modes. We see that overall there is a reasonable match between the experimental data, the calcu-

lated data, and the coupled oscillator model. The calculated dispersion for a ‘bare’ cavity and the

‘bare’ coupled oscillator model is shown in panel (c).

From the modelling we determine that in this case there are five photonic modes to consider,

with de-tunings (relative to the molecular resonance of -0.75, -0.50, -0.27, -0.02, and +0.25 eV,

having beta values of 1.1, 1.1, 1.1, 1.1, and 1.0 respectively. We determine that in this case the re-

duced oscillator strength is 0.06, the splitting is Ω = 0.35±0.02 eV. Panel (d) shows the measured

photoluminescence dispersion. As for the 600 nm thick half cavity, things are now slightly more

interesting than they were for the open cavity. The PL spectrum is somewhat different from the

open cavity case, and there is perhaps some slight mapping of the PL onto the position of the lower

polariton modes. Calculated data for the absorption in the TDBC are shown in panel (e). There is

again a significant change in the absorption compared to that of the bulk (a single absorption peak),
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Figure S5: Half Cavity (1630 nm). In panel (a) we show an experimentally measured dispersion,
based on p-polarised reflectance, indicated as a colour plot. In panel (b) we show the calculated
reflectance, the white dotted lines represent the limit of the collection numerical aperture used in
the experiment. Panel (c) is the same as panel (b) except that in the calculation we have set the
oscillator strength of the dye to zero. In panel (d) we show an experimentally measured dispersion
plot acquired from photoluminescence data. In panel (e) we show the calculated absorption in
the TDBC-doped layer. In panels (a-e) the polariton dispersion is shown, as determined from the
coupled oscillator model described in the methods section. The polariton positions are shown as
white dashed lines, and the molecular resonance (2.10 eV) by a black dotted line; three cavity
modes were used in the model (see panel (c)), and the polymer thickness was ∼1630 nm. In panel
(f) the polariton positions (normal incidence) are indicated by black dashed lines.

and further there is now an indication of the absorption tracking the polariton modes, at least in

some very limited way.
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6 Full Cavities

(a)
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Figure S6: Full cavity, cavity thickness 330 nm. (a) Experimentally measured dispersion plot,
based on p-polarised reflectance, indicated as a colour plot. (b) Calculated reflectance, the white
dotted lines again represent the limit of the collection optics used in the experiment. (d) Photolu-
minescence. (e) Calculated absorption in the TDBC. In all plots the polariton dispersion is shown,
as determined from the coupled oscillator model described in the methods section. The polariton
positions are shown as white dashed lines, and the molecular resonance at 2.10 eV by a black
dashed line; only one cavity mode was used in the model. (f) Normal incidence line spectra for
the calculated reflectance, the measured photoluminescence and the calculated absorption in the
TDBC. The polariton positions (normal incidence) are indicated by black dashed lines.

Again, as for the open and half cavities, in figure S6 we show the reflectance, panels (a) and

(b), the presence of modes of the full cavity system are again indicated by regions of low re-

flectivity (blue). Also shown are the positions of the polaritons as determined by our coupled

oscillator model, where we made use of just one cavity mode. We see that overall there is a reason-

able match between the experimental data, the calculated data, and the coupled oscillator model.

The calculated dispersion for a ‘no-resonance’ cavity and the ‘no-resonance’ coupled oscillator

model is shown in panel (c). In panel (f) we show normal incidence line spectra for the calculated
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reflectance, the measured photoluminescence and the calculated absorption in the TDBC. The cal-

culated dispersion for a ‘no-resonance’ cavity and the ‘no-resonance’ coupled oscillator model are

shown in panel (c).

From the modelling we determine that in this case there are three photonic modes to consider,

with de-tunings (relative to the molecular resonance of -1.04, -0.04, and +0.72 eV, all having beta

values of 0.65. The reduced oscillator strength is 0.018, the splitting is ΩR = 0.16±0.01 eV, and

β = 0.65. The width of the ‘no-resonance’ cavity modes in this case is K = 0.13±0.02 eV.

