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eMethods 
 
DNA Methylation (DNAm) Profiling and Quality Control 

Blood samples were refrigerated and transported to the University of California, Berkeley 

biorepository where samples without anticoagulant were separated into serum and clot and 

stored at -80° C until analysis. DNA was extracted from child blood samples using QIAamp DNA 

Blood Maxi Kits (Qiagen, Valencia, CA), as previously described.1 DNA aliquots of 1 μg were 

bisulfite converted using Zymo Bisulfite Conversion Kits (Zymo Research, Orange, CA). DNA 

was amplified, enzymatically fragmented, purified, and applied to the Illumina Infinium 

HumanMethylation450 (450K) BeadChip for age 9 samples and EPIC BeadChip for ages 7 and 

14 samples, according to the Illumina protocol (Illumina, San Diego, CA) to measure DNA 

methylation.2,3 

 
Quality control steps included the use of repeats and randomization of samples across chips 

and plates.4 Methylation data were imported into R statistical software for preprocessing using 

the minifi package.5 Quality control was performed at the sample level, excluding samples with 

overall low intensities (< 10.5) and technical duplicates. We computed detection P values 

relative to control probes and excluded probes with non-significant detection (P > 0.01) for 5% 

or more of the samples. Data were preprocessed using functional normalization6 and adjusted 

for probe-type bias using the regression on correlated probes method.7 CombBat from the sva 

package was used to adjust for sample plate as a technical batch.8 Data were visualized using 

density distributions at all processing steps and PC analyses were performed to examine the 

associations of methylation differences with technical, biological, and measured traits with 

global DNAm variation using PCA plots. 

 
Intrinsic Epigenetic Age Acceleration 

Estimated proportions of blood CD8 T cells, CD4 T cells, natural killer cells, B cells, monocytes, 

and granulocytes were generated by the Clock Foundation calculator9 using the Houseman 

algorithm.10 The calculator also estimated intrinsic epigenetic age acceleration (IEAA), a 

residual value calculated by regressing Horvath epigenetic age on chronological age and 

adjusting for the estimated blood cell counts which are known to change with age. 
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eTable 1. Number of participants who have EAA data available at 1, 2, or all 3 
timepoints (7, 9, and 14 years) 

 

Number of timepoints Number of participants Percentage of participants 

1 92 31.7 

2 80 27.6 

3 118 40.7 

Total 290 100.0 

EAA, Epigenetic Age Acceleration. 
 

 

eTable 2: Individual and overlapping sample sizes at three timepoints (7, 9, and 14 
years) 

 
 Age 7 Age 9 Age 14 

Age 7 182 143 134 

Age 9 - 239 157 

Age 14 - - 185 
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eTable 3. Systematic comparison of three available methods for calculating epigenetic clocks in CHAMACOS 

children (ages 7-14 years, N=290) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CI, confidence interval; MAE, median absolute error. 
 
Correlation coefficients r and 95% CIs from Pearson correlations between chronological age and estimated epigenetic age. 
MAE calculated as the median of the absolute difference between estimated epigenetic age and chronological age. A lower MAE indicates that epigenetic 
age is a better predictor of chronological age. 
Bold: Epigenetic aging measure selected for statistical analyses based on highest correlation with chronological age followed by lowest MAE. 

aSince DNAmTL is an estimator of telomere length which decreases with increasing age, the method with the highest negative correlation with 
chronological age was chosen. 
bGrimAge estimates are not available with the methylCIPHER R package

 
Method 1: methylCIPHER R 

Package1 
Method 2: Clock Foundation 

Online Calculator2 
Method 3: Principal Component-

Based Estimation3,4 

Clock r (95% CI) p-value MAE r (95% CI) p-value MAE r (95% CI) p-value MAE 

Horvath  
0.84 

(0.82, 0.86) 
< 2.2x10-16 2.1 

0.62 
(0.57, 0.66) 

< 2.2x10-16 2.5 
0.84 

(0.81, 0.86) 
< 2.2x10-16 1.5 

Skin & Blood 
0.73 

(0.69, 0.76) 
< 2.2x10-16 2.5 

0.92 
(0.90, 0.93) 

< 2.2x10-16 2.0 
0.81 

(0.78, 0.83) 
< 2.2x10-16 2.6 

Hannum 
0.33 

(0.26, 0.40) 
< 2.2x10-16 6.5 

0.33 
(0.26, 0.40) 

< 2.2x10-16 6.5 
0.78 

(0.74, 0.81) 
< 2.2x10-16 4.1 

PhenoAge 
0.78 

(0.75, 0.81) 
< 2.2x10-16 4.2 

0.70 
(0.66, 0.74) 

< 2.2x10-16 14.3 
0.72 

(0.68, 0.76) 
< 2.2x10-16 14.7 

DNAmTLa -0.57 
(-0.62, -0.51) 

< 2.2x10-16 - 
-0.60 

(-0.65, -0.54) 
< 2.2x10-16 - 

-0.66 
(-0.70, -0.61) 

< 2.2x10-16 - 

GrimAgeb - - - 
0.76 

(0.72, 0.79) 
< 2.2x10-16 5.6 

0.74 
(0.70, 0.77) 

< 2.2x10-16 15.9 
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eTable 4. Sociodemographic characteristics of mother-child pairs included in the 
study by prenatal maternal occupation (N=290). Values represent count (%) or 
mean (SD). 

