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ABSTRACT

Brassicaceae represents an important plant family from both a scientific and economic perspective. How-
ever, genomic features related to the early diversification of this family have not been fully characterized,
especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian inte-
rior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we
reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two
high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quad-
ricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the
basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9
pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes
in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread
ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We iden-
tified a successive Brassicaceae-specific expansion of the class | TREHALOSE-6-PHOSPHATE SYNTHASE
1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo
development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results
provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a po-
tential model for broad-scale studies of adaptive radiation under an ever-changing environment.
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et al., 2019), Malawi cichlids (Malinsky et al., 2018), lizards
(Garcia-Porta et al., 2019), Darwin’s giant daisies (Fernandez-
Mazuecos et al., 2020), and rhododendrons (Ma et al., 2022;

INTRODUCTION

Understanding the molecular and genetic mechanisms that un-
derlie species radiations remains an important, albeit chal-
lenging, topic in evolutionary biology. Radiation can result from

increased speciation, decreased extinction rates, or both
(Naciri and Linder, 2020). This phenomenon is prevalent in
nature, with numerous examples, such as butterflies (Edelman
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Xia et al., 2022). However, rapid radiations make phylogenetic
reconstruction challenging owing to the limited accumulation of
substitutions within a short time. In addition, large population
sizes and close evolutionary relationships can result in
incomplete lineage sorting (ILS) and hybridization, leading to
conflicting gene and species trees (Cai et al., 2021; Guo
et al., 2023).

Brassicaceae (Cruciferae) contains approximately 4140 species,
many of which are important crops (e.g., cabbage, rapeseed,
mustard, and broccoli, among others) and/or model plants
in Arabidopsis, Capsella, Brassica, and Arabis (German et al.,
2023). Except for the basal Aethionemeae, core Brassicaceae
comprises approximately 98.6% of species in five supertribes/
clades, i.e., Camelinodae/A, Brassicodae/B, Hesperodae/
E, Arabodae/D, and Heliophilodae/C, whose phylogenetic
relationships lack resolution because of the likelihood of an early
rapid radiation, as implied by many studies (Al-Shehbaz et al.,
2006; Bailey et al., 2006; Beilstein et al., 2006, 2008; German
et al., 2009; Couvreur et al., 2010; Warwick et al., 2010; Franzke
et al., 2011; Hohmann et al., 2015; Huang et al., 2016; Guo et al.,
2017; Nikolov et al., 2019; Walden et al., 2020b; Liu et al., 2020,
2024; Hendriks et al., 2023). In addition, a whole-genome duplica-
tion (WGD) event (i.e., At-oo WGD) appears to have been essential
for novel traits and species diversification in Brassicaceae
(Franzke et al., 2011; Edger et al., 2018). This pattern has been
observed in several other large and economically important
families, including Poaceae, Asteraceae, Fabaceae, and
Solanaceae, and has inspired the development of the WGD
radiation lag-time model (Schranz et al., 2012). Indeed, WGD or
polyploidization followed by rediploidization has been a major
driving force in plant diversification (Soltis et al., 2015; Qiao et al.,
2019). Hybridization, which is thought to be the first and most
important step toward allopolyploidy, also contributes to species
radiation by increasing allelic diversity, thus enhancing
adaptability to new and challenging environments (Guo et al,,
2021; Slovak et al., 2023).

Recent research suggests that Brassicaceae originated during
the middle to late Eocene (40.5-36.9 million years ago [myal)), a
period in Earth’s history known as the “icehouse era”. The crown
age of Brassicaceae, marked by the divergence of the basal Ae-
thionemeae and core Brassicaceae, is estimated to be between
23.1 and 25.7 mya (Hendriks et al., 2023). This period
corresponds to the transition from the Oligocene to the Miocene
and the rapid uplift of the Tibetan Plateau, which was followed
by increasing aridity in the Asian interior, intensifying monsoons
in Eastern Asia, and markedly fluctuating daily temperatures
(Zachos et al., 2001; Kagale et al., 2014; Ding et al., 2020; Miao
et al., 2022). However, molecular and genomic features related
to this early diversification remain poorly characterized.

Inferring ancestral genomes is one of the central aspects of
comparative genomic analyses (Murat et al., 2017; Anselmetti
et al., 2018; Gao et al., 2022). The ancestral crucifer karyotype
(ACK) for Brassicaceae has been proposed to feature 8
pseudochromosomes with 22 conserved ancestral genomic
blocks (GBs) (Schranz et al., 2006; Lysak et al., 2016). The ACK
has been widely used to study the phylogenomic and
karyotypic evolutionary patterns of Brassicaceae (Mandakova
and Lysak, 2008; Willing et al., 2015; Geiser et al., 2016;
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Mandakova et al.,, 2017, 2018, 2020; Walden et al., 2020a;
Bayat et al., 2021; Guo et al., 2021). However, the ACK was
essentially based on genome sequences and genetic maps of
A. thaliana, A. lyrata, C. rubella, and B. rapa (Schranz et al.,
2006; Lysak et al., 2016). Later efforts that incorporated the
Thellungiella parvula genome did not markedly alter the ACK
(Murat et al.,, 2015). More recently, inclusion of additional
genomes from earlier-diverging lineages resulted in the
reconstruction of a new haploid ancestral genome (n = 9) for
core Brassicaceae (Walden and Schranz, 2023). However, this
new karyotype contains only 3392 strictly conserved syntenic
genes, likely owing to use of the non-chromosome-level Eucli-
dium syriacum genome to represent Hesperodae/clade E. With
the generation of more high-quality chromosome-level genomes
and better phylogenomic coverage, an improved ancestral kar-
yotype may provide a better understanding of the Brassicaceae
genome and chromosomal evolution.

Species radiation is often accompanied by adaptation to a fluctu-
ating or otherwise challenging environment, in which the timing of
the vegetative to reproductive growth transition (i.e., flowering
time) plays a pivotal role (Alonso-Blanco et al., 2009; Franzke
et al., 2011). Flowering time is tightly regulated by a highly
wired gene-regulatory network that links endogenous develop-
mental signals and exogenous environmental signals such as
light, temperature, and water availability (Andres and Coupland,
2012; Hyun et al., 2017; Gaudinier and Blackman, 2020). As a
signal of sugar or energy availability, the level of trehalose-6-
phosphate (T6P), which is synthesized mainly by T6P synthase
1 (TPS1) and T6P phosphatase, determines flowering time,
embryogenesis, and other developmental processes, as well as
various stress responses (lordachescu and Imai, 2008;
Fernandez et al., 2010; Fichtner et al., 2021; Fichtner and Lunn,
2021). The TPS1-mediated T6P pathway is highly conserved
even in prokaryotes; however, the evolutionary patterns of
TPS1 gene expansion and/or contraction have not been fully
characterized in plants, including Brassicaceae.

Here, we systematically explore the genomic features associated
with the early Brassicaceae radiation by analyzing a set of
high-quality chromosome-level genomes, including two newly
assembled genomes, from species representing each
supertribe and the basal Aethionemeae (Huang et al., 2016;
German et al., 2023; Hendriks et al., 2023). We propose an
ancestral core Brassicaceae karyotype (CBK) that includes 9
pseudochromosomes and 65 conserved GBs. We detect strong
phylogenomic conflicts associated with ancient hybridization and
identify a highly dynamic pattern of Brassicaceae-specific expan-
sion of class | TPS1 genes. Notably, the expression of these genes
responds differentially to fluctuating temperature. Our efforts pro-
vide new genomic resources and improve our understanding of
Brassicaceae diversification during historical environmental
changes.

RESULTS
High-quality chromosome-level reference genomes for
Arabodae and Hesperodae

We reconstructed high-quality chromosome-level genome assem-
blies for two species, Meniocus linifolius (Mli), representing
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Figure 1. Phylogenomic relationships among Brassicaceae.

(A) Genomic landscapes for Tetracme quadricornis (Tqu; left) and Meniocus linifolius (Mli; right). (1) Pseudo-chromosomes, (2) tandem repeats, (3) gene
expression profiles of mixed leaf, root, stem, and flower samples, (4) GC content, (5) gene density, (6) repetitive sequences along chromosomes, (7) Copia
density in 500-kb sliding window, (8) Gypsy density in 500-kb sliding window, (9) intra- (green and pink lines) and interspecies synteny (blue lines).

(B) Density and insertion time (mya) distribution for intact LTRs in seven Brassicaceae species. Aal, Arabis alpina; Aar, Aethionema arabicum; Ath,
Arabidopsis thaliana; Pco, Pugionium cornutum; Tar, Thlaspi arvense.

(C) Distribution of sequence identity values between genomic copies and consensus repeats for different types of transposable elements (TEs) in Tqu and
Mii assemblies.

(D) Synonymous substitutions per synonymous site (Ks) distributions of intra- and intergenomic syntenic blocks. At-o and At-f indicate the Brassicaceae-
and Brassicales-specific WGD events, respectively. Cpa, Carica papaya; Bra, Brassica rapa. The younger peak observed in the Ks distribution for Mli-Tqu
suggests a diversification corresponding to the split time between Mli and Tqu.

(E) Collinearity patterns among genomes of Tqu, Mli, and Bra. The green and orange wedges highlight an example of triplication of the Tqu (Chr4) and Mli
(Chr3) genome segments in Bra (Chr3/8/10), and the blue wedge indicates the syntenic block between Tqu and Mii.

(F) A supertribe-level phylogeny for Brassicaceae. A maximum likelihood (ML) tree based on the concatenation of 1463 single-copy orthologous genes
(SCOGs) identified with Orthofinder is shown, with estimated divergence times at the bottom. Bootstrap support values and posterior probabilities are
marked with an * indicating 100% support, and numbers indicate the real values for four datasets: concatenation-based with Orthofinder, concatenation-
based with SonicParanoid, coalescence-based with Orthofinder, and coalescence-based with SonicParanoid. The black triangles and hexagon indicate
the WGDs in Brassicaceae (At-a), Lobularia maritima (Lma), and Pco and the WGT (whole-genome triplication) in the most recent common ancestor of Bra
and Bol, respectively. Numbers on the branches represent the numbers of expanded gene families (+, red) or contracted gene families (-, blue) among
lineages. Pie charts at five internal nodes (A-E) show the frequency of three topologies (q1-g3, sector representations in different colors).

