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eAppendix 1: Data Quality and Curation of Epigenetic Data in Add Health 
 
1. Purpose 
Add Health (the National Longitudinal Study of Adolescent to Adult Health) is a 
nationally representative cohort study of U.S. adolescents in grades 7-12 in 1994 and 
followed for 25 years across five interview waves1. The Add Health epigenetic data 
were generated from archived blood samples collected in Wave V (2016-18) when the 
cohort was aged 33-44. The purpose of this appendix is to describe the provenance, 
quality control, and curation of the Add Health epigenetic data set.  
 
2. Participant Sampling 
Specimens were collected as part of the Wave V biomarker visit. After participation in 
the Wave V survey, respondents are visited by a field examiner/phlebotomist to collect 
physical measures, biological specimens, and a medications inventory. Venous blood 
(10 mL serum + 10 mL EDTA + 3 mL EDTA + 6 mL potassium oxalate / sodium fluoride 
+ PAXgene sample), was collected via conventional phlebotomy, promptly centrifuged 
in the field, and securely shipped to the Laboratory for Clinical Biochemistry Research 
(LCBR) in Vermont for re-centrifugation, aliquoting, biomarker assay, and archival 
storage.2 Archived blood samples were analyzed, cleaned and curated during 2021-
2024 to generate the epigenome data as described below. The methylation subsample 
included 4,582 young adults with diverse social, biological, environmental, and 
behavioral longitudinal data from birth, GWAS, transcriptome, and biomarker data. 
 
3. Bisulfite arrays 
DNA was extracted from blood samples stored at the LCBR laboratory and quantified 
and quality checked using the PicoGreen dsDNA kit from Thermofisher and the 
Synergy4 fluorometer before being sent to the Human Genetics Center Core Laboratory 
at the University of Texas Health Science Center at the University of Texas, Houston 
(UT Houston) for methylation analysis using the Illumina Infinium chemistry. The quality 
of DNA was determined by gel electrophoresis and 500 nanograms of the DNA were 
subjected to bisulfite conversion using the EZ-96 DNAm Kit (Zymo Research 
Corporation; Irvine, CA, USA). DNAm levels across ~850,000 sites were measured 
using the Infinium MethylationEPIC BeadChip (Illumina, Inc.; San Diego, CA). Each 
plate included control samples, including one positive control (Universal Methylated 
Human DNA Standard; Zymo Research Corporation; Irvine, CA, USA), one negative 
control, which is human DNA that has been whole genome amplified with phi29 DNA 
polymerase to create an unmethylated control, and replicates that allow for evaluation of 
the consistency of DNAm measurements at individual CpG sites. The resulting data 
from the chip was read into idat files that indicate the green and red wavelength 
fluorescence intensity at each site on the EPIC chip and transmitted as data matrices 
from the UT Houston laboratory to Add Health personnel. 
 
4. Post data collection analysis 

https://sciwheel.com/work/citation?ids=7729549&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=15804118&pre=&suf=&sa=0&dbf=0
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This cartoon shows the interconversions and functions that transform the various data 
sets that are described here. 
 
4.1 RGChannelSet 
The Minfi R bioconductor package was used to generate summarized experiment 
objects from the red and green fluorescence intensity matrices provided by the 
laboratory. The first data transformation included the creation of an RGChannelSet 
object using the following R code: 
 
library(minfi) 
library(IlluminaHumanMethylationEPICmanifest) 
library(IlluminaHumanMethylationEPICanno.ilm10b4.hg19) 
load('~/epigenetics1/fromUTH/EPIC.methylumi.minfi.RData') 
green = rawSet@assays@data@listData$Green 
red = rawSet@assays@data@listData$Red 
annotation = annotation(rawSet) 
rgset=RGChannelSet(Green=green, Red=red, annotation=annotation) 
 
This object contains the following manifest metadata: 
 
IlluminaMethylationManifest object 
Annotation 
  array: IlluminaHumanMethylationEPIC 
Number of type I probes: 142262 
Number of type II probes: 724574 
Number of control probes: 635 
Number of SNP type I probes: 21 
Number of SNP type II probes: 38 
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Additionally, the metadata for this summarized object is as follows: 
 
class: RGChannelSet 
dim: 1051539 2022 
metadata(0): 
assays(2): Green Red 
rownames(1051539): 1600101 1600111 ... 99810990 99810992 
rowData names(0): 
colnames(2022): 204068280089_R03C01 204068280089_R04C01 ... 
  204074220145_R02C01 204073570043_R04C01 
colData names(0): 
Annotation 
  array: IlluminaHumanMethylationEPIC 
  annotation: ilm10b4.hg19 
 