 

 Agricultural 
field work 

(N=90) 

Other 
agricultural 
work (N=40) 

Non- 
agricultural 
work (N=53) 

Did not work 
(N=107) 

Maternal characteristics 
Age at delivery, years 
Pre-pregnancy BMI, kg/m2 
Highest level of education 

≤ 6th grade 
7th-12th grade 
≥ High school 

Marital status 
Married 

Living as married 
Separated 

Divorced 
Single 

Missing 
Parity 

Nulliparous 
Multiparous 

Country of origin 
USA 

Mexico 
Other 

Years in USA at child’s birth 
≤ 1 year 

2-5 years 
6-10 years 
≥ 11 years 
Entire life 

Poverty status during pregnancy 
At or below poverty line 

Between poverty line and 200% 
>200% poverty line 

Smoking during pregnancy 
No 

Yes 
Alcohol consumption during pregnancy 

No 
Yes 

Missing 
Mean prenatal urinary DAPs, nmol/g creatinine 

Missing, n 
Prenatal wind-weighted kg of OP pesticides 
applied within 1 km of residence 

Missing, n 
Mother’s physical difficulty at the workplace 
during pregnancy 

Not at all strenuous 
Not very strenuous 

Somewhat strenuous 

26.8 (5.1) 26.9 (5.5) 25.8 (5.3) 26.4 (5.1) 

26.8 (4.3) 27.4 (5.9) 27.2 (5.0) 28.0 (6.1) 

50 (55.6) 18 (45.0) 11 (20.8) 49 (45.8) 
30 (33.3) 16 (40.0) 17 (32.1) 39 (36.4) 

10 (11.1) 6 (15.0) 25 (47.2) 19 (17.8) 

42 (46.7) 13 (32.5) 20 (37.7) 58 (54.2) 
30 (33.3) 23 (57.5) 17 (32.1) 35 (32.7) 

5 (5.6) 0 (0.0) 3 (5.7) 3 (2.8) 
0 (0.0) 1 (2.5) 1 (1.9) 3 (2.8) 

13 (14.4) 3 (7.5) 12 (22.6) 7 (6.5) 

0 (0.0) 0 (0.0) 0 (0.0) 1 (0.9) 

24 (26.7) 15 (37.5) 21 (39.6) 35 (32.7) 

66 (73.3) 25 (62.5) 32 (60.4) 72 (67.3) 

1 (1.1) 3 (7.5) 19 (35.8) 10 (9.3) 
89 (98.9) 37 (92.5) 34 (64.2) 94 (87.9) 

0 (0.0) 0 (0.0) 0 (0.0) 3 (2.8) 

18 (20.0) 3 (7.5) 6 (11.3) 25 (23.4) 
30 (33.3) 16 (40.0) 10 (18.9) 25 (23.4) 
33 (36.7) 13 (32.5) 8 (15.1) 32 (29.9) 
9 (10.0) 8 (20.0) 12 (22.6) 16 (15.0) 

0 (0.0) 0 (0.0) 17 (32.1) 9 (8.4) 

62 (68.9) 21 (52.5) 22 (41.5) 74 (69.2) 
24 (26.7) 16 (40.0) 30 (56.6) 30 (28.0) 

4 (4.4) 3 (7.5) 1 (1.9) 3 (2.8) 

88 (97.8) 39 (97.5) 50 (94.3) 102 (95.3) 

2 (2.2) 1 (2.5) 3 (5.7) 5 (4.7) 

70 (77.8) 28 (70.0) 44 (83.0) 79 (73.8) 
20 (22.2) 11 (27.5) 9 (17.0) 27 (25.2) 

0 (0.0) 1 (2.5) 0 (0.0) 1 (0.9) 
253.6 (269.6) 329.7 (412.0) 326.9 (453.0) 281.5 (323.3) 

1 0 0 0 

22.9 (34.4) 12.0 (15.7) 21.0 (43.3) 26.9 (34.8) 

1 0 0 0 

3 (3.3) 7 (17.5) 20 (37.7) 0 (0.0) 
17 (18.9) 7 (17.5) 10 (18.9) 0 (0.0) 
37 (41.1) 12 (30.0) 14 (26.4) 0 (0.0) 
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Very strenuous 
Not applicable 

