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Controlling the healthy worker survivor effect: an
example of arsenic exposure and respiratory

cancer

H M Arrighi, I Hertz-Picciotto

Abstract

Objective—This investigation sought to
examine whether methods proposed to
control the healthy worker survivor effect
would influence the shape or magnitude of
the dose-response curve for respiratory
cancer induced by arsenic.
Methods—Results from an unadjusted
analysis are compared with results
obtained by applying four different meth-
ods for control of the healthy worker sur-
vivor effect to data on arsenic exposure
and respiratory cancer. The four methods
are: exposure lag, adjustment for work sta-
tus, cohort restriction, and the G null test.
Results—Cohort restriction gave erratic
results depending upon the minimum
years of follow up used. Exposure lag sub-
stantially increased the rate ratios and a
non-linear shape (decreasing slope) com-
pared with an unlagged analysis. Adjusting
for work status (currently employed v
retired or otherwise not employed) yielded
slightly higher rate ratios than an unad-
justed analysis, with an overall shape simi-
lar to the baseline analysis. Results from
the G null test procedure of Robins (1986),
although not directly comparable with the
baseline analysis, did show an adverse
effect of exposure that seemed to reach a
maximum when exposure was lagged
between 10 and 20 years.

Conclusions—All results confirm an
adverse effect of arsenic exposure on res-
piratory cancer. In these data, it seems
that the healthy worker survivor effect was
not strong enough to mask the strong effect
of arsenic exposure on respiratory cancer.
Nevertheless, several methods show a
stronger association between arsenic expo-
sure and respiratory cancer after adjust-
ment for the healthy worker survivor
effect, suggesting that for weaker causal
associations, studies not controlling for
this source of bias will have low power to
detect results. Although the G methods are
theoretically the most unbiased, further
work elucidating the validity of the
assumptions underlying lagging, adjust-
ment for work status, and the G methods
are needed before clear recommendations
can be made.

(Occup Environ Med 1996;53:455-462)
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Risk estimates from investigations in highly
exposed populations are used to extrapolate
risk at lower levels and to establish exposure
standards. For many chemical and physical
agents, occupational cohorts are the most
highly exposed. However, occupational stud-
ies are subject to bias from the healthy worker
survivor effect, by which workers who are least
healthy are most likely to leave work.! This dif-
ferential may attenuate the dose-response rela-
tion and has the potential to alter the shape of
the dose-response curve.?* The present inves-
tigation sought to examine whether methods
proposed to control the healthy worker sur-
vivor effect would influence the shape or size
of the dose-response for respiratory cancer
induced by arsenic.

A common belief is that the healthy worker
effect is small for cancer, especially lung can-
cer. Although smaller than for cardiovascular
mortality, particularly in the period shortly
after hire,* a healthy worker effect for cancer
has been found in numerous occupational
studies that show mortality rates lower than
expected for selected cancers.’¢” Robins?®
empirically shows the bias of the healthy
worker survivor effect for mortality from lung
cancer in an occupational cohort exposed to
arsenic. Reinforcing these empirical findings
are: (a) the recognition that the healthy worker
survivor effect may operate after the workforce
is selected if there are factors related to both
the end of employment and mortality, and (b)
the realisation that such factors are plausible
even with cancers.!®

Although use of internal comparisons can
successfully control the effect of healthier peo-
ple being hired into the workforce, the healthy
worker survivor effect continues to operate
even when internal control populations are
used.® We reviewed in a previous paper how
the healthy worker survivor effect has been
historically conceptualised.! At least four
methods have been proposed to control for the
healthy worker survivor effect in cohort studies
of occupational mortality.

(1) The analysis is restricted to long term
survivors where it is assumed that the healthy
worker survivor effect is minimal.*'° ! \Workers
with shorter periods of follow up are excluded
as they are assumed to have a different
propensity for mortality.

(2) The exposure is lagged so that recent
exposures are ignored. The rationale for this
approach is that recent exposures are incurred
only among the healthiest survivors.!?