For the two cavities that follow, the fabrication procedure was slightly different. We made use

of a layer-by-layer deposition technique to place 4 monolayers of TDBC molecules (total 8 nm

thick) inside these cavities, as follows. A 100 nm thick layer of PMMA was added on top of the

first 40 nm gold mirror by spin coating, as to create part of the cavity. Then the TDBC film was

deposited on top of this PMMA layer using a layer-by-layer approach.3 Briefly, we used a cationic

poly(diallyldimethylammonium chloride) (PDAC) solution as the polyelectrolyte binder for an-

ionic TDBC J - aggregate solution. A typical deposition step consists of subsequent dipping the

substrate inside a beaker of PDAC solution (20% by weight in water - diluted 1:1000) and TDBC

solution in water (0.01M diluted 1:10) for 15 minutes each. The substrate was washed with DI wa-

ter after each immersion and same steps were repeated to deposit multiple layers of PDAC/TDBC.

To increase the adhesion we first coat one layer of anionic polystyrene sulfonate (PSS) using the

above mentioned process and continue with PDAC - TDBC. Finally the TDBC layer was protected

by depositing a layer of PDAC molecules. The superstrate was then prepared by spinning a second

layer of PMMA and finally the top mirror was prepared by thermally evaporating a further 40 nm

of gold.

We discuss the results for both the 355 nm and 400 nm cavities at the same time since they are

very similar. Looking first at the reflectance, panels (a) and (b), the presence of modes of the full

cavity system are again indicated by regions of low reflectivity (blue). Also shown are the positions
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Figure S7: Full Cavity (355 nm). In panel (a) we show an experimentally measured dispersion,
based on p-polarised reflectance, indicated as a colour plot. In panel (b) we show the calculated
reflectance, the white dotted lines represent the limit of the collection numerical aperture used in
the experiment. Panel (c) is the same as panel (b) except that in the calculation we have set the
oscillator strength of the dye to zero. In panel (d) we show an experimentally measured dispersion
plot acquired from photoluminescence data. In panel (e) we show the calculated absorption in
the TDBC-doped layer. In panels (a-e) the polariton dispersion is shown, as determined from the
coupled oscillator model described in the methods section. The polariton positions are shown as
white dashed lines, and the molecular resonance (2.13 eV) by a black dotted line; just one cavity
mode was used in the model (see panel (c)), and the cavity thickness was ∼355 nm. In panel (f)
the polariton positions (normal incidence) are indicated by black dashed lines.

of the polaritons as determined by our coupled oscillator model, where we made use of one cavity

mode (see panel (c)). We see that overall there is a reasonable match between the experimental

data, the calculated data, and the coupled oscillator model. The calculated dispersion for a ‘bare’

cavity and the ‘bare’ coupled oscillator model is shown in panel (c).

From the modelling we determine that in both cases there are three photonic modes to consider:

for the 355 nm cavity, the de-tunings are -1.13, -0.15, and +1.06 eV, all having beta values of 0.65.

The reduced oscillator strength is 0.63, and the splitting is ΩR = 0.20± 0.02 eV; for the 400 nm

cavity, the de-tunings are -1.23, -0.30, and +0.40 eV, all having beta values of 0.7. The reduced
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Figure S8: Full Cavity (400 nm). In panel (a) we show an experimentally measured dispersion,
based on p-polarised reflectance, indicated as a colour plot. In panel (b) we show the calculated
reflectance, the white dotted lines represent the limit of the collection numerical aperture used in
the experiment. Panel (c) is the same as panel (b) except that in the calculation we have set the
oscillator strength of the dye to zero. In panel (d) we show an experimentally measured dispersion
plot acquired from photoluminescence data. In panel (e) we show the calculated absorption in
the TDBC-doped layer. In panels (a-e) the polariton dispersion is shown, as determined from the
coupled oscillator model described in the methods section. The polariton positions are shown as
white dashed lines, and the molecular resonance (2.13 eV) by a black dotted line; just one cavity
mode was used in the model (see panel (c)), and the cavity thickness was ∼400 nm. In panel (f)
the polariton positions (normal incidence) are indicated by black dashed lines.

oscillator strength is 1.08, and the splitting is ΩR = 0.27±0.02 eV.