4.2 Methylset 
The rgset object was then converted to a methyset object that contains the 
unmethylated to methylated signals for each participant at each site. Further, this 
implements a background subtraction method that estimates background noise from the 
out-of-band probes and remove it for each sample separately, while the dye-bias 
normalization utilizes a subset of the control probes to estimate the dye bias. The mset 
object was generated using the following R code: 
 
mset = preprocessNoob(rgset) 
 
The mset object metadata is as follows: 
 
class: MethylSet 
dim: 865859 2022 
metadata(0): 
assays(2): Meth Unmeth 
rownames(865859): cg18478105 cg09835024 ... cg10633746 cg12623625 
rowData names(0): 
colnames(2022): 204068280089_R03C01 204068280089_R04C01 ... 
  204074220145_R02C01 204073570043_R04C01 
colData names(0): 
Annotation 
  array: IlluminaHumanMethylationEPIC 
  annotation: ilm10b4.hg19 
Preprocessing 
  Method: NA 
  minfi version: NA 
  Manifest version: NA 
 
4.3 Genomic RatioSet 
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The mset object was converted to a genomic ratioset which may be used to extract 
betas, copy number, and m values. The function preprocessFunnorm implements a 
functional normalization algorithm that uses the internal control probes to infer between-
array technical variation. By default, preprocessFunnorm applies the preprocessNoob 
function as a first step for background subtraction and uses the first two principal 
components of the control probes to infer the unwanted variation. This process maps 
the methylation signals to the genome and is implemented using the following R code: 
 
grset =  preprocessFunnorm(rgset) 
 
The grset object metadata is as follows: 
 
class: GenomicRatioSet 
dim: 865859 2022 
metadata(0): 
assays(2): Beta CN 
rownames(865859): cg14817997 cg26928153 ... cg07587934 cg16855331 
rowData names(0): 
colnames(2022): 204068280089_R03C01 204068280089_R04C01 ... 
  204074220145_R02C01 204073570043_R04C01 
colData names(3): xMed yMed predictedSex 
Annotation 
  array: IlluminaHumanMethylationEPIC 
  annotation: ilm10b4.hg19 
Preprocessing 
  Method: NA 
  minfi version: NA 
  Manifest version: NA 
 
The betas, copy number (cn), and m values are extracted from the grset object. Some 
of the CpG sites overlap with short nucleotide polymorphisms and must be censored 
prior to betas, cn, and m value generation. This is done using the following R code: 
 
grset = dropLociWithSnps(grset, snps=c("SBE","CpG"), maf=0) 
beta = getBeta(grset) 
m = getM(grset) 
cn = getCN(grset) 
 
4.4 Quality Control 
 
4.4.1 Intensity plot 
The Minfi package contains a standardized set of quality control analysis functions. The 
first of these functions determines if there exists an imbalance in the fluorescence 
intensity between methylated and unmethylated sites for any individual in the dataset. 
This was conducted using the following R code and resulted in the following plot: 
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qc = getQC(mset) 
plot(qc) 
 

This indicates that there are 5 individuals who must be flagged because their signal 
intensities were below the expected rates and represent possible outliers.  
 
4.4.2 Density plot 
The second Minfi quality control function generates a density plot which analyzes if any 
of the samples have high levels of hemimethylation, that is, partially methylated sites. 
This density plot is produced using the following R code and generates the following 
plot: 
 
densityPlot(mset) 

This output indicates there were no samples with an intermediate level of methylation 
and instead two clear peaks: one for unmethylated signal and one for methylated signal.  
 
4.4.3 Control Strip Plot 
This array contains several internal control probes that can be used to assess the 
quality control of different sample preparation steps (bisulfite conversion, hybridization, 
etc.). The values of these control probes are stored in the initial RGChannelSet and can 
be plotted by using the function controlStripPlot and by specifying the control probe 
type. This is shown for bisulfite conversion using the following R code and generates 
the following plot: 
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controlStripPlot(rgset, controls="BISULFITE CONVERSION II") 

This output demonstrates that there are no outlier samples that have particularly high or 
low signal intensity for the green and red channels. 
 
4.4.4 Sex check 
An analysis of the signal intensity of sites on the X and Y sex chromosomes was 
completed and compared to recorded survey information about sex at birth. This 
analysis was completed using the following R code: 
 
predictedSex = getSex(grset, cutoff = -2)$predictedSex 
 
6 individuals were inconsistent between recorded survey responses about sex at birth 
and predictedSex and were censored from further analysis. 
 