(3) A covariate is introduced to control for
current employment status (active v inactive
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employment).'* This method assumes that the
healthy worker survivor effect is a case of tradi-
tional confounding: (a) work status is related
to exposure in that those with higher exposure
may leave work more readily and while off
work, incur no further exposure; (b) being off
work is an independent risk factor for the out-
come.

(4) The healthy worker survivor effect is
assumed to operate simultaneously as a con-
founding and an intermediate variable. Under
this paradigm, the analysis considers differ-
ences in occupational exposure at discrete
points in time while simultaneously control-
ling for past exposure and employment status.?
This analysis can be implemented with the G
null test procedure. These four methods have
not previously been compared by application
to real data.

This paper directly compares these four
methods with data from an occupational
cohort exposed to arsenic.

These data provide a setting where expo-
sure has a strong dose-response relation for
mortality from respiratory cancer. Also, the
dose-response curve has been found to have a
non-linear shape in which arsenic exposure
seems to exert a greater effect at lower levels of
exposure than would be expected if potency
was extrapolated linearly from higher levels of
exposure.??* The impact of these methods on
both the magnitude and shape of the dose-
response relation is evaluated and results are
reviewed to highlight the strengths and weak-
nesses of each method.

Methods and materials

DATABASE

The occupational cohort exposed to arsenic
used in this analysis has been previously
described.!* "> Briefly, this cohort consists of all
white male workers employed for one year or
more between 1940 and 1964 at a copper
smelter in Tacoma, Washington. The primary
occupational exposure was arsenic. Measures
of exposure were primarily based on periodic
samples of air arsenic, specifically, arsenic tri-
oxide.!* These measurements were confined to
departments where exposure to arsenic was
considered to be a problem. Follow up was
complete to the end of 1976, encompassing
2802 workers, 73 000 person-years of observa-
tion, and 1061 deaths. Respiratory cancer
accounted for 104 deaths and was strongly
associated with arsenic exposure.'*!

STATISTICAL METHODS

Four methods to control the healthy worker
survivor effect were applied to these data: (a)
restricting the cohort to those surviving a min-
imum period, (b) lagging exposure, (¢) inclu-
sion of active v inactive work status as a
covariate, (d) the G null test procedure, which
considers the healthy worker survivor effect to
be simultaneously a confounding and interme-
diate variable. Each of these techniques was
first applied as an independent method to con-
trol the healthy worker survivor effect.
Subsequently, lagging was used simultane-
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ously with adjustment for work status and with
the G null test procedure.

The restriction method of Fox and Collier'®
limits the analysis to survivors of a given
period, under the assumption that among long
term survivors, the healthy worker survivor
effect is reduced or non-existent.* Initially, this
method is similar to crude stratification of
workers on duration of follow up, but ignores
the strata with shorter follow up. Three mini-
mum survival periods were evaluated in these
analyses: 10, 15, and 20 years.

The method of lagging exposure'? is identical
in its implementation to the lagging used in
adjusting for the latency between the time of
exposure and manifestation of cancer mortal-
ity, although the motivation differs. To adjust
for a long latency, exposures occurring shortly
before the event are not relevant. To control
the healthy worker survivor effect, recent
exposures are ignored because exposures near-
est the event could only have been acquired by
those who survived the job, namely the health-
iest employees. Three lagging periods were
used: 10, 15, and 20 years.

A third method includes a covariate for cur-
rent employment status at the plants of inter-
est. The healthy worker survivor effect is
considered to be a confounder in the tradi-
tional sense and is represented by employment
status. Because one year survival rates for lung
cancer are low, employment status was
extended one year beyond the actual date of
the end of employment to encompass those
deaths that are related to disease incurred dur-
ing employment but occur shortly after the
end of employment.