(G) A coalescence-based phylogeny based on 4434 syntenic genes. The A/B/C marks indicate the sub-genomes of Pco, Lma, Bra, and Bol. Bol, Brassica
oleracea; Dni, Draba nivalis; Ech, Erysimum cheiranthoides.

that genome sizes were between 246 and 288 Mb for Mli and 721
and 768 Mb for Tqu (supplemental Figures 1 and 2; supplemental
Table 1). Cytological analysis indicated that the chromosome

3

Arabodae/clade D, and Tetracme quadricornis (Tqu), representing
Hesperodae/clade E (Figure 1A). A combination of flow cytometry
and genomic surveys using ~50x lllumina short reads revealed

Plant Communications 5, 100878, July 8 2024 © 2024 The Authors.
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number for Mli was 2n = 14 (supplemental Figure 3), although both
2n = 16 and 2n = 14 have been reported for this species (Spaniel
et al., 2015). Both species exhibited a low level of heterozygosity
with 0.0586% for Mli and 0.0344% for Tqu (supplemental
Figure 2). Both genomes were sequenced and assembled using
PacBio HiFi long reads and high-throughput chromosome confor-
mation capture (Hi-C) sequencing (supplemental Figure 4;
supplemental Tables 2 and 3). The final nuclear genome
assemblies for Mli and Tqu were approximately 244.24 and
724.93 Mb in length, with contig N50s of approximately 15.43
and 45.06 Mb and maximum scaffold lengths of 40.91 and
133.35 Mb, respectively (supplemental Table 4). Both species
have seven pseudochromosomes, to which more than 93% (M)
and 99% (Tqu) of the contigs were anchored via Hi-C data
(supplemental Figures 5 and 6; supplemental Table 5). Both
assemblies exhibited high completeness, with >98.5% of the
eudicot Benchmarking Universal Single-Copy Orthologs
(BUSCOs) identified (supplemental Figure 7; supplemental
Table 6) (Simao et al., 2015). In addition, >99% of the lllumina
short reads were properly mapped to the genome assemblies
(supplemental Table 7). The long terminal repeat (LTR) assembly
index was 11.07 for Mli and 23.46 for Tqu, meeting the
“Reference” and “Gold” standards, respectively (supplemental
Figure 8; supplemental Table 4) (Ou et al., 2018).

Using a combination of homology-, transcriptome-, and ab initio-
based predictive approaches, we annotated 33 038 and 27 225
protein-coding genes for Mli and Tqu (supplemental Figure 9;
supplemental Table 8). For both species, >97% of the
predicted protein-coding genes were functionally annotated us-
ing eight databases (supplemental Table 9). The proteomes
were estimated to be >97.5% complete for both species on the
basis of BUSCO assessments (supplemental Figure 10;
supplemental Table 10). We also annotated 169 pseudogenes,
6074 rRNAs, 3751 tRNAs, 83 miRNAs, 98 snRNAs, and 185
snoRNAs in Mli and 194 pseudogenes, 4132 rRNAs, 1538
tRNAs, 109 miRNAs, 182 snRNAs, and 203 snoRNAs in Tqu
(supplemental Tables 11 and 12).

The MiIi and Tqu assemblies were composed of 38.74% (85.22
Mb) and 73.4% (524.22 Mb) transposable elements (TEs),
respectively (supplemental Table 13). The most abundant
repetitive elements were retrotransposons, which accounted for
51.19% and 60.9% of all repetitive sequences in Mli and Tqu.
Retrotransposons accounted for 19.83% and 44.7% of the Mli
and Tqu genome assemblies, and DNA transposons accounted
for 17.31% and 26.63%. Tqu contained the most ancient LTR
insertion at ~1.66 mya, whereas Mli and the other five species
contained insertions dating between 0.7 and 0.8 mya
(Figure 1B). Corroborating the very recent burst history, the
LTRs and terminal inverted repeats in Mii featured sequence
identities between 90% and 100% (Figure 1C). An additional de
novo annotation of two previously published Arabodae
genomes, Arabis alpina (Aal) (Jiao et al., 2017) and Draba nivalis
(Dni) (Nowak et al., 2021), revealed that all three genomes
had similar TE compositions but varied in tandem repeat
content (ranging from 4.78% in Dni to 9.13% in MIl)
(supplemental Tables 13 and 14; supplemental Figure 11).

Genome sizes varied significantly among Hesperodae. Tetraploid
Hesperis matronalis had the largest genome (8117 Mb) and
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diploid E. syriacum (Esy) had the smallest (256 Mb), which was
approximately one-third the size of diploid Tqu (supplemental
Table 13) (Kiefer et al., 2014; Mandakova et al., 2017;
Hlouskova et al., 2019). Compared with Esy, Tqu contained
approximately 2.2-fold more LTRs, 3.47-fold more helitrons,
and longer introns (Wilcoxon test, P = 2e—10; supplemental
Tables 13 and 15; supplemental Figures 12 and 13). These
results suggest that variation in TE content and gene structure
may contribute to genome size diversity in Hesperodae.

Two genomes free of extra WGD events

Two well-known features of Brassicaceae are the family-specific
At-oo WGD and the At-p WGD shared within Brassicales (Huang
et al., 2020b; Walden et al., 2020b; Guo et al., 2021). To
explore the genomic history of Mli and Tqu, we compared their
genomes with those of five representative Brassicaceae
species and the basal Brassicales species Carica papaya (Cpa)
(Figure 1D). These species exhibited several WGD patterns. For
example, A. thaliana (Ath; Camelinodae) and Aethionema
arabicum (Aar; Aethionemeae) shared both the At-o. and At-B
WGDs; B. rapa (Bra; Brassicodae) and Pugionlum comutum
(Pco; Heliophilodae) featured more recent polyploidization
events (Cheng et al.,, 2014; Hu et al, 2021); and Cpa
experienced only the At-B WGD (Edger et al., 2018). Both Mili
and Tqu featured high levels of intragenomic synteny
coincident with the At-o and At-B WGDs (Figure 1A;
supplemental Figures 14 and 15). In addition, synonymous
substitutions per synonymous site (Ks) distributions of
homologous pairs from intra- and intergenomic syntenic blocks
demonstrated that both genomes were free of extra WGDs
(Figure 1D; supplemental Figure 16). Finally, analysis of
intergenomic synteny revealed that both Mli and Tqu exhibited
syntenic depth ratios of 1:3 with B. rapa, whereas a 1:1 ratio
persisted for Mli relative to Aal and Dni in Arabodae and Tqu
relative to Esy in Hesperodae (Figures 1E; supplemental
Figures 17 and 18).

A consistent phylogeny for core Brassicaceae
supertribes

Recent research suggests that orthologous or single-copy
nuclear sequences from de novo assemblies tend to be more ac-
curate than those from either transcriptomic or targeted
sequence-capture data (Hu et al., 2023). To characterize the
phylogenomic relationships among supertribes of the core
Brassicaceae, we selected chromosome-level genomes from
14 species representing all supertribes and the basal Aethione-
meae. We identified 1463 shared single-copy orthologous genes
(SCOGs) (supplemental Table 16). Highly supported (100%
bootstrap values for all nodes) maximum-likelihood (ML) species
trees were produced from the concatenated sequences using
both nucleotide (all three codons or with third position removed)
and amino acid sequences (Figures 1F; supplemental Figures 19
and 20). A coalescent-based analysis with individual gene trees
after removal of nodes with bootstrap values <60% resulted in
a topology identical to that of the concatenation-based analysis
(supplemental Figure 21 and 22). Our results revealed that
Hesperodae (Tqu) was sister to the remaining supertribes
within the core Brassicaceae. Arabodae (Aal, Dni, and Mii)
was a successive sister to Camelinodae, Brassicodae, and
Heliophilodae, consistent with previous reports (Huang et al.,

4 Plant Communications 5, 100878, July 8 2024 © 2024 The Authors.
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2016; Kiefer et al., 2019; Nikolov et al., 2019; Hendriks et al.,
2023). Within Arabodae, Mii clustered with the two Arabideae
species Aal and Dni. The rogue species Megadenia pygmaea
(Mpy) of the tribe Biscutelleae, which is well known for having a
contentious phylogenetic placement (Guo et al., 2021), was
grouped within Camelinodae (Ath, A. lyrata, and Erysimum
cheiranthoides) in our analysis. This result is in agreement with
previous transcriptome- and genome-based phylogenies (Kiefer
et al., 2019; Guo et al., 2021) but in conflict with other studies
that place the species within Heliophilodae (Huang et al., 2016).

To minimize orthology inference errors, we next extracted 2546
SCOGs using SonicParanoid (Cosentino and lwasaki, 2019). A
concatenation-based phylogenomic reconstruction resulted in
the same tree topology described above (Figures 1F;
supplemental Figures 19, 20, and 23). However, a coalescent-
based analysis using amino acid sequences resulted in Cameli-
nodae being sister to Brassicodae, Arabodae, and Heliophilodae
(supplemental Figure 24). We next performed a synteny-based
phylogenomic reconstruction using 4344 collinear genes identi-
fied with the WGDI pipeline (Sun et al., 2022) using C. rubella as
a reference (Slotte et al., 2013) (supplemental Figure 25). Again,
the same topology was obtained, with the polyploidization
histories clearly reflected for Bra, Bol, Lma, and Pco (Figure 1G;
supplemental Figure 26) (Cheng et al., 2014; Huang et al,
2020a; Hu et al., 2021).

To minimize phylogenetic errors resulting from poor taxon sam-
pling, we included up to 27 Brassicaceae species and used
Cleome violacea (Cleomaceae) as the outgroup. With 1092
SCOGs, both concatenation- and coalescent-based methods
produced consistent topologies (supplemental Figure 27). An
additional expansion to 55 Brassicales genomes with 5217 low-
copy orthologous genes generated a nearly identical topology,
except that Mpy and Lunaria annua (Biscutelleae) moved from
Camelinodae to Heliophilodae (supplemental Figure 28).
However, the majority of nodes, especially deeper nodes of the
core Brassicaceae, exhibited low support values, suggesting
the presence of high levels of genomic complexity (Mandakova
et al., 2018; Guo et al., 2021; Hendriks et al., 2023).