4.4.5 Multidimensional scaling 
The 50000 most variable CpG sites were selected and a multidimensional analysis was 
conducted to identify outlier individuals. As expected, the most variable sites were 
primarily in the sex chromosomes and thus clustered males and females separately. 
The resulting plot is as follows: 

The absence of any obvious outliers and the clear clustering of males and females 
necessitated no more censoring of individuals. 
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5 Samples and Replicates 
 
5.1 Technical replicates 
There were multiple types of embedded controls represented in this data set. The first 
type of embedded control was technical replicates. These were samples that were 
analyzed on separate chips but arose from the same sample. There were 51 such 
samples. The correlation between these samples was analyzed by Spearman rank 
correlation and presented for batch 1 in the following figure: 

The red indicates samples compared to themselves, which, has a correlation measure 
of 1.0. The green indicates all comparisons between each of the 51 samples except for 
paired matches. Finally, blue indicates the correlation of paired samples. While the 
correlation rates were high for all samples, the correlation between the samples and 
their paired mate from a different chip were measurably higher and thus provided 
confidence that the inter-array variability was low. 
 
5.2 Biological replicates 
The second type of replicates present in this data set were biological replicates taken 
from the same participant one week apart. There may be some small changes in 
methylation patterns at this time scale but they should be swamped by the differences 
that exist between individuals. There were 200 such samples. The correlation between 
the first sample and the sample taken one week later as expressed in Spearman rank 
correlation values for batch1 are as follows: 



© 2024 Harris KM et al. JAMA Network Open. 

 
The red indicates samples compared to themselves, with a correlation measure of 1.0. 
The green indicates all comparisons between independent samples excluding paired 
matches. Finally, blue indicates the correlation of paired samples. While the correlation 
rates were high for all samples, the correlation between the samples and their paired 
mate from one week later were measurably higher and thus provided confidence that 
the variability in the signal was more related to inter individual differences than technical 
or chronological variability. 
 
6. EPIC 850K Chip 
The chip used to generate the data in this dataset is the Illumina EPIC 850K which 
contains 866,836 epigenetic markers including CpG sites, DNase hypersensitivity 
regions, SNPs, and various other probe sets. The sites covered by probes on this chip 
include all autosomes and both sex chromosomes. These sites include most of the sites 
from other common methylation arrays including the 450K chip as well as 350,000 new 
probes covering sites annotated by the Fantom5 and ENCODE projects as being 
important regulatory sites. There are two types of probe sets included in this dataset; 
type I probes have two separate probe sequences per CpG site (one each for 
methylated and unmethylated CpGs), whereas type 2 probe sets have just one probe 
sequence per CpG site. Type 2 probe sets are preferred because of their simplicity but 
type I probes are retained because they can distinguish methylation in denser regions of 
CpG sites. Importantly, with the addition of many more probes over previous chips, 
there is evidence of cross hybridization of some probe sets to related sequences 
elsewhere in the genome, and these require censoring as described later. Additionally, 
some probe sets fail to detect their targets at all and must be censored.  
 
7. Site Filtering 
The initial number of probe sets present in this data set reflect over 850,000 sites in the 
genome but not all are suitable for use in determining epigenetic age, allostatic load, or 
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differential methylation. Some of these non-suitable sites include SNPs which may 
include methylation in some participants but not others as a byproduct of their 
nucleotide sequence. Therefore, all CpG sites overlapping with a SNP were censored 
from analysis using the following code in R: 
 
dropLociWithSnps(grset, snps=c("SBE","CpG"), maf=0) 
 
Further, some of the probes failed to detect signals for enough participants and were 
also censored. This was achieved using the following code in R: 
 
detectionP(rgset, type = "m+u") 
 
Finally, there is evidence of cross hybridization of some of the probe sets with other 
sites in the genome. Usage of these probes would complicate interpretation and they 
were also removed. The 43,000 sites identified as containing cross reactive 
probes3were censored from the final data set. 
 
8. Sample filtering 
There were 4734 samples initially analyzed for methylation patterns but several 
samples were removed for quality control purposes. Individual samples were removed 
for 3 reasons. Any individuals failing the sex check were removed from further analysis, 
resulting in the censoring of 1 individual. Individuals with low signal intensity from the 
intensity plot were flagged but not removed (n=5). Lastly, individuals with low sample 
volumes or concentrations such that the bisulfite conversion was impossible were not 
assayed. Additionally, technical and biological replicate samples were removed from the 
final dataset yielding 4582 samples. 
 

 
 
9. Batch Correction and Surrogate Variable Adjustments 
The R package ComBat was used to correct for batch and the 3 batches were 
concatenated.  
 