A fourth analytical strategy® takes into
account the possibility that the healthy worker
survivor effect operates simultaneously as a
confounding and as an intermediate variable.
Because both exposure and work status vary
with time, and because each can influence the
other, a different paradigm is needed.
Essentially, this procedure examines differ-
ences in exposure at each point in time while
simultaneously controlling for past exposure
and employment. To implement the analysis,
a nested, matched case-control strategy was
used. Cases of respiratory cancer were
matched to controls by age, date of hire, past
exposure, and past employment. Exposure dif-
ferences between cases and their matched con-
trols were evaluated by the G null test
procedure.® This method considers periods off
work to be an analytically and conceptually
distinct category.

The modified G null test is more powerful
than the unmodified test but requires a more
restrictive assumption on how long past expo-
sures and employment status predict current
exposures and employment status. For exam-
ple, a modified G null test with m set to 2
assumes that the current job task (exposure
concentration) will predict employment status
or exposure only during the next two years.
Exposure was lagged at 10, 15, and 20 years in
combination with the G null test with and
without a two year predictive period.

Both forms of the G null test were used; for
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Figure 1 Cohort
restriction.
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the modified G null test it was assumed that
for two years past exposures and employment
status were related to current exposures and
employment status. A test of significance (¥?
with one degree of freedom) was calculated by
the G null test procedure with software pro-
vided by Drs James Robins and Donald
Blevins. An odds ratio (OR) is provided to
assist in the interpretation of the results but
cannot be interpreted as the effect of exposure
during an extended time interval relative to no
or low exposure during that interval. In further
G null test analyses, exposure was lagged at
10, 15, and 20 years. A test for trend provides
evidence for the direction of an effect but not
its magnitude. For notation purposes a “+”
trend test corresponds to a positive coefficient
indicating an adverse effect of arsenic expo-
sure on mortality from respiratory cancer.

For the unadjusted analysis and the first
three methods, mortality during follow up was
modelled by Poisson regression, with the unit
of observation being one person-year. The log
of the mortality rate was modelled as a linear
function of covariates, according to the for-
mula:

In [A(Y)] = o = XBx+ Zyx; ()

where A(t) represents the mortality rate per
person-year; ¢ represents the baseline rate in
the population; f; represents the coefficient for
each of the corresponding time constant
covariates; x; and y;, represent the coefficient
for each corresponding time dependent covari-
ate, x;(t).

All Poisson regression models were adjusted
for current age and birth cohort. Some
authors!” have argued that occupational cohort
mortality analyses need to control for the time
since hire or time since start of follow up.
Models adjusted for current age and birth
cohort yielded essentially similar results as
those models adjusted for age and time since
hire and those models adjusted for age and
time since start of follow up.'® Before applying
these methods, a baseline model was fitted,
unadjusted for the healthy worker survivor
effect—that is, this model did not restrict the
cohort, lag exposure, or include covariates for
work status. The SAS system of software was
used to perform the analyses.'® Person-years
were calculated with an adaptation of the per-

son-time program described by Pearce and
Checkoway.?

EXPOSURE METRICS

For all analyses except the G null test, expo-
sure was modelled as cumulative exposure.
With the same exposure cut off points as
Enterline ez al' this resulted in some sparse
cells and hence instability in the multivariate
analyses. For this reason, the two highest cate-
gories were collapsed so that exposure was cat-
egorised in ug/m?’.years with the following cut
off points: <750, <2000, <4000,
< 8000,< 20000, and > 20000. To allow
maximum sensitivity to non-linearities, each
exposure category was a separate covariate in
the model, with the lowest category as the con-
trol. Thus, the dose-response shape is not
imposed by the model. The median arsenic
concentration in each category was used in all
graphs and models.

A cumulative exposure measure is incom-
patible with the underlying theory of the G
null test; for these analyses, exposure was cate-
gorised directly from the periodic industrial
hygiene samples with the following cut off
points for air arsenic concentration: < 200,
< 400, < 1000, and > 1000 ug/m>. Exposure
concentrations were estimated at six month
intervals beginning with the date of hire.
Periods off work were distinguished from any
periods on work but with no exposure.