Panel (d) in figures S7 and S8 both show the measured photoluminescence dispersion, the PL

spectrum is very clearly different from the open and half cavity cases, the PL nicely mapping onto

the position of the lower polariton mode. Calculated data for the absorption in the TDBC are

shown in panel (e). There is again a very significant change in the absorption compared to that of

the bulk (a single absorption peak), the absorption now tracking the polariton modes.
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7 Estimating the Free Spectral Range and the cavity mode linewidth

The bare cavity mode linewidth was estimated from the calculated reflectance data with the os-

cillators turned off, e.g. panel C of figure S2 etc.. The estimate was based on the FWHM at an

in-plane wavevector that corresponded to the crossing point with the excitonic resonance.

The Free Spectral Range was estimated from the average of the frequency difference to the next

nearest modes, i.e. one mode higher in frequency, one mode lower in frequency.
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8 Photoluminescence from different thin TDBC layers

As a comparison for the PL data we recorded from the different cavities, in figure S9 we show the

PL spectra of thin films of TDBC-doped material.

Figure S9: Photoluminescence from thin TDBC layers. Three spectra are shown: PL from
TDBC produced by the layer-by-layer technique, deposited on Si; PL from TDBC-doped PVA on
Si; PL from TDBC-doped PVA on Au coated Si.

Note that the PL for TDBC-doped PVA peaks at a lower energy (∼2.10 eV) than the TDBC

produced using the layer-by-layer technique (∼2.13 eV). Note also that for the TDBC-doped PVA

on Au coated Si, the low energy shoulder of the TDBC PL is enhanced in relative strength. This

is consistent with a recent observation based on squarine dyes.4 We further note that by using

ellipsometry5 we determined that the resonance energy for the layer-by-layer TDBC film is at

2.14eV, i.e. to within experimental error it is the same as the 2.13eV of the PL reported here.
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9 Literature Values

Data used for the numbered points in figure 3 are as follows:

1) Wersall et al.6 The numbers we extracted from this work for inclusion in the present manuscript

are: ΩR = 0.23± 0.03 eV, FSR = 2.1±0.1 eV (we assume the nano-prism only supports one rel-

evant plasmonic mode), K = 0.21± 0.03 eV, Γ = 0.10± 0.01 eV. These lead to a value for the

finesse of F = 10±2, and a value for 2ΩR/(Γ+K) of 1.5 ±0.2.

2) Thomas et al.7 The numbers we extracted from this work for inclusion in the present manuscript

are: ΩR = 0.59±0.03 eV, FSR = 1.2±0.1 eV, K = 0.46±0.01 eV (note this is a more recent esti-

mate than the originally published data), Γ = 0.36±0.01 eV. These lead to a value for the finesse

of F = 2.6±0.4, and a value for 2ΩR/(Γ+K) of 1.4 ±0.2.

3) Vasista et al.8 The numbers we extracted from this work for inclusion in the present manuscript

are: ΩR = 0.094±0.01 eV, FSR = 0.10±0.01 eV, K = 0.03±0.005 eV, Γ = 0.11±0.01 eV. These

lead to a value for the finesse of F = 3.3±1.1, and a value for 2ΩR/(Γ+K) of 1.4 ±0.2.

4) Thomas et al.9 The numbers we extracted from this work for inclusion in the present manuscript

are: ΩR = 70±5 cm−1, FSR = 420±10 cm−1 K = 30±5 cm−1, Γ = 30±2 cm−1. These lead to

a value for the finesse of F = 14.0±0.4, and a value for 2ΩR/(Γ+K) of 2.3 ±0.1.