Despite such consistent core Brassicaceae tree topologies,
phylogenetic discordance was frequently observed among nu-
clear gene trees (Figure 2), reflecting the complex evolutionary
history of Brassicaceae. Indeed, analyses of internode certainty
all (ICA) values and numbers of conflicting and concordant
bipartitions revealed strong conflicts, especially in the deepest
nodes of the core Brassicaceae (supplemental Figure 29). This
pattern was easily observed in gene trees visualized with
cloudogram through DensiTree (Bouckaert, 2010). These
conflicts occurred mainly in the period between 10 and 15 mya
(Figure 2A). The deeper nodes (A to E) of the core Brassicaceae
were supported by around 50% of gene trees for Arabodae
(node A, g1) or less for other nodes (q1; Figure 1F). In addition,
the sister relationships among different supertribes were
weakly, or sometimes strongly, rejected by >60% of relevant
gene trees (Figure 2C). Thus, the core Brassicaceae supertribes
featured a high level of phylogenomic complexity. We also
identified pervasive incongruence between plastome- and
nuclear-genome-based phylogenies (Figure 2B; supplemental
Figures 30-32), a pattern previously reported in core
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Brassicaceae (Walden et al.,, 2020a, 2020b; Liu et al., 2020,
2024; Hendriks et al., 2023). This indicated that hybridization
and/or ILS may have occurred during the early diversification of
Brassicaceae.

Frequent hybridization and introgression during
Brassicaceae evolution

At least four historical hybridization scenarios were identified in a
network analysis (Figure 2B; supplemental Figure 33). The
strongest signal of gene flow occurred between Mpy and the
most recent common ancestor (MRCA) of supertribe
Camelinodae and Pco. Other hybridizations were identified
between the MRCA of Brassicodae and Heliophilodae. An
ABBA-BABA-derived test (D statistic) (Malinsky et al., 2021)
revealed significant introgressions in 86 of the 120 tested
species triplets (three-taxon subtrees) (Z score > 3 and
P < 0.002). The maximum pairwise D and f4-ratio statistics
were observed for Mpy-Pco and Mpy-Tar (Thlaspi arvense)
(Figure 2D; supplemental Figure 34; supplemental Table 17). A
derived Fbranch (fp) analysis identified a strong hybridization
signal between Mpy and all other supertribes (Brassicodae,
Hesperodae, Arabodae, and Heliophilodae), and other
introgression events were identified between the MRCA of
(Brassicodae + Heliophilodae) and Hesperodae/Arabodae
(Figure 2E). Quantification of tree branch lengths with Qu/BL
(Edelman et al., 2019) revealed that 15.8% of tested triplets
featured significant hybridization signals (19 of 120, ABIC < -
10), with the introgression gene trees having an average ratio of
17.4% (ranging from 9.91% for Tqu-Aly to 26.52% for Mpy-
Pco; Figure 2D; supplemental Tables 18 and 19). A final
calculation of the introgression intensity showed that deeper
nodes had high reticulation indices, especially in supertribes
Hesperodae, Arabodae, and Heliophilodae (supplemental
Figure 35) (Cai et al., 2021). Collectively, these data suggest a
complex history of hybridization and introgression during the
early radiation of Brassicaceae, with Mpy likely being of hybrid
origin.

Even so, we could not overlook the contribution of ILS. Estimation
of theta, a parameter that reflects ILS levels (Cai et al., 2021),
revealed high levels of ILS in node D and ancestor of
Heliophilodae (supplemental Figure 36). A comparison between
the real distribution of tree-to-tree distances and the simulated
distribution of Robinson and Foulds tree-to-tree distances re-
vealed a largely overlapping pattern (supplemental Figure 37)
(Bogdanowicz et al., 2012). In addition, a strong positive
correlation was observed between branch lengths and ICA
values (Pearson’s correlation coefficient R = 0.96, P = 2.2e—16;
supplemental Figure 38) (Zhou et al.,, 2022). These results
suggest that ILS has at least partially contributed to the
phylogenetic conflicts described above.

Ancestral core Brassicaceae karyotype (CBK)

We next reconstructed the ancestral karyotype of the MRCA for
the core Brassicaceae using a synteny-based gene-family-clus-
tering approach (Wu et al., 2023). Specifically, we used our
reliable phylogeny based on high-quality genomes of nine
diploid species representing major supertribes and the basal
Aethionemeae, which have not undergone additional WGDs.
We excluded species in Heliophilodae from reconstruction of
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Figure 2. Pervasive topology discordance, prevalent hybridization, and introgression in Brassicaceae.

(A) Cloudogram inferred from 1463 SCOGs (Orthofinder). Scale in mya.

(B) Extensive conflicts between plastome-based (right panel) and nuclear-genome-based (left panel) species ML trees using concatenated data.

Introgression events are shown as broken red lines on the nuclear tree.

(C) Gene-tree compatibility as revealed by the portion of gene trees that are highly (weakly) supported or rejected. Weakly rejected refers to those not in

the tree but compatible if low support branches (<75%) are contracted.

(D) Tests for introgression with D statistics (upper right panel) and QuIBL analysis (lower left panel). Heatmaps of mean pairwise D per species pair and the
mean total proportion of introgressed loci per species pair inferred with Qu/BL.

(E) Test for introgression, with identification of excess sharing of derived alleles via the branch-specific statistic f,(C) approach. The branch-specific
statistic f,(C) value indicates excess sharing of derived alleles between a given branch (b) on the y-axis, relative to its sister branch, and species C on

the x-axis.

the CBK because of their complex evolutionary history and
potentially hybrid origin (Hendriks et al., 2023).

We first detected syntenic gene pairs between each of the 9
species. A minimum of 13 982 pairs were identified between
Dni and Aar and a maximum of 20 472 pairs were found be-
tween Ath and Cru (supplemental Table 20). Next, we
identified a total of 118 980 non-redundant syntenic groups,
among which 9702 were conserved genes (putative protogenes,
or pPGs) in all 9 species and represented a gene pool for the
MRCA of the Brassicaceae. A total of 11 682 pPGs were pre-
sent in 8 core Brassicaceae species, and 15 778 pPGs were
found in 4 species representing supertribes Camelinodae and
Brassicodae (supplemental Table 21). By analyzing the

synteny between the 9 extant species and the previously
predicted common ancestor for Brassicaceae (Schranz et al.,
2006; Lysak et al., 2016), we refined the GB boundaries using
the 9702 pPGs and identified 43 additional breakpoints
dividing the 22 conserved GBs (Lysak et al., 2016) into 65
GBs, which were present in all 9 species (supplemental
Figure 39; supplemental Table 22). Finally, with consideration
of the phylogenetic topology and these 65 GBs, we built the
karyotypes of extant species and traced the evolutionary
scenario in Brassicaceae by reconstructing the ancestral
karyotypes for all seven internal nodes (1-7) using Aar as the
outgroup (Figure 3; Table 1). The predicted chromosomal
pattern at node 7, i.e., the CBK, represents the ancestral
karyotype of core Brassicaceae.
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Figure 3. The ancestral core Brassicaceae karyotype (CBK) and the evolutionary history of Brassicaceae karyotypes.

Numbers in brackets indicate the conserved pPGs at each node (see supplementary Table 21). Rearrangement processes include nested chromosome
insertions (NCI), end-to-end translocations (EET), and translocations (T), as well as paracentric (I°%) and pericentric (I°°) inversions. Black triangles indicate
WGD events in Brassicaceae (At-a), and black sandglass-like symbols in karyotypes represent centromeres.
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CBK GB GB start GB end pPG start pPG end
CBK1 Al AT1G01010 AT1G08100 AT1G01010 AT1G07650
A2 AT1G08110 AT1G12960 AT1G08540 AT1G12950
A3 AT1G12970 AT1G16610 AT1G12970 AT1G16610
Ad AT1G16630 AT1G19840 AT1G16650 AT1G19840
B1 AT1G19850 AT1G24256 AT1G19850 AT1G24140
B2 AT1G24260 AT1G27280 AT1G24310 AT1G27210
U2 AT4G24160 AT4G27730 AT4G24740 AT4G27540
B3 AT1G27290 AT1G30755 AT1G27320 AT1G30755
B4 AT1G30757 AT1G32750 AT1G30760 AT1G32750
CBK2 D2 AT1G61210 AT1G56210 AT1G61210 AT1G56230
D1 AT1G64670 AT1G61215 AT1G64670 AT1G61240
E1 AT1G64960 AT1G67270 AT1G65020 AT1G67260
E2 AT1G67280 AT1G71100 AT1G67530 AT1G71100
E3 AT1G71110 AT1G78310 AT1G71110 AT1G78310
E4 AT1G78320 AT1G79720 AT1G78380 AT1G79720
E5 AT1G79730 AT1G80950 AT1G79730 AT1G80950
CBK3 F1 AT3G01015 AT3G07530 AT3G01015 AT3G07490
F2 AT3G07540 AT3G12180 AT3G07540 AT3G12180
F3 AT3G12190 AT3G16010 AT3G12200 AT3G16010
F4 AT3G16020 AT3G25520 AT3G16050 AT3G25470
G AT2G05170 AT2G07690 / /
H AT2G10940 AT2G20900 AT2G13810 AT2G20890
CBK4 1 AT2G20920 AT2G25260 AT2G20930 AT2G25050
12 AT2G25270 AT2G27540 AT2G25800 AT2G27170
13 AT2G27550 AT2G31035 AT2G27900 AT2G31010
J1 AT2G31040 AT2G35850 AT2G31060 AT2G35610
01 AT4G00026 AT4G03190 AT4G00026 AT4G03190
CBK5 J4 AT2G41420 AT2G48150 AT2G41420 AT2G48080
J3 AT2G37670 AT2G41417 AT2G37670 AT2G41290
J2 AT2G35860 AT2G37660 AT2G35880 AT2G37650
P1 AT4G12620 AT4G09680 AT4G12620 AT4G09830
P2 AT4G09670 AT4G07390 AT4G09610 AT4G08280
02 AT4G03200 AT4G05450 AT4G03200 AT4G05430
Vv AT5G47810 AT5G42130 AT5G47540 AT5G42340
CBK6 KL1 AT2G01060 AT2G05160 AT2G01060 AT2G04410
KL2 AT3G25540 AT3G32960 AT3G25540 AT3G30340
MN1 AT3G42180 AT3G52970 AT3G42880 AT3G52960
MN2 AT3G52980 AT3G56550 AT3G52990 AT3G56550
MN3 AT3G56560 AT3G59550 AT3G56570 AT3G59520
MN4 AT3G59570 AT3G63530 AT3G59600 AT3G63530