Missing 
Mean mothers’ hours per day standing on feet 
at workplace during pregnancy 
Mean mothers’ hours per day stooping or 
bending at workplace during pregnancy 
Child characteristics 
Sex 

Female 
Male 

28 (31.1) 6 (15.0) 4 (7.5) 0 (0.0) 
5 (5.6) 7 (17.5) 5 (9.4) 107 (100.0) 

0 (0.0) 1 (2.5) 0 (0.0) 0 (0.0) 

2.7 (2.4) 5.0 (3.0) 3.8 (2.7) N/A 

1.7 (2.1) 0.6 (1.2) 0.8 (1.3) N/A 

 
45 (50.0) 

 
26 (65.0) 

 
25 (47.2) 

 
56 (52.3) 

45 (50.0) 14 (35.0) 28 (52.8) 51 (47.7) 

 
BMI, body mass index; DAP, dialkylphosphate; OP, organophosphate. 
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eTable 5. Comparison of sociodemographic characteristics between included and 
excluded mother-child pairs. Values represent count (%) or mean (SD). 

 

 Initial CHAMACOS 
cohort enrollees 

(N=601)a 

Mother-child pairs 
included in 

analyses (N=290) 

Mother-child pairs 
excluded from 

analyses (N=316) 
Maternal characteristics    

Age at delivery, years 26.0 (5.2) 26.5 (5.2) 25.3 (5.1) 
Missing, n 62 0 62 

Pre-pregnancy BMI, kg/m2 27.0 (5.2) 27.4 (5.4) 26.6 (4.9) 
Missing, n 63 0 63 

Highest level of education    

≤ 6th grade 261 (43.4) 128 (44.1) 136 (43.0) 
7th-12th grade 219 (36.4) 102 (35.2) 118 (37.3) 
≥ High school 120 (20.0) 60 (20.7) 61 (19.3) 

Missing 1 (0.2) 0 (0.0) 1 (0.3) 
Marital status    

Married 271 (45.1) 133 (45.9) 140 (44.3) 
Living as married 210 (34.9) 105 (36.2) 106 (33.5) 

Separated 26 (4.3) 11 (3.8) 15 (4.7) 
Divorced 6 (1.0) 5 (1.7) 1 (0.3) 

Single 86 (14.3) 35 (12.1) 52 (16.5) 
Missing 2 (0.3) 1 (0.3) 2 (0.6) 

Parity    

Nulliparous 211 (35.1) 95 (32.8) 118 (37.3) 
Multiparous 388 (64.6) 195 (67.2) 196 (62.0) 

Missing 2 (0.3) 0 (0.0) 2 (0.6) 
Country of origin    

USA 77 (12.8) 33 (11.4) 44 (13.9) 
Mexico 509 (84.7) 254 (87.6) 260 (82.3) 

Other 14 (2.3) 3 (1.0) 11 (3.5) 

Missing 1 (0.2) 0 (0.0) 1 (0.3) 

Years in USA at child’s birth 
   

≤ 1 year 123 (20.5) 52 (17.9) 71 (22.5) 
2-5 years 174 (29.0) 81 (27.9) 95 (30.1) 

6-10 years 140 (23.3) 86 (29.7) 55 (17.4) 
≥ 11 years 98 (16.3) 45 (15.5) 55 (17.4) 
Entire life 65 (10.8) 26 (9.0) 39 (12.3) 

Missing 1 (0.2) 0 (0.0) 1 (0.3) 
Poverty status during pregnancy    

At or below poverty line 369 (61.4) 179 (61.7) 193 (61.1) 
Between poverty line and 200% 208 (34.6) 100 (34.5) 110 (34.8) 

>200% poverty line 22 (3.7) 11 (3.8) 11 (3.5) 
Missing 2 (0.3) 0 (0.0) 2 (0.6) 

Smoking during pregnancy    

No 565 (94.0) 279 (96.2) 291 (92.1) 
Yes 35 (5.8) 11 (3.8) 24 (7.6) 

Missing 1 (0.2) 0 (0.0) 1 (0.3) 
Alcohol consumption during pregnancy    

No 390 (64.9) 221 (76.2) 172 (54.4) 
Yes 135 (22.5) 67 (23.1) 70 (22.2) 

Missing 76 (12.6) 2 (0.7) 74 (23.4) 
Occupation during pregnancy    

Agricultural field work 162 (27.0) 90 (31.0) 73 (23.1) 
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Other agricultural work 
Non-agricultural work 