5) Ahn et al.10 The numbers we extracted from this work for inclusion in the present manuscript

are: ΩR = 73± 6 cm−1, FSR = 480±10 cm−1 ω0 = 2260 cm−1, K = 28± 6 cm−1, Γ = 47± 1

cm−1. These lead to a value for the finesse of F = 11.8±0.3, and a value for 2ΩR/(Γ+K) of 2.6

±0.2.
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10 Theory for Microcavity PL with Finite Finesse

The derivation of Eq. (3) for the photoluminescence (PL) spectrum of the lower polariton is given,

starting from a microscopic quantum model. The stationary photoluminescence spectrum S(ω) of

a microcavity is given by the two-time autocorrelation function of the q-th cavity mode 11

Sq(ω) =
∫

∞

0
dτ⟨â†

q(τ)âq(0)⟩eiωτ , (1)

where âq is the annihilation operator of the mode. Using the quantum regression formula, Eq. (1)

can be evaluated analytically in the polariton basis in the approximation that no quantum jumps

occur, to give11

Sq(ω) = ∑
i j

ρ j
∣∣〈εi|âq|ε j

〉∣∣2 (
Γ j/2

)(
ω −ω ji

)2
+
(
Γ j/2

)2 , (2)

where ρ j is the stationary population of the coupled system eigenstate |ε j⟩, Γ j is the decay rate of

|ε j⟩, and ω ji = ε j − εi is the frequency of the transition |ε j⟩ → |εi⟩, with ε j > εi being the state

energies. Considering only the the ground and first excitation manifolds, which determine the

linear response of the system, Eq. (2) can be written as

Sq(ω) = π ∑
j

ρ j
∣∣⟨G|âq|ε j⟩

∣∣2 L j(ω) (3)

where |G⟩= |g1,g2, . . . ,gN⟩ |{0q}⟩ is the global ground state with all dipoles in a local ground state

|gn⟩ and all cavity modes in the vacuum state. L j(ω) is a normalized Lorentzian lineshape function

centered at ω j with bandwidth Γ j (FWHM), associated with the transition G → ε j.

As shown by Herrera and Spano,11 solving for the eigenstates and energies of all the polari-

tonic and dark states of the coupled light-matter system in the single excitation manifold, enables

the direct evaluation of Eq. (3), up to an undetermined excited population parameter ρ j. Instead

of assuming an arbitrary state-independent value ρ j ∼ 1/N,11 we derive an analytical expression

for ρ j following the observation that ultraviolet pumping of material dipoles followed by ultrafast
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energy relaxation down to the lowest singlet (S1) excited state is equivalent to the direct incoherent

excitation of local molecular dipoles with jump operator L̂ j =
√

W σ̂+n, where σ̂+n creates an ex-

citation in the n-th molecular dipole and W is the effective incoherent pumping rate. The proposed

equivalence can be justified using standard adiabatic elimination techniques.12

The quantum master equation that describes incoherent dipole pumping and cavity decay can

be written in Lindblad form as

dρ̂

dt
=−i[Ĥ, ρ̂]+∑

n
Wn

(
σ̂+nρ̂σ̂−n −

1
2
{σ̂−nσ̂+n, ρ̂}

)
+∑

q
κq

(
âqρ̂ â†

q −
1
2

{
â†

qâqρ̂

})
, (4)

where Ĥ is the coupled light-matter Hamiltonian representing N two-level dipoles in a multimode

microcavity, Wn is the local excitation rate of the n-th dipole and κq is the decay rate of the q-

th cavity mode. {Â, B̂} denotes an anticommutator. For long times t ≫ 1/Wn, we expect the

incoherently driven system to evolve into mixed state ρ̂ = ∑ j ρ j |ε j⟩⟨ε j|, with state population

0< ρ j < 1. Equations of motion for the population of coupled eigenstates ρ
(1)
j in the first-excitation

manifold are obtained directly from Eq. (4) in the mixed-state ansatz ρ̂ = (1− χW ) |G⟩⟨G|+

∑ j ρ
(1)
j |ε j⟩⟨ε j|, giving

d
dt

ρ
(1)
j =W ∑

n

∣∣⟨ε j|σ̂+
n |G⟩

∣∣2 (1−χW )−W ∑
n
⟨ε j|σ−

n σ
+
n |ε j⟩ρ(1)

j −κ ∑
q
⟨ε j|â+q âq|ε j⟩ρ(1)

j , (5)

where homogeneous pumping and mode-independent bandwidth conditions were assumed (Wn =

W and κq = κ). The ground depletion parameter χW = ∑ j ρ
(1)
j is introduced for completeness,

but can be neglected for the weak pumping conditions W ≪ κ relevant to this work. Although the

second-moment ⟨ε j|σ−
n σ+

n |ε j⟩ virtually couples the state with the second-excitation manifold, it is

kept in the Eq. (5) because it does not involve double excitation of the same dipole.