 
 
 
 

https://sciwheel.com/work/citation?ids=2244292&pre=&suf=&sa=0&dbf=0
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10. Epigenetic Age Generation 
Background subtracted beta values derived from the ratioset object were used with the 
Horvath epigenetic age clock to generate an estimated epigenetic age for each 
participant. The data sets were restricted to a set of 30,484 CpG sites that were relevant 
for the calculator and the identifier values were dummy coded to maintain data security. 
Finally, the data was converted to csv with Windows line endings, chunked into groups 
of 250 individuals, and submitted in batches to the Horvath calculator found at 
http://dnamage.genetics.ucla.edu/new and used with the methylCIPHER algorithm 4 
https://github.com/MorganLevineLab/methylCIPHER and Dunedin calculators5,6 to 
generate the epigenetic clocks.  
 
Construction of the PC clocks required an expanded set of 78,464 CpGs, of which 1400 
were missing from the processed Add Health betas. Missing CpGs were imputed in R 
using mean values from GSE40269 7 according to the Levine lab code at 
https:hub.com/ MorganLevineLab/PC-Clocks/, and the PCs and clocks were then 
constructed using code from the same repository.  
 
11. Sample Cell Counts 
When a complex tissue such as whole blood is used as a sample, it is important to 
account for the potential differences in cell types between samples. The Minfi R 
package was used to calculate the relative amounts of each cell type present in the 
sample using the following R code: 
 
cellcounts = estimateCellCounts(rgset, compositeCellType = "Blood") 
 
The function analyzes CpG sites whose methylation patterns associate with one of 
several immune cell subsets including  "Bcell", "CD4T", "CD8T", "Granulocytes", 
"Monocytes", and "Natural Killer Cells". The resulting values for everyone are stored as 
relative amounts adding up to 1 for everyone.  
 
The resulting values are shown as follows: 

http://dnamage.genetics.ucla.edu/new
https://sciwheel.com/work/citation?ids=14292923&pre=&suf=&sa=0&dbf=0
https://github.com/MorganLevineLab/methylCIPHER
https://sciwheel.com/work/citation?ids=8908805,12408208&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=45168&pre=&suf=&sa=0&dbf=0
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eAppendix 2: Description of Epigenetic Clock Measures 
 
First Generation Clocks 
 
Horvath 1  
Horvath 1 is a first-generation epigenetic clock developed in 2013.1 This clock was 
trained in 8,000 samples arising from 82 methylation array datasets, collectively 
representing 51 healthy tissues and cell types. The clock is calculated from weighted 
DNA methylation at 353 CpGs present in genes related to cellular survival, proliferation, 
and tissue development.  
 
Horvath 1 shows strong correlation with chronological age (r=0.96-0.97). This signature 
is close to 0 for embryonic and pluripotent stem cells and increases with cycles of 
cellular replication. In 6,000 samples from cancerous tissues, Horvath 1 demonstrated 
substantial increases in biological age acceleration, averaging several decades older 
than control samples.  
 
Horvath 2 
This epigenetic clock, calculated from weighted methylation values at 391 CpGs, better 
measures the age of human fibroblasts and other skin cells such as keratinocytes, 
buccal cells, endothelial cells, lymphoblastoid cells, skin, blood, and saliva samples 
compared to its predecessor.2 The improved clock correlates with chronological age in 
neurons, glia, brain, liver and bone samples. In contrast to the Horvath 1 signature, 
Horvath 2 predicts biological age acceleration in pathologies related to progeria such as 
Werner Syndrome. This signature was trained on epigenetic datasets from 10 studies in 
which the participants had median ages of 0-69 years old. 
 
This clock shares 45 CpGs with the blood-based clock from Hannum3 and 60 CpGs with 
Horvath 1; however, the age acceleration only shows moderate correlations with these 
two other clocks.  Horvath 2 correlates well with cellular passage number but does not 
show any relationship with telomere length in blood samples. 
 
Hannum  
Hannum’s epigenetic clock is a blood-based age estimator, calculated from weighted 
DNA methylation at 71 CpGs.3 Hannum et al. developed this clock based on the whole 
blood of 656 humans at ages 19 to 101 at UCSF, USC, and West China Hospital. 
Hannum shows a strong correlation with chronological age (r=0.96) and the rate of 
DNAm aging is influenced by gender and genetic variants including meQTLs.  While this 
signature was trained on blood samples, it also performs well in breast, kidney, lung and 
skin samples. Hannum also correlates with gene expression of age-related genes 
including those involved in developmental biology and DNA repair pathways. 
 