Did not work 
Missing 

Mean prenatal urinary DAPs, nmol/g creatinine 
Missing, n 

Prenatal wind-weighted kg of OP pesticides 
applied within 1 km of residence 

Missing, n 
Child characteristics 
Sex 

Female 
Male 

Missing 

80 (13.3) 40 (13.8) 40 (12.7) 
125 (20.8) 53 (18.3) 73 (23.1) 
189 (31.4) 107 (36.9) 85 (26.9) 
45 (7.5) 0 (0.0) 45 (14.2) 

420.7 (2304.9) 287.9 (348.7) 542.6 (3166.1) 

5 1 4 

21.7 (32.5) 22.5 (34.7) 21.0 (29.5) 

70 1 69 

274 (45.2) 152 (52.4) 122 (38.6) 
271 (44.7) 138 (47.6) 133 (42.1) 
61 (10.1) 0 (0.0) 61 (19.3) 

 
BMI, body mass index; DAP, dialkylphosphate; OP, organophosphate. 

 
aFive pregnant participants who were enrolled in the initial CHAMACOS cohort eventually delivered twins. 
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eTable 6. Adjusted associations between prenatal maternal occupation and child 
Horvath EAA by child age compared to children whose mothers did not work 
during pregnancy (ages 7-14 years, N=290) 

 
 β 95% CI p-value 

Intercept -1.83 (-3.72, 0.06) 0.06 

Child age (centered) -0.07 (-0.16, 0.02) 0.14 

Prenatal maternal agricultural field work 0.38 (-0.17, 0.92) 0.17 

Prenatal maternal other agricultural work 0.10 (-0.65, 0.85) 0.79 

Prenatal maternal non-agricultural work -0.29 (-0.96, 0.39) 0.40 

Child age (centered) × prenatal maternal agricultural field work 0.16 (0.02, 0.29) 0.02 

Child age (centered) × prenatal maternal other agricultural work 0.00 (-0.17, 0.18) 0.98 

Child age (centered) × prenatal maternal non-agricultural work 0.08 (-0.08, 0.24) 0.32 

EAA, Epigenetic Age Acceleration; CI, confidence interval; DAP, dialkylphosphate. 
 

Regression coefficients in years and 95% CIs derived from linear mixed effects models with additional 
statistical interaction term between child age and prenatal maternal occupation. 

Adjusted for sociodemographic covariates (maternal age at delivery, pre-pregnancy BMI, baseline 
maternal education, baseline maternal marital status, parity, poverty status during pregnancy, smoking 
and alcohol consumption during pregnancy, and child sex) and prenatal OP pesticide exposure (log10- 
transformed mean prenatal urinary DAP concentrations and log2-transformed kilograms of OP pesticides 
used within 1 kilometer of maternal residence during pregnancy). 
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eFigure 1. Performance of six epigenetic clocks in CHAMACOS children (ages 7-14 years, N=290) 
 

 
 
Pearson correlation coefficient r and median absolute error (MAE) between child chronological age based on birth date and epigenetic age (EA) 
estimated by the (A) Horvath Pan-Tissue, (B) Skin & Blood, (C) Hannum, (D) PhenoAge, (E) DNAmTL, and (F) GrimAge epigenetic clocks. The 
linear trendline and 95% CI are plotted as a solid line with shaded area and the identity line (y = x) is plotted as a dashed line. 
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eFigure 2. Cross-sectional correlations between chronological age and epigenetic age in CHAMACOS children 
 

 
 
Pearson correlation coefficients r between child chronological age and epigenetic age (EA) estimates at (A) age 7 years (N=182), (B) age 9 years 
(N=239), and (C) age 14 years (N=185). *p<0.05; **p<0.01; ***p<0.001. 
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eFigure 3. Adjusted associations between prenatal maternal occupation with 
secondary measures of child EAA and DNmTLadjAge compared to children 
whose mothers did not work during pregnancy (ages 7-14 years, N=290) 

 

EAA, Epigenetic Age Acceleration; CI, confidence interval; DAP, dialkylphosphate. 
 
Regression coefficients in years and 95% CIs derived from linear mixed effects models adjusted for 
sociodemographic covariates (maternal age at delivery, pre-pregnancy BMI, baseline maternal education, 
baseline maternal marital status, parity, poverty status during pregnancy, smoking and alcohol 
consumption during pregnancy, and child sex) and prenatal OP pesticide exposure (log10-transformed 
mean prenatal urinary DAP concentrations and log2-transformed kilograms of OP pesticides used within 1 
kilometer of maternal residence during pregnancy). 

Outcomes: Residuals from models regressing Hannum, PhenoAge, and GrimAge EA on chronological 
age represent epigenetic age acceleration (years). Residuals from models regressing DNAmTL on 
chronological age represent an age-adjusted estimate of DNAmTL (referred to as DNAmTLadjAge) 
measured in kilobases. 
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