Results

The 104 respiratory cancer deaths were dis-
tributed as follows: 11 occurred among men
aged less than 50 years, 23 among men aged
50 to 59 years, 46 among men aged 60 to 69
years, and 24 among men aged 70 or more
years.

Figure 1 shows the results for restriction
analyses. Figures 1 to 4 show the impact of
different methods to adjust for the healthy
worker survivor effect in graphs of rate ratios
for respiratory cancer versus cumulative expo-
sure to arsenic. Compared with the baseline
analysis, there is little difference in the magni-
tude of the estimated rate ratios, with an
apparent exception when the cohort is
restricted to 20 year survivors. When the
cohort is restricted to 10 or 15 year survivors,
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Figure 2 Exposure
lagging.

Figure 3 Work status
covariate.

Figure 4 Exposure
lagging and work status
covariate.
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the point estimates for most exposure cate-
gories are slightly lower than for an unre-
stricted analysis.

Restricting the cohort to 20 year survivors
reduces the number of cases by 16% and the
number of person-years by 53%. Although the
rate ratios among 20 year survivors are large,
these are highly unstable due to the presence
of only three cases in the lowest (control)
exposure category. The overall shape of the
dose-response curve is not altered by the
restriction analyses.

Figure 2 shows the results when exposure is
lagged. A lagged exposure generally produces
higher rate ratios at all levels of exposure com-
pared with the baseline (unlagged) analysis.
The greatest effect estimates are found when
exposure is lagged by 10 or 15 years.
Regardless of lag, the shape of all the dose-
response curves is similar. The non-linear,
concave downward shape of the unlagged
analysis is enhanced when exposure is lagged.

Figure 3 shows the dose-response curves for
the models with and without the employment
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Table 2 G null test results

Table 1 G null test procedure sample sizes

Modified
Basic m=2
Cases 36 77
Discordant pairs 142 241

status covariate. Adjustment for work status
did not alter the shape of the dose-response
curve. However, the model that controls for
work status shows slightly higher rate ratios at
all levels of exposure. The rate ratios from the
baseline analysis are 1-4, 1-5, 1-7, 1-8, and
2-3, whereas the rate ratios from the analysis
with the work status covariates are 1-4, 1-7,
1-9, 2-1, and 2-7. In these models, current
employment was a protective factor for mor-
tality from respiratory cancer. In models
adjusted for current age, birth cohort, and
exposure, current employment had a rate ratio
of 0-70 (95% confidence interval (95% CI)
044 to0 1-1).

Figure 4 shows results when exposure is
lagged by 15 years and the work status covari-
ate is included. The point estimates for expo-
sure are slightly greater at all exposures when
the exposure is lagged and the work status
covariate is included and compared with the
corresponding analyses that only include a
lagged exposure or the work status covariate.
Similar results were found with lags of five and
10 years (not shown).

Table 1 presents the number of cases con-
tributing to an unlagged G null analysis and
the number of case-control divergences. There
are 104 cases of respiratory cancer with 4006
matched controls—that is, meeting the match-
ing criteria for date of birth and date of hire
but not necessarily similar exposures. For the
basic G null test, 142 pairs match on exposure
and then diverge and hence contribute to the
analysis; these pairs are from only 36 cases.
The modified G null test (m = 2) improves
statistical efficiency, as 77 cases contribute to
the analysis with 241 divergent pairs.