The steady state solution of Eq. (5) with χW → 0 is

ρ
(1)
jss =

W ∑n
∣∣⟨ε j|σ̂+

n |G⟩
∣∣2

W ⟨ε j|∑n σ
−
n σ

+
n |ε j⟩+κ⟨ε j|∑q â+q âq|ε j⟩

, (6)
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which can be evaluated explicitly within the single-excitation wavefunction ansatz

|ε j⟩= ∑
n

ciε j |g1, . . . ,en, . . .gN⟩|{0q}⟩+∑
q

cqε j |G⟩|1q⟩, (7)

to give

ρ
(1)
jss =

WXT
j

W (N −1)XT
j +(NW +κ)CT

j
, (8)

where XT
j = ∑n |cnε j |2 is the total exciton fraction of the j-th coupled eigenstate |ε j⟩ and CT

j =

∑q |cqε j |2 is the total photon fraction. Combining Eq. (8) with (2), the analytical expression for the

PL spectrum in the limit N → ∞, with NW finite, becomes

Sq(ω) = πW ∑
j

XT
j C jq

NWXT
j +(NW +κ)CT

j
L j(ω), (9)

which is Eq. (3) in the main text, were the cavity decay rate is expressed in terms of band-

width K = 2κ (FWHM). In the limit where photon loss dominates over the excitation rate, i.e.,

κ ≫ NW and the free spectral range is infinite, CT
j = Cq

j , the cavity PL spectrum reduces to

ST (ω) ≈ πW ∑ j XT
j L j(ω), i.e., is fully determined by the exciton content at particular system

eigenfrequencies ω j.

Figure S10 shows a spectrum of the terms that contribute to the PL signal in Eq. (9): total

exciton content XT
j , total photon content CT

j , the product XT
j C jq, and the denominator NWXT

j +

(NW +κ)CT
j , for each light-matter eigenstate in a model system composed of an ensemble of N =

150 excitonic dipoles with Gaussian disorder centered at ωe = 2.1 eV (σ = 0.05 eV) interacting

with a two-mode cavity with mode frequencies ωq−1 = 1.8 eV and ωq = 2.1 eV, both having

equal bandwidth κ = 0.1 eV. Each molecular dipole couples to both cavity modes with single-

molecule Rabi frequency g = 0.2/
√

N eV. We use NW = 0.0001 and average over 650 disorder

configurations, consistent with the results in Fig. 7 of the main text.
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Figure S10: Spectrum of contributions to the expression for PL, including total exciton content
X [XT

j in Eq. (9)], total photon content C (CT
j ), light-matter product XC (XT

j C jq), and denominator
NWXT

j + (NW + κ)CT
j , for a two-mode cavity with (low) finesse ∆ = 0.3 eV that couples to a

Gaussian distribution of exciton transitions (Exc) centered at 2.1 eV (σ =0.05 eV, κ = K/2 = 0.1
eV). Contributions are averaged over 650 disorder configurations.
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11 Sample preparation

Solution preparation: Poly Vinyl Acetate (PVA, molar weight 450 000) was used as a host ma-

trix for TDBC. PVA was dissolved in water. TDBC was then dissolved in the PVA-water solution.

TDBC/PVA films were deposited on a silicon wafer by spin-coating. This produced film thick-

nesses over the range 300-1700 nm.

For the open-cavity structures, a TDBC/PVA solution was spun on top of a silicon substrate.

For the half-cavity a thin gold layer of 30 nm was deposited on top of silicon substrate by thermal

evaporation. Later, TDBC/PVA was spun on top of gold thin film. For the full-cavity, the lower

mirror was prepared by thermally evaporating 40 nm of gold onto a silicon substrate. Then, fol-

lowing deposition of the TDBC/PVA layer, a second 40 nm gold mirror was deposited, again by

thermal evaporation.