 
VidalBralo 
The Vidal-Bralo et al. clock4 is calculated from weighted methylation values of 8 CpGs, 
that were selected as the most informative CpGs in a training set of whole blood 

https://sciwheel.com/work/citation?ids=30669&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5074050&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=45168&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=45168&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5555659&pre=&suf=&sa=0&dbf=0
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samples from 390 healthy individuals from the United Kingdom Ovarian Cancer Study, 
Human Aging-associated DNA Hypermethylation at Bivalent Chromatin Domains 
dataset, and Genome-wide Analysis of Autosomal Sex Differences in Human DNA 
Methylome dataset. The training population for this signature included individuals aged 
20-78 with a mean age of 61.2. Importantly, 96.7% of the training set participants were 
female. This clock targeted older adults to calibrate DNAm age more accurately among 
adults compared to pre-adolescents. Results were not significantly influenced by sex, 
smoking, or variation in blood cell subpopulations. The Vidal-Bralo signature correlates 
with Horvath 1, Hannum, and Weidner signatures. 
 
Zhang2019 
The Zhang epigenetic clock was constructed from 12,661 blood and saliva samples 
from the Lothian Birth Cohort of 1921 and 1936 Study.5 The training set population for 
this signature had a mean age of 86 (Wave 3) when blood was collected. The signature 
is comprised of 514 CpG probes identified by an elastic net regression on chronological 
age. While this clock predicts a biological age that correlates with chronological age, it 
does not correlate with all-cause mortality in validations using subsets of the training 
population.  
 
 
Second Generation Clocks 
 
Lin 
The Lin epigenetic clock measures a relative risk of all-cause mortality.6 This 99 CpG 
model was originally trained on DNAm profiles of normal blood samples (n=446) with 
mortality data from the Lothian Birth Cohort 1921 Study. The mean age for participants 
in the training dataset was 79 years old and the authors note that it systematically 
overinflates the ages of younger samples. This signature correlates with chronological 
age and is associated with malignancy of tumor cells. This signature also correlates with 
telomere length. 
 
PhenoAge 
The PhenoAge clock predicts a phenotypic age trained on 9 clinical biomarkers 
(albumin, creatinine, serum glucose, CRP, lymphocyte percent, mean red cell volume, 
red cell distribution width, alkaline phosphatase, white blood cell count) which estimates 
an individual’s mortality risk.7 The PhenoAge clock is calculated from weighted 
methylation values at 513 CpGs in whole blood and was trained in the NHANES III 
study of individuals >=20 years old (n=9926). Levine et al. found that this clock 
correlated with age and predicted mortality better than first generation clocks. 
PhenoAge predicts risk of multiple aging outcomes such as mortality, cancer, 
healthspan, physical function and Alzheimer’s disease and shows high correlation with 
biomarkers such as high CRP, glucose, triglycerides waist-to-hip ratio and low HDL 
cholesterol. PhenoAge was validated on data from several studies including NHANES 
IV, InCHIANTI, Jackson Heart Study, Women’s Health Initiative, Framingham Heart 
Study, and the Normative Aging Study.  
 

https://sciwheel.com/work/citation?ids=14813422&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5555612&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5151399&pre=&suf=&sa=0&dbf=0
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GrimAge 
GrimAge predicts a phenotypic age trained on 7 surrogates of plasma proteins and 
smoking pack years.8 First, authors defined surrogate biomarkers of physiological risk 
and stress factors with plasma proteins (including adrenomedullin, CRP, plasminogen 
activation inhibitor 1 (PAI-1) and growth differentiation factor 15 (GDF15)) and DNAm-
based estimator of smoking pack-years. Then, time-to-death was regressed on these 
biomarkers and an estimator of smoking years to estimate a composite biomarker of 
lifespan. Lu et al. report that the rate of GrimAge-based aging has predictive ability for 
time to death, coronary heart disease, cancer and age-related conditions. The training 
data for this signature comes from the Framingham Heart Study including n=2356 
individuals with mean ages of 66 years. 1030 CpGs associate with the 7 composite 
scores. This signature was validated on n=7375 participants from Inchianti, JHS, WHI 
and FHS. The signature is robust to adjustment for bmi, education, alcohol, smoking, 
diabetes, cancer, and hypertension. However, it fails to correlate with telomere length. 
 
 
PC Clocks 
 
There are many potential sources of technical variation in CpG beta values on which 

epigenetic clocks are based, leading to low reliability of CpG beta values (or M values), 

which can result in low intraclass correlation coefficients (ICCs) for epigenetic clock 

values in replicate samples. In an effort to increase the epigenetic aging signal to 

technical noise ratio of frequently used clocks, Higgins-Chen and colleagues retrained 

the Hannum, Horvath1, Horvath2, GrimAge, and PhenoAge clocks on PCs of CpG 

methylation values rather than on individual CpGs.9 This hypothetically increases the 

number of CpGs contributing to an epigenetic age calculation, thus reducing the effects 

of technical noise at any given individual CpG.  