Table 1. The ancestral core Brassicaceae karyotype
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CBK GB GB start GB end pPG start pPG end
CBK7 C3 AT1G53720 AT1G56190 AT1G53730 AT1G56140
c2 AT1G47960 AT1G53710 AT1G47980 AT1G53710
T AT4G12700 AT4G16240 AT4G12840 AT4G16230
S1 AT5G42110 AT5G39890 AT5G42080 AT5G39900
S2 AT5G39880 AT5G32470 AT5G39860 AT5G36210
CBK8 U1 AT4G16250 AT4G24150 AT4G16250 AT4G24150
B5 AT1G32760 AT1G37130 AT1G32760 AT1G36310
C1 AT1G43020 AT1G47940 AT1G43190 AT1G47720
u3 AT4G27740 AT4G32990 AT4G27745 AT4G32780
u4 AT4G33000 AT4G35730 AT4G33560 AT4G35730
us AT4G35733 AT4G38100 AT4G35740 AT4G38100
u6 AT4G38120 AT4G40100 AT4G38120 AT4G40100
CBK9 R1 AT5G23000 AT5G19350 AT5G22940 AT5G19350
R2 AT5G19340 AT5G13390 AT5G19330 AT5G13390
R3 AT5G13380 AT5G08540 AT5G13360 AT5G08540
R4 AT5G08535 AT5G06740 AT5G08535 AT5G06750
R5 AT5G06730 AT5G01010 AT5G06440 AT5G01030
W3 AT5G56550 AT5G60800 AT5G56550 AT5G60800
W2 AT5G49620 AT5G56540 AT5G49920 AT5G56530
Wi AT5G47820 AT5G49610 AT5G47820 AT5G49580
Q2 AT5G26220 AT5G23010 AT5G26220 AT5G23010
Q1 AT5G30510 AT5G26230 AT5G28910 AT5G26230
X1 AT5G60805 AT5G63090 AT5G60820 AT5G63090
X2 AT5G63100 AT5G65925 AT5G63120 AT5G65910
X3 AT5G65930 AT5G67640 AT5G65950 AT5G67640

Table 1. Continued

CBK1-9, pseudochromosomes of the CBK; GB, genomic block, named corresponding to the 22 ACK blocks with numbers indicating the breakdown of
each ACK block; pPGs, putative protogenes conserved in all nine extant species.

In contrast to the 8 pseudochromosomes of the ACK, the CBK is
characterized by 9 haploid chromosomes. This finding is consis-
tent with a recent study that included only 3392 strictly conserved
syntenic genes (supplemental Figure 40) (Walden and Schranz,
2023). The karyotypes for node 1 to node 3 are identical, and so
also for node 4 and node 5. Notably, node 6 has the same
pattern as the CBK (Figure 3). These results imply relatively
short divergence times between node 1 and node 3, node 4 and
node 5, and the CBK and node 6. It is noteworthy that the
karyotype of node 3, the common ancestor of Camelinodae and
Brassicodae, is nearly identical to that of the ACK, with only a
few GBs having undergone inversion (Figures 3 and 4). Overall,
we observed considerable consistency between the CBK and
the ACK. Specifically, three pseudochromosomes of node 3 (_2/
_3/_5) correspond to the three ancestral chromosomes of
the CBK (CBK2/3/6). By contrast, node 3_1 and node 3_7
originated from CBK1/8/7, and node 3_4/ 6/_8 were derived
from CBK4/5/9, respectively. This transformation occurred
through a series of translocations, including both paracentric
and pericentric inversions (Figure 4A). Similarly, five

remained in their ancestral states, whereas the remaining three

(_4/_5/_8) are derived from four translocations, one nested
chromosome insertion, two paracentric inversions, and one
pericentric inversions (Figure 4B). Because there is only one
high-quality chromosome-level genome assembly available
(Tqu), we were unable to infer the ancestral genome for Hespero-
dae. However, a comparison between the Tqu genome and
the reconstructed ancestral karyotype for Hesperodae (CEK,
n = 7) with a comparative cytogenetic approach (Mandakova et
al., 2017) revealed extensive chromosomal rearrangements,
with all Tqu chromosomes having undergone batches of
rearrangements (supplemental Figure 41). Finally, frequent
centromere repositioning may have occurred (supplemental
Table 23), consistent with previous reports (Mandakova
et al., 2020).

Previous research has reported chromosome counts of bothn=7
and n = 8 for Mli, with n = 8 being more frequent in Alysseae
(Spaniel et al., 2015). This phenomenon has also been
observed in Camelina microcarpa, likely owing to variation
among different genetic populations (Brock et al., 2022).
Interestingly, the ancestors of node 4 (Arabideae) and node 5
(Arabodae) had chromosome counts of n = 8 (Figure 3).
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Figure 4. Karyotype evolutionary scenarios from the CBK to node 3 (A) and node 5 (B).
Rearrangement processes include nested chromosome insertions (NCI), end-to-end translocations (EET), and translocations (T), as well as paracentric
(I°®) and pericentric (I°®) inversions. Black sandglass-like symbols represent centromere locations. Red triangles denote the positions of genomic fission

or fusion.

Compared with Aal and Dni, two species also in Arabodae, Mili
seems to have experienced more intense chromosomal
recombination, resulting in a decrease in chromosome number
to seven from the ancestral state of eight. More specifically,
the ancestral node 5_2 chromosome in Mli is divided into
two segments, each of which is fused to the MIi_1 and
MIi_3 chromosomes, respectively (Figure 3; supplemental
Figure 42). Similarly, extensive chromosomal rearrangements
were identified in Mpy (supplemental Figure 43). Considering its
ancient hybridization history, jumped phylogenomic position,
and shared PCK-specific chromosomes with Pco, the diploid
Mpy appears to have originated from homoploid hybridization
between node 3 (ACK; n = 8) and ancPCK (n = 8) (Guo et al.,
2021; Hu et al., 2021).

Expansion and expression diversification of class | TPS
genes

We next evaluated whether any genes or gene families
were associated with the early Brassicaceae radiation by search-
ing for node-specific gene family expansion and contraction
patterns (nodes A-F; Figure 1F; supplemental Figures 44-48;
supplemental Tables 24-29). Among these nodes, only a small
number of gene families were found to be expanded or
contracted. The most significant expansion (495 families) and

10

contraction (157 families) occurred at node B, the MRCA of
supertribes Brassicodae and Heliophilodae (Figure 1F). Gene
ontology analysis revealed that defense-related genes
were significantly enriched at nodes B, C, and E (supplemental
Figures 45, 46, and 48). Node F (the MRCA of core
Brassicaceae) was enriched for genes encoding TPS enzymes,
as well as genes related to several other pathways (Figure 5A).

TPS genes encode enzymes responsible for the biosynthesis of
T6P, a signaling molecule involved in the regulation of abiotic
stress tolerance and developmental processes such as flowering
time and embryo development (Fichtner and Lunn, 2021).
A. thaliana has 11 TPS genes that form 2 distinct classes: |
(TPS1 to TPS4) and Il (TPS5 to TPS11) (Leyman et al., 2001;
Avonce et al., 2006; Lunn, 2007). Phylogenetic and synteny
analyses revealed that TPS7 is highly conserved and exhibits
good collinearity between Brassicaceae and C. violacea
(Cleomaceae), whereas TPS2 to TPS4 are present only in
Brassicaceae (Figure 5B; supplemental Figure 49; supplemental
Table 30). As collinearity was not identified between TPST7s
and TPS4s (supplemental Figure 50), TPS4 was likely
generated by random duplication of TPS7 in the MRCA of
Brassicaceae and stably inherited with very good collinearity
in core Brassicaceae. Notably, Pco contains two copies
(PcoTPS4.1 and PcoTPS4.2), which are tandemly duplicated on
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Figure 5. Brassicaceae-specific expansion of Trehalose-6-Phosphate (T6P) synthase 1 (TPS1) genes.
(A) Gene ontology (GO) enrichment of molecular functions for expanded gene families on node F (Figure 1F) corresponding to the split between core

Brassicaceae and Aethionemeae. GO terms in bold and marked with red arrows highlight the expansion of trehalose-6-phosphate (T6P) synthase-
related genes.

(legend continued on next page)
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chromosome 2 (Figure 5B and 5C). TPS2-like genes are
expanded in Hesperodae (Tqu) and the remaining core Brassica-
ceae supertribes via two independent random duplication
events. The TquTPS2 locus on chromosome 1 exhibits good syn-
teny with Aar chromosome 4, whereas no TPS2-like sequence
was identified in the blocks harboring TPS2-like genes in super-
tribes Camelinodae, Brassicodae, Arabodae, and Heliophilodae.
Tandemly duplicated TPS3s were detected only in Arabidopsis
and Brassica (Figure 5B). All the Brassicaceae TPS2 and TPS4
proteins lacked the N-terminal domain, which harbors a nuclear
localization signal that targets the AthTPS1 protein primarily to
the nucleus (Figure 5B; supplemental Figure 51) (Fichtner
et al., 2020). By contrast, nearly all Brassicaceae TPS1s contain
the N-terminal domain. These results suggest that the
Brassicaceae-specific TPS2- and TPS4-like genes may have
different evolutionary histories.

In Arabidopsis, class | TPSs have catalytic activity (Van Dijck et al.,
2002). TPS1 is broadly expressed, TPS2 and TPS4 are expressed
at low levels and exclusively in developing seeds, and TPS3, a
potential pseudogene, is only minimally expressed (supplemental
Figures 52 and 53) (Vandesteene et al., 2010). Both TquTPS1 and
MIiTPS1 were highly and nearly universally expressed in all
tissues sampled from wild plants harvested in Xinjiang, China
(supplemental Figure 54). A similar pattern was observed for
AthTPS1 (supplemental Figure 52). Despite their extremely low
levels of expression under laboratory conditions, both MIiTPS2
and MIiITPS4 were expressed at relatively high levels in siliques
and seeds sampled from plants growing under fluctuating natural
conditions (Figure 5D and 5E). These results suggest that TPS2
and TPS4 genes from supertribes Camelinodae, Brassicodae,
Arabodae, and Heliophilodae may exhibit similar expression
patterns. TquTPS4 is expressed at relatively high levels in
flowers (Figure 5D), indicating that this gene may play a role in
the regulation of flower development. Notably, these TPS
genes exhibit diverse expression patterns under fluctuating
temperatures (Figure 5F). The lineage-specific expansion of class
| TPSs was thus followed by diversification of expression, and likely
function, during the early evolution of Brassicaceae.