Table 2 provides details from the G null test
procedure: the associated )? statistics (all with
one degree of freedom), and the OR for both
the unmodified G null test and the modified G
null test. Both the overall tests (of the three
highest point exposure categories v the lowest)
and the tests for trend were significant in both
the modified and unmodified analyses regard-
less of the lag period used. A 10 year lag gave
the largest y? statistics in both the modified
and unmodified G null analyses, although the
ORs were largest for comparing the highest
three point exposures with the lowest
(although only marginally so for the unmodi-
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Table 3 — 2 Log likelihoods for baseline, exposure
lagging, and work status models

Model — 2 Log likelihood ~ df
Baseline 3834-39 8
Exposure lag:
10y 3828-40 8
15y 3827-05 8
20y 3827-09 8
Work status 3832:18 9
Work status and exposure lag:
10y 3826-84 9
15y 382595 9
20y 3826-46 9

fied G null analysis) with a lag of 20 years.

Table 3 shows the —2 log likelihoods from
the Poisson regression models (figs 2—4). Log
likelihoods for the models based on cohort
restriction are not comparable with any of the
other models because this method reduces the
number of observations. Furthermore, they
are not comparable with each other because
the number of observations vary by the degree
of restriction. Models that lag the exposure
provide a substantial improvement in fit when
contrasted with the baseline model. Although
the number of variables in the model is the
same as in the baseline model, the difference
in the —2 log likelihood statistics is similar
regardless of the duration of the exposure lag.
When the employment status variable is added
to either the baseline model or to those with
exposure lags, there is no significant difference
in fit. Assessment of fit does not allow for the
possible bias in estimating the exposure
effects.

Discussion

The baseline analysis showed an exposure
effect that rose monotonically but non-linearly
with increasing levels of exposure. Methods
intended to control for the healthy worker sur-
vivor effect tended to enhance the exposure
effect, with the notable exception being the
restriction analyses. One motivation for this
investigation was to find whether the healthy
worker survivor effect was responsible for the
non-linear dose-response relation which has
been found in numerous studies of arsenic and
respiratory cancer.” The shape of the dose-
response curves is strikingly similar across all
the methods examined. We conclude that the
healthy worker survivor effect does not explain
the non-linear shape found in the unadjusted
analysis.

Although all methods show an effect of expo-
sure to arsenic on respiratory mortality, an indi-
cation of a weak effect of exposure is found in
the effect measures at the lowest exposure cate-

Unmodified G null test procedure Modified G null test

No lag 10 year lag 15 year lag 20 year lag No lag 10 year lag 15 year lag 20 year lag

x? OR x2 OR x? OR x? OR x? OR x? OR x? OR x? OR
Test for trend 114 + 122+ 979 + 847 + 119 + 133+ 702+ 957 +
Overall 9:25 2:49 93¢ 2-58 701 242 527 260 532 159 892 2:09 656 2:01 576 236

2 has 1 degree of freedom; + = adverse effect of arsenic exposure on lung cancer mortality; overall = test of exposure concentrations 2, 3, 4 v 1, with 1 as the

lowest and 4 as the highest.
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gories. A comparison of the second lowest with
the lowest exposure category shows an adverse
effect of exposure; however, these differences
were not significant in any model. Thus, weak
effects of exposure remain difficult to detect,
regardless of method to control the healthy
worker survivor effect.

Empirically, cohort restriction has the poten-
tial to result in lower rate ratios. By itself, this
finding could be due to higher rate ratios in
short term employees who are excluded by the
restriction, or a bias introduced by the
method—for example, through reduced vari-
ability in exposure. The method of cohort con-
struction of Enterline ez al'® already required a
one year survival at employment and hence
could have attenuated the impact of this
method if such short term workers had lower
mortality than the rest of the cohort (note that
they would have contributed data to the lowest
cumulative exposure groups). However, the
assumption of the restriction method is that the
healthy worker survivor effect is eliminated or
reduced when the cohort is sufficiently
restricted.®'°!! Evidence is lacking on this
assumption. Indeed, health differences may
continue to be associated with absenteeism
among long term survivors.

Cohort restriction has practical limitations.
The available sample becomes less generalis-
able as it is reduced by a non-random mecha-
nism. As the period of restriction increases, the
precision of the estimates decreases due to a
reduction in the number of cases and person-
years in the analysis. This decreased precision
was particularly striking when the cohort was
restricted to 20 year survivors and the dose-
response curve became erratic.