12 Reflectance Measurements

Whilst substrate-only spectra for the reflectance should provide a means to normalise the re-

flectance data, in our samples a non-trivial level of scattering meant that the normalisation process

was not as effective as hoped. Accordingly the reflectance spectra were scaled to provide a better

match with calculated data.

13 Coupled Oscillator Models

We made use of a standard coupled oscillator model to help us interpret our data.13 The number

of cavity resonances included in each model depended on the details of the sample (thickness

etc.). For a molecular resonance at a frequency (angular) of ωmol interacting with several cavity

resonances (whose energy depend on in-plane wavevector, i.e. ωcav(k∥)), the coupled oscillator

model allows the dispersion of the new hybrid (polariton) modes to be determined. Since all of

our samples supported more than one cavity modes we made use of a 2N multi-photonic-mode
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coupled oscillator model13,14 to find the polariton frequencies by solving for those frequencies ω

for which the determinant of the coupling matrix is zero, i.e. |M| = 0. Although this choice (2N)

is not universal, many authors preferring an N+1 coupled oscillator model, we find it to be more

universally applicable. As an example, the coupling matrix for one molecular resonance interacting

with two cavity (photonic) modes is given by,

M =



ωmol −ω ΩR/2 0 0

ΩR/2 ω1(k∥)−ω 0 0

0 0 ωmol −ω ΩR/2

0 0 ΩR/2 ω2(k∥)−ω


(10)

where ΩR is the extent of the interaction (assumed to be the same for all modes), and is equal to

the frequency splitting (anti-crossing) at the value of k∥ where the uncoupled resonances cross. For

the nth cavity resonance we described the k∥ dependence, ωn(k∥), as,

ωn =
ωnk0=0

k0

√
k0

2 +βn k∥
2/εb, (11)

where ωnk0=0 is the angular frequency of the nth resonance at k∥ = 0. The factor βn was used to

match the dispersion of the bare cavity modes with the calculated bare reflectance (needed because

the coupled oscillator model ignores the angle-dependant phase change on reflection from an inter-

face). We chose to work with the simplest model that we could, and therefore assumed no damping

of the modes. The values of the ωnk0=0, of ΩR and of βn were determined by simultaneously trying

to match the eigenvalues to the calculated and measured reflection data. The values for the Rabi

splitting we report here are based on the parameters used in the coupled oscillator model that best

match our data.
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14 Transfer Matrix modelling

We made use of a standard multi-layer optics approach to calculations of the reflectance and ab-

sorption,15–17 and assumed all media were isotropic. The reflectance was calculated by taking the

square of the modulus of the amplitude reflection coefficient. For the permittivities, we used the

following:

Silicon substrate: we took the permittivity to be 16.0 + 3.0i.

Gold films: we used a Drude-Lorentz model for the frequency/energy dependant permittivity of

gold, εAu(ω), given by,18

εAu(ω) =
fd ω2

p

ω2 + iγdω
+∑

j

f jω
2
p

ω2
j −ω2 − iγ jω

, (12)

where the plasma frequency ωp was 9.03 eV, the Drude damping rate γd was 0.053 eV, and the

strength, fd was 0.76. The Lorentz oscillator parameters we used are,

Table 1: Lorentz oscillator model parameters for gold films, as determined from ellipsometry

j f j ω j(eV ) γ j(eV )
1 0.024 0.451 0.241
2 0.010 0.830 0.345
3 0.071 2.969 0.870
4 0.601 4.304 2.494
5 4.385 13.32 2.214

TDBC J-aggregates: we used a Lorentz model, with the permittivity εTDBC(E) given by,

εTDBC(ω) = εb +
f ω2

0

ω2
0 −ω2 − iγω

, (13)

S25



15 Technical Details re: TOC figure

The two spectra show the calculated transmission spectra for two of the cavities we investigated,

one of low finesse (∼ 2) and one of higher finesse (∼ 8). Note that the spectrum for the lower

finesse cavity shows modes that overlap.