DISCUSSION

Because of the economic and scientific importance of Brassica-
ceae, its phylogeny and genome evolution remain at the forefront
of plant evolutionary biology. Here, we generated high-quality
chromosome-level genome assemblies for two species repre-
senting supertribes Hesperodae and Arabodae and identified
the complex genomic features that accompanied the early evolu-
tion of Brassicaceae.

The ancestral karyotype and genomic features of core Brassicaceae

Using available high-quality genomes representing all supertribes
and the basal Aethionemeae, we produced a phylogeny consistent
with recent reports (Huang et al., 2016; Kiefer et al., 2019; Nikolov
et al.,, 2019; Hendriks et al., 2023). Overall, Hesperodae (Tqu)
appears to have diverged successive to the basal Aethionemeae
(Aan) followed by supertribes Camelinodae, Brassicodae,
Arabodae, and Heliophilodae in the late Oligocene to early
Miocene (19.3-24.4 mya; Figure 1). Intriguingly, this was
coincident with the accelerated uplift of the Tibetan Plateau, which
was followed by significant aridity in the Asian interior and
monsoon intensification in Eastern Asia (Kagale et al., 2014; Ding
et al., 2020; Miao et al., 2022). These results thus link the
diversification of Brassicaceae to global environmental change.

The observed phylogenetic discordances correspond well with
the complex evolutionary history of Brassicaceae, in which
frequent and ancient inter-supertribe hybridizations have been
identified (Figure 2). Such patterns, marked by extensive gene-
tree heterogeneity, have been documented previously and can
result from rampant hybridization events between members of
closely or distantly related groups (Nikolov et al., 2019;
Hendriks et al., 2023). Furthermore, the influence of ILS during
early radiation, leading to low resolution of deeper nodes within
Brassicaceae, cannot be overlooked. Therefore, reducing such
groups exclusively to existing models that strictly adhere to
bifurcating trees significantly oversimplifies the reality and
hinders our ability to accurately describe the evolutionary
process (Cai et al., 2021; Guo et al., 2023; Hendriks et al., 2023).

The availability of high-quality diploid genomes without additional
WGD events for species representing nearly all major supertribes
as well as the basal Aethionemeae makes it possible to reconstruct
the CBK (Table 1; Figures 3 and 4). The previously proposed ACK is
based mainly on genomes representing Camelinodae and
Brassicodae (Schranz et al., 2006; Lysak et al., 2016). Using the
ACK, phylogenomic variation and chromosomal evolution have
been characterized in Brassicodae (PCK, n = 7) (Mandakova and
Lysak, 2008; Cheng et al., 2013) and Hesperodae (CEK, n = 7)
(Mandakova et al., 2017) and tribes Thlaspideae (Bayat et al.,
2021), Biscutelleae (Geiser et al., 2016; Mandakova et al., 2018;
Guo et al., 2021), and Arabideae (Willing et al., 2015; Mandakova
et al,, 2020), as well as basal Aethionemeae (Walden et al,
2020a). Very recently, Walden and Schranz (2023) reported their
effort in reconstruction of the ancestral karyotype covering the
major clades (Walden and Schranz, 2023). Their ancestral
karyotype reconstruction, which also features 9 haploid
chromosomes, largely aligns with our CBK, albeit with less
resolution and significant structural differences (supplemental
Figure 40). This is very likely due to the identification of fewer

(B) An ML tree shows the phylogenetic clustering of class | TPS proteins in 19 angiosperms, including 7 Brassicaceae species representing all supertribes
and the basal Aethionemeae. The * and + indicate bootstrap supports of >90% and 50%-90%, respectively. The summarized protein structure for each
subgroup is shown, with N, TPS, and C indicating the N-terminal domain, TPS domain, and C-terminal domain, respectively. Supertribes or outgroups are
indicated with colored circles, triangles, and squares, as shown at the bottom right.

(C) The collinearity relationships of subgroups TPS2 and TPS4 in Brassicaceae. The red and blue curves show the positions and syntenic relationships of
TPS2 (red squares) and TPS4 (blue squares) between selected species. Gray curves show the surrounding syntenic genes between species.

(D) Relative expression patterns of TPS2s and TPS4s in different tissues (right panels) of plants grown under natural conditions in Fukang County, Xinjiang
Province, China. A minimum of four biological replicates of leaves, shoots, flowers, and siliques were collected and pooled from at least five individuals of

each species (left panels).

(E and F) Relative expression patterns of TPS2s and TPS4s under fluctuating temperature conditions for Mli (E) and Tqu (F). A minimum of three biological
replicates were used for each assay. Lowercase letters indicate statistically significant differences (ANOVA, P < 0.05).
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Figure 6. A simplified model of evolutionary events in
Brassicaceae.

After splitting from Aethionemeae, the progenitors of core Brassicaceae
(colored triangles) diversified in a short period between 19.3 and 24.4 mya
during the late Oligocene to the early Miocene. The first random dupli-
cation of TPS4s occurred after the At-o. WGD. Two independent random
duplication events doubled the TPS2-likes and TPS2s in Hesperodae and
the MRCA of other supertribes (Brassicodae, Heliophilodae, Camel-
inodae, and Arabodae), respectively. The deep-sea temperatures are
modified from Zachos et al. (2001).

strictly conserved syntenic genes (3392 compared with our 9702)
caused by the segmental genome of Esy (Jiao et al., 2017).
Alternatively, inclusion of the rogue Mpy genome, which features
significant hybridization and has a contentious phylogenetic
position, may have lowered the accuracy of their effort.

Although the ACK represents essentially just the ancestors of
Camelinodae and Brassicodae (Schranz et al., 2006; Lysak
et al., 2016), its 22 GBs are well conserved throughout
Brassicaceae (supplemental Figure 39; supplemental Table 22).
Compared with the 8 chromosomes of ACK, the CBK exhibits a
more ancestral state with 9 chromosomes and 65 GBs
(Figures 3 and 4; supplemental Figure 39; Table 1). It is
noteworthy that the reconstructed ancestral karyotype for node
3 (the common ancestor of Camelinodae and Brassicodae) is
highly consistent with the ACK and also with the extant Cru and
Ech, indicating the accuracy of our analyses. However, to fully
resolve the ancestral karyotype for the whole family, a suitable
high-quality genome at the chromosome-level for Cleomaceae
is still necessary. Nonetheless, our data provide a valuable
resource and a foundation for more in-depth comparative ana-
lyses of genome evolution in Brassicaceae.

The available high-quality genomes and phylogeny enabled us
to more comprehensively evaluate the molecular features associ-
ated with the Brassicaceae radiation, especially during the late
Oligocene to early Miocene. Our analyses in angiosperms re-
vealed that, after the At-o. WGD, Brassicaceae specifically dupli-
cated its class | TPS1 into TPS4s (Figures 5 and 6). However,
this expansion seems not to align well with the known WGD
radiation lag-time model (Schranz et al., 2012). The divergence
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between core Brassicaceae and the basal Aethionemeae during
the late Oligocene and early Miocene is coincident with the
accelerated uplift of the Tibetan Plateau. The uplift was followed
by increasing aridity in the Asian interior, intensifying Eastern
Asian monsoons, fluctuating daily temperatures (Zachos et al.,
2001; Kagale et al., 2014; Ding et al., 2020; Miao et al., 2022), as
well as increased diversification in Brassicaceae. This geologic
period also saw two independent random duplications: TPS4-
like produced the TPS2/3-like genes in Hesperodae and the suc-
cessive supertribes Camelinodae, Brassicodae, Arabodae, and
Heliophilodae, respectively (Figure 6). It should be noted that
duplication of class | TPS genes seems to be an evolving and
highly dynamic process, as demonstrated by a further tandem
duplication of TPS2/3-like genes in Camelinodae and Brassico-
dae. Intriguingly, the duplicated TPS2/3-like and TPS4-like genes
exhibit highly varied expression under both natural and disturbed
temperatures, a signal of functional diversification (Figure 5).
However, the precise molecular and genetic connections
between these duplications and paleoclimatic changes require
further in-depth study.

The assembly of high-quality genomes for Hesperodae and Ara-
bodae provides fresh insights into the ancestral karyotypes and
molecular features associated with the complex evolutionary his-
tory of Brassicaceae. The lineage-specific and dynamic expan-
sion of key flowering-time regulators may have served as an
evolutionary gate, with more efficiency and precision, to sense
and respond to fluctuating energy availability under ever-
changing environmental conditions.

MATERIALS AND METHODS

Plant material and DNA sequencing

Seeds of M. linifolius (Ml (voucher ID TanDY0110) and
T. quadricornis (Tqu) (voucher ID TanDY0709) were collected in
Karamay City and Fukang City, respectively, in Xinjiang Autono-
mous Region, China. The seeds were preserved in the Germ-
plasm Bank of Wild Species, Kunming Institute of Botany, Chi-
nese Academy of Sciences. For genome sequencing, seeds
were cultured on half-strength Murashige and Skoog medium
and grown under long-day conditions. Fresh leaves were har-
vested from each single plant for genomic DNA extraction.

For short-read sequencing, 150-bp paired-end reads were
generated using the lllumina NovaSeq platform (lllumina, USA)
at ~50x. For long-read sequencing, Single-Molecule Real-Time
PacBio Genome Sequencing was performed using the PacBio
Sequel Il platform with the circular consensus sequencing model
(Pacific Biosciences). After quality control, we obtained 38.3 and
52.4 Gb of high-quality HiFi reads for Mli (~147.3x) and Tqu
(~72.3x%), respectively (supplemental Table 2). For scaffolding,
Hi-C sequencing was performed to generate ~100x data for
both species. For genome annotation, total RNA from mixed
samples (including young leaves, stems, roots, and flowers) was
used for both lllumina paired-end (150 bp) and full-length Nanopore
long-read (Oxford Nanopore Technologies, UK) sequencing.