Lagged analyses resulted in larger risk esti-
mates than the baseline analysis, with the
largest exposure effects found at lags of 10 and
15 years. These results suggest that the healthy
worker survivor effect was successfully con-
trolled and arsenic exposure has a latency
period of 10 to 15 years, or bias was introduced
because of a violation of assumptions of this
method. The main assumptions of lagging are
that (a) the mean latency between exposure
and the measured disease outcome is longer
than the time the healthy worker survivor effect
operates,'? (b) time off work is equivalent to
time on work at zero exposure, and (c) expo-
sure levels are not related to health status,
including susceptibility to the outcome under
study. Note that if the latency is very short and
the effect of exposure is reversible, lagging
could cause an effect to be missed. For exam-
ple, if the risk resulting from an exposure was
increased in the first five years after exposure
and then dropped to normal levels, analyses in
which exposures were lagged by five years or
more would miss the effect and would not be
the method of choice regardless of considera-
tions about the healthy worker survivor effect.
In our analyses, support was strongest for a 10 or
15 year latency, although the model fit was sim-
ilar regardless of the duration of the latency
period. The assumption that time off work and
time on work at zero exposure are equivalent
could be a problem if people who leave work

Arrighi, Hertz-Picciotto

either have more health problems or receive
poorer health care.

Unlike the lagging method, adjustment for
work status considers off job and on job experi-
ences to be different. This distinction is incor-
porated even more strictly into the G null test.
The methods that lag exposure or restrict the
cohort do not make this separation. The impor-
tance of employment status as a potential con-
founder has long been recognised.® 2! Qur
results support the contention that work status
does confound the association between expo-
sure and cancer in that all point estimates
increased after adjustment for work status.

However, as work status is also an intermedi-
ate variable in the sense that it is influenced by
past exposure, is related to disease, and itself
affects future exposure, there is the potential
that this approach may actually introduce con-
founding. For this reason, the conceptual con-
tribution of Robins ez al is of great importance.
In particular, they showed that controlling for
work status as a pure confounder can introduce
bias if it is also an intermediate variable.’?? In
fact, traditional thinking regarding confounders
is now coming under closer scrutiny by others.
Weinberg?® presents several scenarios in which
variables that are correlates of exposure should
not be controlled as confounders, and confirms
earlier work by Robins®® that shows that (a)
such adjustment introduces bias, and (b) even if
not intermediate on a causal pathway, it may be
incorrect to adjust for correlates of exposure if
they have no independent causal relation to
outcome.

The causal paradigm underlying the G
method of Robins is based on the concept of a
“counterfactual”, defined as the outcome an
exposed person would have experienced, had
(counter to the fact) she or he not been
exposed. As each person, at each point in time,
can only receive one level of exposure, the only
valid comparison is among those whose past
exposure experience is identical, or as close to
identical as possible. Hence the G methods
examine those points in time when exposure
diverges for workers whose past exposures and
times off work are matched. Because past expo-
sure predicts exposure at work, the history of
employment status and past exposure influence
the G methods. Standard methods of analysis
are, at least theoretically, biased even with
adjustment for employment status®®; alternative
methods®? are necessary to provide an unbi-
ased estimate.

Results from the analyses of the G null test
procedure also showed an adverse effect of
exposure. This procedure provides no direct
information on the size of effect of long term
exposure nor the shape of the dose-response
curve, although several extensions of this test
do estimate causal parameters.22?* (The ORs
are summary ORs from a stratified analysis of
odds of exposure at a single point in time condi-
tional on no previous differences in exposures
and work history, comparing cases with con-
trols.) All of the G methods require that expo-
sures at different times never be combined.?
Hence, traditional measures of occupational
exposure (cumulative, peak, intensity of expo-



Controlling the healthy worker survivor effect

sure, or years employed) are incompatible with
this technique. For the unmodified G null test,
once a case and its matched control differ in
exposure history, subsequent exposures are not
considered as these are influenced by differen-
tial survivorship. With the modified G null test,
subsequent exposures can be considered if
cases and their matched controls converge
again; a single case-control pair may contribute
information to more than one exposure con-
trast.