A unique set of methylation PCs was calculated for each clock, starting with a standard 

set of 78,464 CpGs that overlap across all original training datasets for the clocks and 

that are present on both the 450K and EPIC arrays (see supplementary table 6 of 

Higgins-Chen et al for details). PCA on the separate training datasets resulted in 655 

PCs for Hannum, 4,280 PCs for Horvath1, 894 PCs for Horvath2, 3,934 PCs for 

GrimAge, and 4,504 PCs for PhenoAge. Elastic net regression was then used to train 

these PCs to predict either the original training target (for PCPhenoAge, which was 

trained on the same phenotypic age biomarker score used by Levine et al) or the 

original epigenetic clock age (for PC Hannum, PC Horvath 1, PC Horvath 2, and PC 

GrimAge) if complete training data from the original clock was not available. Thus, the 

PC versions of these clocks predict the same outcomes (chronological age, biological 

age, mortality, etc.) as their non-PC clocks. Elastic net regression retained 390 PCs for 

PCHannum, 121 PCs for PCHorvath1, 140 PCs for PCHorvath2, 1,936 PCs for 

PCGrimAge, and 652 PCs for PCPhenoAge. All PC clocks were subsequently validated 

in independent testing datasets and showed high correlation with the original clocks in 

training and testing datasets. The PC clocks were also tested on technical replicates 

https://sciwheel.com/work/citation?ids=7596871&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13337287&pre=&suf=&sa=0&dbf=0
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and show improved ICC values compared to their original (non-PC) clocks for both 

clock ages and age acceleration (clock age regressed on chronological age).  

PC Hannum, PCHorvath1, PCHorvath2, PCGrimAge, and PCPhenoAge were 

calculated in R using code available on GitHub at https://github.com/ 

MorganLevineLab/PC-Clocks/. 

 
 
Third Generation Clocks 
 
DunedinPoAm 
The DunedinPoAm epigenetic signature measures the pace of aging.10 This signature 
modeled the change over time of 18 biomarkers of organ system dysfunction in n=954 
participants of the Dunedin Study. The age of the mostly White participants in this 
training set was 26 years old at the time of the first blood collection and 38 years at the 
time of the second blood collection. An elastic net regression was used to compute 
weights for 46 CpGs. The signature correlates modestly with Horvath, PhenoAge, and 
Hannum signatures but outperforms all of them as a proxy of self-rated health. The 
signature is Z-scaled such that the mean value of the analytical sample set is 0 and 
negative values indicate a reduced rate of aging compared to positive values. 
 
DunedinPACE 
The DunedinPACE epigenetic signature updates the DunedinPoAm epigenetic 
signature using the same approach, but this iteration includes 19 indicators of organ 
system integrity at 4 time points including a timepoint in which the oldest participants 
are 45 years old.11 DunedinPACE correlates with the DunedinPoAm (r = 0.57). This 
signature shows robust ability for replication. Like the DunedinPoAm signature, this 
signature is Z scaled such that negative values indicate slowed aging. 
 
Zhang2017 
Zhang et al. epigenetic signature is based on 10 CpGs that showed a strong association 
with all-cause mortality,12 which was selected from replicated results (58 out of 11,063 
CpGs with FDR<0.05) from an epigenome-wide association study (EWAS) for all-cause 
mortality. This epigenetic signature specifically identifies those with increased risk of 
death by cancer and cardiovascular disease. The training set for this signature comes 
from the ESTHER study and includes 406 deceased participants with blood sampled at 
ages 50-75 years old. Although Zhang2017 may not strictly constitute a third generation 
of epigenetic clock, we group presentation of results for this clock with DunedinPoAm 
and DunedinPACE because, similar to those clocks, its unit of measurement is not 
epigenetic age in years, but rather, in this case, the risk of mortality.  
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eAppendix 3: Sociodemographic and Lifestyle measures 
  
Fixed demographic characteristics come from Wave I (race or ethnicity, sex, and 
immigrant status) whereas other sociodemographic and lifestyle covariates measured at 
the time blood was collected for DNAm analysis come from Wave V (e.g. education, 
income, region of residence, rural/urban residence, obesity, tobacco use, alcohol use).  
 
Age at blood draw was calculated in years based on birth year (collected and validated 
across all waves of data) and calendar month and year of the in-home exam in Wave V 
when venous blood was drawn for methylation data. Sex assigned at birth was reported 
at Wave I but also cross-checked and validated across all Add Health waves of data.  
 