Genome size estimation and assembly

Genome sizes were initially estimated using flow cytometry with
Solanum lycopersicum (0.88 Gb) as a reference. In brief,
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approximately 20 mg of fresh leaves were harvested and placed
in a Petri dish containing 1 ml of ice-cold nuclei isolation buffer
(45 mM MgCl,-6H,0, 20 mM MOPS, 30 mM NazCgHs507, 1%
[w/v] PVP 40, 0.2% [v/v] Triton X-100, 10 mM Na, EDTA [pH
7.0]). The tissues were minced with a sterile razor blade, mixed,
and filtered through a 42-um nylon mesh into a sample tube.
Later, a stock DNA fluorochrome solution was added together
with 50 mg/ml Pl and 50 mg/ml RNase, and the mixture was incu-
bated on ice prior to analysis. Sample measurement and data
analysis were performed using a BD FACScalibur and Modifit
(v3.0), respectively (Duda et al., 1999). All measurements were
carried out in ftriplicate, and mean values are reported.
Genomic surveys were performed using Jellyfish (v2.2.10)
(Marcais and Kingsford, 2011) and GenomeScope2 (Vurture
et al.,, 2017) with k-mer = 19 and 50x lllumina short reads.
High-quality circular consensus sequencing reads were used
for genome assembly with default parameters of the hifiasm
(v0.12) pipeline (Cheng et al., 2021). Contigs were scaffolded
using ~100x Hi-C data according to previously described
methods. In brief, the Hi-C data were filtered, mapped, and eval-
uated using HiC-pro (v2.10.0) (Servant et al., 2015) and
BWA (v0.7.10-r789) (Li and Durbin, 2009). Next, LACHESIS
was used to cluster and reorder the corrected contigs into
pseudochromosomes (Burton et al., 2013), using the following
parameters: cluster min re sites = 22, cluster max link density =
2, cluster non-informative ratio = 2, order min n res intrun =10, or-
der min n res in shreds = 10.

Genome quality assessment

The quality and completeness of both genome assemblies were
assessed using three approaches. We first judged assembly
quality by mapping back the lllumina reads to the genomes using
default parameters of BWA-MEM (Li, 2013). Next, the assemblies
were subjected to BUSCO (v5.4) analysis (Simao et al., 2015).
Finally, the LTR assembly indices of the two genomes were
evaluated using published procedures (Ou et al., 2018; Ou and
Jiang, 2018).

Annotation of repetitive sequences

Tandem repeats were identified with TRF (v4.07) using the pa-
rameters: 7 7 2 80 5 200 2000 -d -h (Benson, 1999). Simple
sequence repeats were identified with MISA (v2.1) (Beier et al.,
2017). Next, we performed de novo and homology-based predic-
tion to detect TEs. The Extensive de novo TE Annotator (EDTA)
pipeline (v2.0.1) (Ou et al., 2019), integrating RepeatMasker
(Tarailo-Graovac and Chen, 2009), LTR_Finder (Xu and Wang,
2007), LTRharvest (Ellinghaus et al., 2008), and LTR_retriever
(Ou and Jiang, 2018), was used to classify the TEs as DNA
transposons or retrotransposons. Lineages for the Copia and
Gypsy superfamilies were identified using Tesorter (Zhang
et al., 2022). The insertion time (T) of each type of intact LTR
retrotransposon was estimated using the formula T = K/
2r with a substitution rate (1) of 8.22 x 10~° substitutions per
site per year (Kagale et al.,, 2014) and K representing the
genetic distance.

Gene annotation

Gene annotation was performed using ab initio, homology-based,
and transcriptome-based predictive methods after masking of all
repetitive regions. For ab initio prediction, Augustus (v2.4) (Stanke

The ancestral karyotype and genomic features of core Brassicaceae

and Waack, 2003) and SNAP (v2006-07-28) (Korf, 2004)
were used with default parameters. Five Brassicaceae species
(A. thaliana [Arabidopsis Genome, 2000], B. napus [Song et al.,
2020], B. nigra [Perumal et al., 2020], D. nivalis [Nowak et al.,
2021], and Isatis indigotica [Kang et al., 2020]) were used for
homology-based prediction with GeMoMa (v1.7) (Keilwagen
et al., 2018). For transcriptome-based prediction, Trinity (v2.11)
(Grabherr et al., 2011) and PASA (v2.0.2) (Haas et al., 2003) were
used to generate de novo assemblies, and Hisat (v2.0.4) (Kim
et al, 2015), Stringtie (v1.2.3) (Pertea et al.,, 2015), and
GeneMarkS-T (v5.1) (Tang et al., 2015) were used to predict
transcripts and genes. All gene models were integrated using
EVidenceModeler (v1.1.1) (Haas et al., 2008) to generate a
consensus gene set. To obtain untranslated regions and
alternatively spliced isoforms, we used PASA to update the gff3
file (two rounds). Finally, BUSCO (v5.4) was used to assess the
completeness of the gene set.

Functional annotations were assigned to protein-coding genes
by performing BLAST (v2.2.31) searches against the NR, GO,
KEGG, KOG, and TrEMBL databases (Ye et al., 2006) with an e
value cutoff of 107°. We also used Blast2GO (v4.1) (Conesa and
Gotz, 2008) to search the GO and KEGG databases.

Four types of non-coding RNAs (microRNAs, transfer RNAs, ribo-
somal RNAs, and small nuclear RNAs) were annotated using
tRNAscan-SE (v1.3) (Lowe and Eddy, 1997) for tRNA, Rfam
(v12.0) (Kalvari et al., 2018) and Infernal (v1.1) (Nawrocki and
Eddy, 2013) for snoRNA and snRNA, Rfam (v12.0) (Kalvari
et al., 2018) and Barrnap (v 0.9) for rRNA, and miRbase
(Kozomara et al.,, 2019) for miRNA. Pseudogenes were
predicted with GeBlastA (v1.0.4) (She et al, 2009) and
GeneWise (v2.4.1) (Birney et al., 2004).

Gene family classification and analyses

On the basis of recently published tree topologies (Huang
et al., 2016; German et al., 2023; Hendriks et al., 2023),
we selected 14 diploid species with high-quality chromosome-
level assemblies (supplemental Table 16) representing all 5
supertribes of core Brassicaceae and the basal Aethionemeae.
These included A. thaliana (Arabidopsis Genome, 2000),
A. lyrata (Hu et al., 2011), M. pygmaea (Yang et al., 2021), and
E. cheiranthoides (Zust et al., 2020) in Camelinodae; B. rapa
(Belser et al., 2018), B. oleracea (Belser et al., 2018), and
T. arvense (Geng et al.,, 2021) in Brassicodae; Lobularia
maritima (Huang et al., 2020a) and P. cornutum (Hu et al.,
2021) in Heliophilodae; M. linifolius (this study), A. alpina (Willing
et al.,, 2015), and D. nivalis (Nowak et al., 2021) in Arabodae;
T. quadricornis (this study) in Hesperodae; and the
Aethionemeae species A. arabicum (Nguyen et al., 2019).

Orthofinder (v2.5.4) (Emms and Kelly, 2019) was used to identify
putative gene families. For genes with alternative splicing
variants, the longest transcript was selected. Protein sequence
alignments were obtained with MAFFT (v7.475) (Katoh and
Standley, 2013) and converted into the corresponding codon
alignments with PAL2NAL (Suyama et al., 2006). TrimAL (v1.4,
-gt 0.8 -cons 80) (Capella-Gutierrez et al., 2009) was used to
extract the conserved sites of the multiple sequence
alignments. The PhyloSuite (v1.2.2) pipeline (Zhang et al., 2020)
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was used to concatenate the alignments into a super matrix. ML
trees were generated with /IQ-TREE (v2.1.2, -m MFP -bb 1000)
(Nguyen et al., 2015). We skipped the divergence time
estimation and followed the results of Hendriks et al. (2023),
with the exception of the divergence time between B. rapa and
B. oleracea (2.5-3.2 mya), which was obtained from TimeTree
(Kumar et al., 2017). Gene family expansion and contraction
were evaluated using CAFE (v5) (De Bie et al., 2006) based on a
Poisson distribution. Genes in significantly expanded families
were used for GO enrichment analysis with clusterProfiler (Wu
et al., 2021).

WGD history prediction

Six species (A. thaliana, B. rapa, P. cornutum, M. linifolius,
T. quadricornis, and A. arabicum) representing each Brassicaceae
clade, as well as C. papaya (Yue et al., 2022) representing the basal
Brassicales, were selected for WGD analyses. Syntenic blocks and
collinear genes within and between species were identified using
WGDI! (0.5.6) with the parameter “-ic/” (Sun et al., 2022). Ks
values between collinear genes were estimated using the Nei-
Gojobori approach implemented in PAML (v4.9) (Yang, 2007).
Genes with Ks < 0.15 were excluded from further analysis.
Median Ks values in each syntenic block were fitted for peak
identification in WGDI using the “-pf’ option. To justify the ploidy
levels, we used dot plots of collinear genes and syntenic blocks
to determine syntenic ratios between species.

Phylogenic analyses in Brassicaceae

We used both Orthofinder (v2.5.4) (Emms and Kelly, 2019) and
SonicParanoid (Cosentino and lwasaki, 2019) to identify
orthologous genes for phylogenic reconstruction with both
coalescent- and concatenation-based analyses at the nucleotide
and protein levels. In total, six different alignments for each gene
family were used to perform phylogenetic analyses: (1) amino
acid alignments of Orthofinder genes, (2) amino acid alignments
of SonicParanoid genes, (3) nucleotide alignments of Orthofinder
genes, (4) nucleotide alignments of SonicParanoid genes, (5)
nucleotide codon alignments with the third position removed for
Orthofinder genes, and (6) nucleotide codon alignments with
the third position removed for SonicParanoid genes. Because
concatenated datasets do not account for the stochasticity of
the coalescent process, we used ASTRAL (v5.7.8) (Zhang et al.,
2018) to reconstruct the coalescent tree. The ASTRAL pipeline
is statistically consistent under the multi-species coalescent
model and is thus useful for handling ILS. Individual ML gene
trees were constructed using /IQ-TREE, with the same parame-
ters listed above. For stem group nodes, we checked the boot-
strap support values with 1000 simulations and summarized the
topologies with bootstrap support values >0%, 10%, 30%, or
60%. To minimize errors resulting from poor taxon sampling, up
to 28 species were added, including 27 Brassicaceae species
and one Cleomaceae species (C. violacea) as an outgroup.
Another species tree containing an additional 55 Brassicales
species was analyzed with STAG (Emms and Kelly, 2018) using
the low-copy gene set (shared ortholog groups) to further verify
the stability of our phylogenetic structure. First, we used Ortho-
finder to cluster gene families based on the annotated proteins
of 55 species, resulting in 5217 gene families shared among all
species. Next, we built gene trees for each of these 5217 gene
families using FastTree (Price et al., 2009). Lastly, we used
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STAG (Emms and Kelly, 2018) to build the final species tree
based on the 5217 gene trees.