Although the cohort included over 100 respi-
ratory cancer cases and 2800 employees, few of
the G null analyses have more than 40 totally
matched pairs. The G null test requires an
exact match of previous exposure and employ-
ment between cases and controls. Employees
with similar but not identical employment and
exposure histories will not match. A case may
match with multiple controls and contribute
more than once to each of the test statistics,
even in the unmodified test procedure. Thus, a
test consisting of 76 matched pairs may have
information contributed from fewer than 76
different cases with some cases contributing a
disproportionate number of matches. Despite
matching multiple controls per case—for exam-
ple, 50 or more in our analyses—the require-
ment of identical exposure histories may
produce an insufficient number of risk sets to
test for an effect, a limitation originally noted
by Robins.? Use of a subset of the cases may
also limit the ability to generalise from any find-
ings.

Partly in response to the limitations of the G
null test, a more generalised and flexible
method, the G estimation procedure, has been
developed by Robins and colleagues®? who used
structural nested failure time models, a variant
of the accelerated failure time model. G estima-
tion provides: (a) a readily interpretable and
meaningful measure of the exposure effect and
(b) a flexible approach to matching of past
exposure and employment. In particular, one
obtains a point estimate and CI for the overall
change in survival time, while simultaneously
adjusting for past exposure and off work history
along with other time dependent and fixed
covariates. Additionally, structural nested fail-
ure time models allow past exposure to be of
several forms including the traditional measures
of exposure (cumulative, peak, or intensity).
These models allow one to relax the require-
ment of identical exposure histories by model-
ling current exposure as a function of past
exposure; thus, an expectation is that more
cases will have suitable controls resulting in a
statistically more efficient and powerful model
relative to the G null test procedure. To date,
application of these models to occupational
cohorts has not been attempted. Further analy-
ses of the cohort exposed to arsenic with struc-
tural nested failure time models and G
estimation are planned.

Conclusion

Overall the shape of the dose-response curves
was similar in the unadjusted Poisson regres-
sion and with the methods of cohort restric-
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tion, exposure lagging, and inclusion of the
age specific work status covariates. At lags of
0, 10, 15, and 20 years, the G null test proce-
dure detected an adverse effect of exposure.

Cohort restriction seems inadequate, with
empirical evidence seeming to support theo-
retical deficiencies. It assumes that the healthy
worker survivor effect ends after a fixed period
of restriction. Both lagging of exposure and
adjustment for work status empirically yielded a
greater effect than unadjusted analyses, which
could be interpreted to suggest confounding
by the healthy worker survivor effect and some
success in controlling such confounding from
each method. These two methods, which
seemed to enhance the differences between
exposed and unexposed people, may provide
more sensitive analyses of effects that are weak
and therefore difficult to detect in epidemio-
logical studies. Only lagging of exposure sub-
stantially improved the fit of the models.

However, these two methods both rely on
assumptions that may be problematic. Lagging
requires that the latency period be longer than
the period over which exposure predicts
employment history. Both disease latency and
the time frame for associations between past
exposure and subsequent work history are
usually not known. Adjustment for work status
assumes that this variable is a pure con-
founder—that is, that exposure is unrelated to
subsequent work status. The underlying the-
ory of the dual nature of the healthy worker
survivor effect as a confounding and an inter-
mediate variable needs to be seriously
explored. The G null and G estimation
approaches are unique in taking into account
the relations between exposure, employment
status, underlying risk of disease, and subse-
quent exposure history and employment sta-
tus. Despite concerns about implementation
of the G null technique, these methods repre-
sent a significant contribution to epidemiologi-
cal theory.
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