Race or ethnicity was self-identified by participants at Waves I and V (to fill in for 
missing values). At Wave V race or ethnicity was asked in one question (e.g., What is 
your race or ethnic origin?). At Wave I race or ethnic origin is derived from two 
questions (Are you of Hispanic or Latino origin?; all those who indicate they are 
Hispanic are categorized as Hispanic and then race is assigned based on second 
question, What is your race?). We use Wave V race or ethnicity but fill in the few 
missing with Wave I reports. Participants may check multiple identities and those that 
do are then asked to report the race or ethnicity with which they most strongly identify, 
including Asian, Black, Hispanic, American Indian or Alaska Native, Other, Pacific 
Islander, or White. Participants who responded as “Other” did not identify with any race 
or ethnic categories or identified as multi-racial only. Although we display the full 
distribution on race or ethnicity in eTable 1, small sample sizes and the risk of deductive 
disclosure (per contractual agreement with Add Health) required us to combine Pacific 
Islander with Asian and American Indian or Alaska Native with the “other” category” in 
the manuscript tables.  
 
Immigrant generation was determined at Wave I based on the participant and their 
parent surveys. Generation 1 are those who were foreign-born with foreign-born 
parents; generation 2 are those who were U.S.-born with one or two foreign-born 
parents; and generation 3+ are those who were U.S.-born with both U.S.-born parents.  
 
We used categorical responses to the Wave V survey question on the highest level of 
education and collapsed further into three categories of college or more; some college; 
and no college. Participants were asked what their total household income was before 
taxes and deductions in the last calendar year for all household members who 
contribute to household expenses; responses categories were provided in 13 brackets 
to reduce non-response. We further collapsed categories into the following four income 
levels: over $100,000; $49,999-$100,000; $24,999-$50,000; and $25,000 or less. The 
census region in which the participant lived at Wave V was coded from their address 
(Northeast, West, Midwest, South). Rural/urban residence patterns were derived from 
Wave V Contextual data based on the “Rural Urban Commuting Area” (RUCA) codes 
from 2010. Three mutually exclusive categories were constructed from participants’ 
description of the area in which their residence was located: metropolitan; micropolitan, 
small town or rural. 
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Bouts of exercise per week were determined from five items in the Wave V survey that 
inquired about the number of times in the past week the participant performed the 
following forms of exercise respectively, aerobic activities, bicycling, gym activities, 
individual sports, or golf. The number of each of these types of activity was summed 
and categorized as: 0, 1-4 times per week, or 5+ times per week. At Wave V 
participants were asked whether they had ever smoked and whether they were current 
smokers. From these questions we categorized tobacco use as never; former and 
current. To categorize participants according to their usage of alcohol at Wave V, we 
first used the question whether they had ever drank alcohol, and if they answered that 
they had not, they were categorized as “None”. If participants said that they had ever 
drank, we then used questions on the number of days drank last month, days drank last 
year, and frequency of binge-drinking.  If the participant engaged in binge drinking in the 
last year or had reported drinking daily in the last month or last year, they were 
categorized as “Heavy/Binge” and all other participants that drank less than daily and 
did not binge drink were categorized as “Light”. 
 
We constructed our measure of obesity status based on body mass index (BMI) 
constructed from measure height and weight at Wave V in the in-home exam. At Wave 
V, field staff measured height in cm from shoeless participants standing on uncarpeted 
floors and recorded weight to the nearest 0.1 kg. BMI was computed as kg/m2 and 
categorized obesity status as normal or underweight (BMI<25); overweight 
(25≤BMI<30), obese (30≤BMI<40), and severely obese (BMI≥40).13,14  
 
Overall, there were few missing values on the sociodemographic and lifestyle 
characteristics. Those covariates with missing values included Wave V income (N=54), 
Wave I immigrant generation (N=60), Wave V obesity status (N=34), Wave V smoker 
status (N=27), Wave V alcohol use (N=12), and Wave V education (N=1) (there is some 
overlap such that some participants have multiple covariates with missing values). In an 
analysis (not shown) we compared the sample statistics for the epigenetic clock 
measures in the analytic sample (which drops those missing on covariates, N=4237) 
with the sample statistics for the complete epigenetic sample (N=4564.The results 
indicated that the mean, SD, and Pearson correlation estimates were nearly identical 
and where there are any differences, they were within .1-.2 decimal points.   
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4. eMethods 
 
We use “sampling weights” in all analyses as recommended by the Add Health study to 
adjust for 1) unequal probabilities (oversampling) of selection into the sample according 
to specific individual characteristics as defined by the Add Health design (e.g., race and 
ethnicity, disability status, genetic relationship to siblings, etc.) and 2) differential attrition 
over time.1-3 Add Health recommends using sampling weights in all analyses to produce 
representative estimates of the U.S. population of adolescents in grades 7-12 in 1994 
who are followed through young adulthood to ages 33-43 in 2016-18 (i.e., Wave V)—the 
national population that Add Health represents. 
 