To minimize ortholog identification errors, synteny-based orthol-
ogous gene relationships were evaluated with WGDI, which does
not require gene-family clustering. In addition to the 14 species
mentioned previously, C. rubella (Slotte et al., 2013) was also
included as a reference because its karyotype has been
suggested to be similar to the ACK (Lysak et al., 2016). We
identified intergenomic syntenic blocks between C. rubella and
each species and intragenomic syntenic blocks within each
species. On the basis of the similarity (Ks and BLAST scores)
and completeness (covered genes and spanned gene length) of
each syntenic block, the WGDI pipeline (-bi and -a) was used to
assign syntenic blocks into putative sets. Genes exhibiting
collinear relationships to C. rubella were used to infer the
collinear gene tree with /IQ-TREE. Finally, the synteny-based
species tree was constructed with ASTRAL.

Plastome assembly and phylogenetic reconstruction

To investigate maternal phylogenetic relationships, we assem-
bled and annotated the plastomes using GetOrganelle (v1.7.2a)
(Jin et al., 2020) and PGA (Qu et al., 2019). The inverted repeat
and coding region boundaries of each annotated gene were
determined with Geneious (v9.0.2) (Kearse et al., 2012). The
protein-coding sequences of the 14 species mentioned above,
as well as other Brassicales species, were extracted, aligned,
and concatenated using Phylosuite. ML trees were constructed
with /IQ-TREE using the settings -bb 1000 -m MFP.

Phylogenetic discordance assessment

To evaluate nuclear gene-tree discordance, we calculated the
ICA to quantify the degree of conflict between the species and
gene trees at each node. ICA values close to 1 indicate strong
concordance for the bipartition defined by a given internode,
whereas ICA values close to 0 indicate strong conflict. Negative
ICA values suggest a conflict for the defined bipartition with other
high-frequency bipartitions (Salichos et al., 2014; Zhou et al.,
2022). ICA values were estimated in RAxXML (v8.2.12)
(Stamatakis, 2014), and the tree generated with ASTRAL was
used as the species tree. Quartet frequencies of the internal
branches of the species tree were calculated using ASTRAL
(t = 8), and gene-tree compatibility (whether sister groups of
each other) was analyzed with DiscoVista (v1.0) for each combi-
nation. Phyparts (Smith et al., 2015) was used to summarize the
number of conflicting and concordant bipartitions between
the species tree and the individual gene tree. To visualize the
conflicts, we built a cloudogram using DensiTree (v2.2.6)
(Bouckaert, 2010), and the input gene trees were time-
calibrated with TreePL (v1.0) (Smith and O’Meara, 2012).

Detection of ancient hybridization, gene flow, and ILS

We first inferred the species network for modeling both ILS and
introgression with the maximum pseudo-likelihood pipeline Phy-
loNet (v3.8.4) using the InferNetwork_MPL command (Than et al.,
2008). Network searches were performed by allowing between
one and four reticulation events and using 10 runs for each
search. To estimate the optimum number of reticulations, we
optimized the branch lengths and inheritance probabilities and
computed the likelihood of the best-scored network for each of
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the three maximum reticulation event searches. Next, we used
QuIBL, which compares branch length distributions across
gene trees, to test hypotheses regarding whether phylogenetic
discordance between all possible triplets could be explained by
ILS alone or by a combination of ILS and introgression
(Edelman et al., 2019). The Bayesian information criterion (BIC)
was used to test whether the discordance between gene and
species trees was due more to ILS or introgression. We used a
stringent cutoff of ABIC < —10 to accept the ILS+ introgression
model, as suggested by the authors.

Next, we performed an ABBA-BABA test using Dsuite (v0.5)
(Malinsky et al., 2021) with a four-taxon statement ((H1, H2)H3)
H4). Using H4 as the outgroup (herein A. arabicum), H1 and H2
were treated as sister species, and H3 was tested for potential
gene flow or introgression with H1 or H2. The number of sites
with ABBA and BABA allele patterns were tallied. D was calcu-
lated as (hnABBA — nBABA)/(nABBA + nBABA), in which nABBA
and nBABA represent the total number of sites with ABBA and
BABA patterns, respectively. A negative D indicates gene flow
between H1 and H3, a positive D indicates gene flow between
H2 and H3, and D = 0 indicates no gene flow. The f4-admixture
ratio and f, statistic were calculated for all trios using
Fbranch in the Dsuite pipeline. The f, statistic is a heuristic strat-
egy to summarize f4-admixture ratios over the entire tree topol-
ogy, including internal branches, to detect introgression events
and excess allele sharing across a dataset (Malinsky et al.,
2021). For these analyses, all genome sequences were first
aligned to the reference Arabidopsis genome using BWA
(v0.7.10-r789) and then sorted and converted with SAMtools
(v0.1.19) (Danecek et al., 2021) to generate summary statistics.
Single-nucleotide polymorphisms were identified with GATK
(v3.7) (McKenna et al., 2010). The resulting VCF file was used
as input for Dsuite and further analyzed using A. arabicum as
an outgroup. Finally, a “Reticulation Index” was generated to
measure the frequency of the asymmetrical triplets in all
combinations at each node to quantify the intensity of
introgression using 28 species datasets via a recently reported
pipeline (Cai et al., 2021).

However, ILS could not be excluded as a contributor to the
observed gene tree discordances. We tested the population mu-
tation parameter theta of each internal branch using mutation
units inferred by /IQ-TREE and coalescent units inferred by
ASTRAL. Theta reflects the level of ILS, with a high theta value
indicating a large ancestral population size and hence a high level
of ILS (Cai et al., 2021). Next, 10 000 gene trees were simulated
under the ILS hypothesis with the MSC model using Phybase
(v1.4) in R (v4.2.1) (Liu and Yu, 2010). The Robinson-Foulds dis-
tance distribution (Bogdanowicz et al., 2012) between the
species tree and the simulated gene trees, and those between
the species tree and the empirical gene trees, were compared.
Finally, correlations between branch lengths and ICA values
were calculated to determine the contribution of ILS to tree
conflicts. In general, the shorter the branch length, the more ILS
and conflicts among gene trees (Zhou et al., 2022).

Reconstruction of the CBK

To reconstruct the CBK, we selected nine diploid species without
additional WGDs. These species represent four major supertribes
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(Camelinodae, Brassicodae, Hesperodae, and Arabodae) and the
basal Aethionemeae: A. thaliana, C. rubella, E. cheiranthoides,
T. arvense, A. alpina, D. nivalis, M. linifolius, T. quadricornis, and
A. arabicum. Given its complex evolutionary history and potential
hybrid origin, Heliophilodae was excluded from the reconstruction
of the CBK (Hendriks et al., 2023). The CBK was reconstructed as
follows. Initially, syntenic gene pairs were identified between each
pair from the nine species using MCscan (Python version) in “—full”
mode to extract one-to-one quota syntenic blocks (Tang et al.,
2008). Subsequently, these syntenic gene pairs were categorized
into syntenic groups with the synteny-based gene-family clus-
tering pipeline SynPan, using merge.pl for clustering and trans-
form_stat.pl for summarization (Wu et al., 2023). Considering the
syntenic groups and the phylogenetic tree (Figure 3) of the
species under investigation, we deduced the strictly conserved
syntenic genes (putative protogenes, or pPGs) at each node of
the phylogenetic tree. This facilitated the identification of an
MRCA for the Brassicaceae pool, which comprises 9702 core
pPGs conserved across all investigated species. Third, by
collinearity analysis between 9 extant species and the ACK with
MCscan, we revisited 22 conserved syntenic GBs of the ACK
(Schranz et al., 2006; Lysak et al., 2016) in these species.
Moreover, 43 additional breakpoints were identified by the
addition of genomic data (supplemental Figure 39). Then, using
9702 pPGs, we refined the boundaries of these syntenic blocks
to obtain 65 conserved GBs. We built the karyotypes of extant
species based on these 65 GBs. Finally, with the topology and
65 conserved GBs, we reconstructed the CBK and traced the
evolutionary scenario of karyotypes in Brassicaceae using
MLGO, which is based on a PMAG method (Hu et al., 2014;
Feng et al., 2017). In addition, centromere positions were
predicted using quartet (Lin et al., 2023) and previous reports
(Willing et al., 2015; Lysak et al., 2016; Mandakova et al., 2020;
Naish et al., 2021; Nowak et al., 2021; Yang et al., 2021).

RNA extraction and gene expression analyses

For tissue-specific expression assays, leaves, shoots, flowers,
and siliques were collected in early May 2022 from plants growing
wild in Fukang City, Xinjiang Autonomous Region, China. For
temperature-response analyses, seeds of M. linifolius and
T. quadricornis were collected from plants grown in Fukang
City, Xinjiang, China, and A. thaliana seeds (Col-0) were collected
from plants grown under long-day conditions (16-h light and 8-
h dark, 22°C). After disinfection with 75% ethanol, the seeds
were sown on half-strength Murashige and Skoog medium and
stratified at 4°C for 3 days. Ten days after germination under
long-day conditions, control plants were maintained under the
same growth conditions, whereas experimental plants were sub-
jected to either 6 or 24 h of low temperature (4°C) in a refrigerator
or 3 h of high temperature (38°C) in a water bath. After treatment,
a portion of the plants were immediately sampled, and the other
portion was placed back under the same conditions as the con-
trol group for an additional 6 or 24 h before sampling. Each assay
was carried out using 3 to 5 biological replicates, with approxi-
mately 10 plants per replicate.