The two curves shown in the TOC figure are the zero-oscillator normal incidence transmittance

(calculated) for the following two cavity structures.

We show the calculated transmittance (empty cavity, i.e. zero oscillator strength) for two of

our samples, the 600 nm half cavity (dotted line) and the 330 nm full cavity (full line).

Half cavity (600 nm), dotted red line.

Full cavity (330 nm), full blue line.
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(3) Bradley, M. S.; Tischler, J. R.; Bulović, V. Layer-by-Layer J-Aggregate Thin Films with a

Peak Absorption Constant of 106 cm–1. Adv. Mater. 2005, 17, 1881–1886.

(4) Quenzel, T.; Timmer, D.; Gittinger, M.; Zablocki, J.; Zheng, F.; Schiek, M.; Lützen, A.;

Frauenheim, T.; Tretiak, S.; Silies, M.; Zhong, J.-H.; De Sio, A.; Lienau, C. Plasmon-

Enhanced Exciton Delocalization in Squaraine-Type Molecular Aggregates. ACS Nano 2022,

16, 4693–4704.

(5) Rider, M. S.; Johnson, E. C.; Bates, D.; Wardley, W. P.; Gordon, R. H.; Oliver, R. D. J.;

Armes, S. P.; Leggett, G. J.; Barnes, W. L. Strong coupling in molecular systems: Strong

S26



coupling in molecular systems: a simple predictor employing routine optical measurements.

Nanophotonics 2024,

(6) Wersäll, M.; Cuadra, J.; Antosiewicz, T. J.; Balci, S.; Shegai, T. Observation of Mode

Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to

Molecular Excitons. Nano Letters 2016, 17, 551–558.

(7) Thomas, P. A.; Menghrajani, K. S.; Barnes, W. L. Cavity-Free Ultrastrong Light-Matter Cou-

pling. The Journal of Physical Chemistry Letters 2021, 12, 6914–6918.

(8) Vasista, A.; Barnes, W. L. Molecular monolayer strong coupling in dielectric soft microcavi-

ties. Nano Letters 2020, 20, 1766–1773.

(9) Thomas, A.; Lethuillier-Karl, L.; Nagarajan, K.; Vergauwe, R. M. A.; George, J.; Chervy, T.;

Shalabney, A.; Devaux, E.; Genet, C.; Moran, J.; Ebbesen, T. W. Tilting a ground-state reac-

tivity landscape by vibrational strong coupling. Science 2019, 363, 615–619.

(10) Ahn, W.; Triana, J. F.; Recabal, F.; Herrera, F.; Simpkins, B. S. Modification of ground-

state chemical reactivity via light-matter coherence in infrared cavities. Science 2023, 380,

1165–1168.

(11) Herrera, F.; Spano, F. C. Absorption and photoluminescence in organic cavity QED. Phys.

Rev. A 2017, 95, 053867.

(12) Zhu, B.; Schachenmayer, J.; Xu, M.; Herrera, F.; Restrepo, J. G.; Holland, M. J.; Rey, A. M.

Synchronization of interacting quantum dipoles. New Journal of Physics 2015, 17, 083063.

(13) Richter, S.; Michalsky, T.; Fricke, L.; Sturm, C.; Frank, H.; Grundmann, M.; Schmidt-

Grund, R. Maxwell consideration of polaritonic quasi-particle Hamiltonians in multi-level

systems. Applied Physics Letters 2015, 107, 231104.

(14) Balasubrahmaniyam, M.; Genet, C.; Schwartz, T. Couling and decoupling of polaritonic

states in multimode cavities. Physical Review B 2021, 103, L241407.

S27



(15) Smith, L. H.; Taylor, M. C.; Hooper, I. R.; Barnes, W. L. Field profiles of coupled surface

plasmon-polaritons. Journal of Modern Optics 2008, 55, 2929–2943.

(16) Novotny, L.; Hecht, B. Principles of nano-optics, 1st ed.; Cambridge University Press: Cam-

bridge, UK, 2006.

(17) Tan, W.-J. Anti-crossing and strong coupling in interactions of molecules with confined light

fields. PhD, Physics and Astronomy, University of Exeter, 2023.
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