Total RNA isolation and quantitative reverse-transcription PCR
(gRT-PCR) were performed as described previously (Zhong
et al., 2021; Dong et al., 2023). In brief, total RNA was isolated
from shoots and leaves with TRl Reagent TR118 (MRC,
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USA) and from flowers and siliques with an OmniPlant RNA Kit
(CWBIo, China). A total of 1 pg of RNA was treated with gDNA
Purge (Novoprotein, China) to remove contaminating genomic
DNA and reverse transcribed using NovoScript Plus All-in-one
1st Strand cDNA Synthesis SuperMix (Novoprotein, China).
Gene expression analyses were carried out with gene-specific
primers (supplemental Table 27) at an amplification efficiency of
between 90% and 110% using NovoStart SYBR gPCR
SuperMix Plus on a QuantStudio Real-Time PCR apparatus.
ACT2 was used as a reference. Primer information can be found
in supplemental Table 31.
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Supplemental Figure 1. Genome sizes of the Tetracme quadricornis (a; Q61-1-2; Tqu)
and Meniocus linifolius (b; Q9-1; MIli) estimated by flow cytometry with Solanum
lycopersicum as reference.
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Supplemental Figure 2. Genome size estimation using GenomeScope2. 19 K-mer size
was used to survey both Tqu (a) and MiIi (b). X-axis shows the depth of read coverage
while Y-axis is the frequency at certain depth divided by the total frequency of all depths.
Estimated genome size, heterozygosity and repeat content are shown above each graph.
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Supplemental Figure 3. Cytological analyses of M. linifolius karyotypes.
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Supplemental Figure 4. Distribution insert Hi-C reads for Tqu (a) and Mli (b). X-axis is the
sum of the distance between the paired end reads on the assembled genome, while Y-axis
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lengths.
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positions of scaffolds on the corresponding pseudochromosomes (the same for
Supplemental Figure 6).
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Supplemental Figure 7. BUSCO assessments (Eudicots_odb10) at the genome level for
six representative species. Aar, Aethionema arabicum; Ech, Erysimum cheiranthoides;
Lma, Lobularia maritima; Tar, Thlaspi arvense.
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Supplemental Figure 8. Distribution of the LTR Assembly Index (LAI) along the
chromosomes for Tqu (a) and Mii (b).



a b
Distribution of gene length Distribution of CDS length
w o
— Tqu — Tqu
— &sy — Esy
_m [ — Ath _ — Ath
8 &ra 2 Bra
g e Pco g s |1 Pco
5 — M 5 — M
o Aar o b Aar
A
6 o [ ] EAVAY A\
H] b% e N
] A 3
g Vﬁe\% 8
D o B o -
o \\W B [
% f
|
I}
- |
[
|
- | : = R e T =
2000 4000 6000 8000 0 1000 2000 3000 4000 5000
Gene length (bp) CDS length {bp)
& Distribution of exon length d Distribution of intron length
@
@ ()
Tau — Tqu
Esy — Esy
—_ Ath - — Ath
_.i Bra =n Bra
@ Peo 2 Foo
g — M o — M
b=
@ Aar £ Aar
5 5=
< ]
Q @
= o
5 2
o @
a
~
\»’\;\\/\_’\-\‘ '\\K‘
ks e - -
I | | = pe > : =
400 500 400 500

200 300
Exon length (bp)

200 300
Intron length (bp)
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Supplemental Figure 11. Proportion of different repeat types in five genomes.
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Supplemental Figure 18. Synteny comparisons of A. alpina (Aal) to Mli (a), D. nivalis (Dni)
to Mli (b), and Esy to Tqu (c).
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Supplemental Figure 19. Maximum likelihood (ML) phylogenies based on concatenated
nucleotide sequences using Orhofinder (a for CDS and b for codons 1 & 2) and
SonicParanoid (c for CDS and d for codons 1 & 2) with bootstrap (BS) supports shown.
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Supplemental Figure 20. Maximum likelihood (ML) phylogenies based on concatenated
amino acids using Orhofinder (upper) and SonicParanoid (lower) with BS supports shown.
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Supplemental Figure 21. Effect of BS values of the 1463 input individual gene trees for
coalescent-based phylogenetic analyses using coding sequences. a, BS=0; b, BS=10;
BS=30; BS=60. Phylogenetic trees inferred based on 1463 individual gene trees with CD
S detected through orthofinder. Local posterior probability (LPP) values for the coalescent-
based analyses are shown on the branch to each node.
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Supplemental Figure 22. Effect of BS values of the 1463 input individual gene trees for
coalescent-based phylogenetic analyses using amino acid sequences. A, BS=0; b, BS=10;
BS=30; BS=60. Phylogenetic trees inferred based on 1463 individual gene trees with
amino acid sequences detected through orthofinder. LPP values for the coalescent-based

analyses are shown on the branch to each node.
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Supplemental Figure 23. Effect of BS values of the 2546 input individual gene trees for
coalescent-based phylogenetic analyses using coding sequences. A, BS=0; b, BS=10;
BS=30; BS=60. Phylogenetic trees inferred based on 2546 individual gene trees with CDS
detected through SonicParanoid. LPP values for the coalescent-based analyses are shown

on the branch to each node.
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Supplemental Figure 24. Effect of BS values of the 2546 input individual gene trees for
coalescent-based phylogenetic analyses using amino acid sequences. A, BS=0; b, BS=10;
BS=30; BS=60. Phylogenetic trees inferred based on 2546 individual gene trees with
amino acid sequences detected through SonicParanoid. LPP values for the coalescent-
based analyses are shown on the branch to each node.
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outgroup. LPP values (a) and BS values (b) are shown.
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Supplemental Figure 28. Phylogeny inferred with 5217 low-copy ortholog genes (shared
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STAG (v1.0.0) are shown.
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gene families at node E of Figure 1F.



TPS1

Cleome violacea
scaffold13 (2.61-2.89Mb)

Arabidopsis thali

Chr01 (29.49-2¢

Supplemental Figure 49. The collinearity relationships of subgroups TPS7 in
Brassicaceae and Cleome violacea (Cleomaceae).



Cloome violacea  ygy—HuHHH Cleome violacea gygyymymstysumusi -
scaffold15 (1.78-1.9TMb) scaffold1 (3.49-4.191Mb)

TPS4 3.49-4.19Mb

Supplemental Figure 50. The collinearity relationships of subgroups TPS4 in
Brassicaceae and C. violacea (Cleomaceae).



oTsA_ECOLT
TpS1_YEAST

=SRVER RGVLSEEE-FRCET

)

PooTESd 2

orsh_Ecowt s 197
s3_vEAST €. g : 227
AtrrEs1 SRTE inynuaniev SR
NeoTzs1.1 £ Eqes: o8 < 301
Neores1.2 SrsE : 252
acaresiil £ Srss : s
Acaresi.2 cSReE : e
Bofrzs £ == : 21
zmares] rol s 525
osaresi £ srs ASSEESSE e | 33
Baines] § oSRSE wovariev ST
Ruiresi.l £ Sasz: : 208
iz § cSReH : 30
vvires1 » = s : SHE e B S £ Sasz: : 20
ahyresy i o evE 3 L e b v § oSRSH :2m
cparzsi o | Sae; < s0e
Gynme.1 g oSReH. : 30
Gynresi.2 £ Sasz: : 508
+1 § | : 303
7qurzsi £ . : 507
DaiTes1 2 5 | 200
reoresi » Rant Bt - ! £ e : 503
athresy % i G < § o ;203
wliTes1 - s, : 507
Bramesi.1 & SRed : 30
Braresi.2 £ cSaes. : 503
n1ite <& Ered : 222
reores2 §=1a conee. SEETERCr © 221
Braes2 <5 Sred ST A . 223
Dnirzs2 £ SR, : 223
2qures2 g ones. 159
athres2 &=l o : 223
Brares: £ 215
athress £ : 200
hasTesa : 226
zqure: g : 239
wliTesa £ ;230
athrzsa & : 214
Daiesa £ ‘202
Brarzsa § : 214
Bcoresa.1 £ ‘21
rcoTesd.z 4 £ : 21
4
orsh_ecowt ;352
53_vEAsT ety
AtrrEs1 535
NeoTzs1.1 :ass
Neores1.2 466
acaresiil < soe
Acaresi.2 500
Bofrzs :a2s
zmares] : 50
osaresi : s
Baines] s s
Ruiresi.l :ass
Fuine : ass
vvires1 o 5 & 5= : a2
ahyresy ] R v i 5 : ace
cparzsi - | : s
Gynrs1.1 ] v; | : ass
Gynresi.2 ¥ R 2 v L G- 5 e B , :ass
aarmesy ] VR v ol v; : a7
Tqurzsi vz o - EEEEN : s
DaiTes1 52
reoresi t s
athresy ;a7
wliTes1 : s
Bramesi.1 : ass
Braresi.2 :as7
n1ite : 06
reores2 :a0e
Braes2 ;407
Dnirzs2 : o7
2qures2 282
athres2 : 107
Brares: 03
athress : 384
hasTesa ;a0
zqurz : 23
wliTesa : s
athrzsa : 39
Daiesa ;e
Brarzsa : 39
Bcoresa.1 e
rcoTesd.z : 399
760 “ 280 .
: s a3
: : s
696
: : e
623
: : s
657
: ‘s
: : 6o
: :eso
: : ese
: :ess
: :ea
: Ge ‘s
: s s 623
: ) tete
: 3 ;s
: ) tets
: 3 : e
: t et
639
: ‘s
: : s
: ‘et
: :ea
: t s
: x : ss2
: X : s
: G x : ss7
: 8 x :ser
: s ERE 33
: s : 557
: 2. finex 533
: s : 533
: i a ;s
: s : 577
: 2. E : see
: s :se1
: s = £ :sa
: s : 551
: gs: E ‘5%
PcoTesa.z % : 552
®




o1sA_ECoLT

Bcorest.2

1000

1020

e IR

e

1160

PQD-PYVSTRGEAT
PRD-ALGTTRGEVL

1180

o1sA_ECoLT

Bcorest.2

Ealaut | Euled

. 1200
oTsA_ECoLT

1220

1240

Supplemental Figure 51. Sequence alignments for TPS7-4 in 21 selected Eukarya

species.
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Supplemental Figure 52. Gene expression level of TPS7-4 along development stages in
A. thaliana (source data: https://bar.utoronto.ca/efp//cgi-bin/efpWeb.cgi).
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Supplemental Figure 53. Gene expression level of TPS1-4in A. thaliana embryo (source
data: https://bar.utoronto.calefp//cgi-bin/efpWeb.cgi).
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