Like all prospective longitudinal studies, Add Health has experienced attrition from the 
original Wave I sample over the past 25 years.4 In addition, the epigenetic sample is a 
subsample of the Wave V sample in which participants consented to an in-home 
physical exam and blood draw. To address whether the Wave V and epigenetic 
samples represent the same national population in Add Health that was originally 
sampled at Wave I, we compared the weighted distribution of respondents at Wave I, 
Wave V full sample, and Wave V Epigenetic sample according to their demographic 
characteristics at Wave I (sex, race/ethnicity, and immigrant status) (eTable 1). This 
analysis shows the N of participants and the weighted distribution on Wave I 
characteristics in each wave and subsample. The sampling weights adjust for the 
complex sampling design and differential attrition across waves/samples and ensure 
that bias is not introduced into parameter estimates in all analyses.  
 
Results show that while there is some attrition according to factors for which attrition is 
commonly found in most studies (e.g., minoritized racial or ethnic identities, males, and 
native-born)4, the weighted percentage distribution by race/ethnicity, sex, and immigrant 
status are relatively similar across these samples. The Wave V sample and Wave V 
epigenetic sample have slightly more White participants (1.5% and 2.7%, respectively) 
than the Wave I sample. Common to most surveys, males have higher attrition rates, 
though the differences are also quite minor (at most, a 2% point difference). Attrition is 
also higher among the foreign-born population who often return to their country of origin, 
but even there, the distribution is only different in the epigenetic sample by 1% point. 
These results match Add Health’s relatively high response rates, low attrition, and 
findings of minimal bias associated with attrition.1  For more information regarding the 
Wave V sample design and sampling weights see Harris et al. (2019).2 
 
We use regression models to estimate the weighted associations of sociodemographic 
and lifestyle characteristics with the various epigenetic clocks. To confirm the 
appropriateness of regression parameterization, we examined the univariate percentile 
distribution of the various clock outcomes (eTable 2). These distributions suggest a 
normal distribution assumption of the clock outcomes is relatively valid and justifies our 
use of regression models, especially for our main outcomes, the accelerated and rates 
of biological aging measures, as well as the risk of mortality. As described above in 
eAppendix 2 (Description of Epigenetic Clock Measures) and shown in Table 1 and 
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eTable 2, different algorithms produce quite different predicted ages, resulting in 
different “accelerations.”  
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eFigure. Bivariate associations between epigenetic age associations and 

sociodemographic covariates.
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eTable 1. Add Health sample distribution of demographic characteristics at Wave I, 
Wave V full sample, and Wave V Epigenetic sample. 

 
Wave I (N=18,924)a Wave V (N=11,718)b 

Wave V Epigenetic 
sample (N=4237)c 

WI variable N Weighted 
% 

N Weighted 
% 

N Weighted 
% 

       

Race or ethnicity       

     Amer Indian or 
     Alaska Native  233 1.11 100 0.897 17 0.58 

     Asian 1265 3.47 666 3.27 195 2.48 

     Black 4080 16.00 2323 15.92 811 16.75 

     Hispanic 2930 10.60 1452 9.39 435 8.70 

     Otherd 68 0.23 48 0.34 10 0.26 

     Pacific 
     Islander 97 0.26 97 0.46 23 0.26 

     White 10251 68.23 7032 69.71 2746 70.97 

       

Sex       

     Male 9290 50.92 5103 50.39 1671 48.83 

     Female 9634 49.08 6615 49.61 2566 51.17 

       

Immigrant Gene       

     First 1561 5.66 770 5.15 200 4.36 

     Second 2795 10.75 1624 10.68 551 9.96 

     ≥Third 14317 83.59 9178 84.17 3486 85.68 

Notes:  

a Weighted with Wave I sampling weights (participants missing sampling weights 

excluded, N=1821). 

b Weighted with Wave V sampling weights. 

c Weighted with Wave V biosample weights. 

d The other category for race or ethnicity includes participants who identified as 

American Indian or Alaska Native or who checked some other race or origin. 

e There were 252 missing on immigrant generation at Wave I and 152 missing on 

immigrant generation at Wave V. 
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eTable 2. Univariate Statistics for DNA Methylation Epigenetic Clocks 
(N=4237) 

Type of Measure Measure 10% 25% 50% 75% 90% 

Chronological 
Age* 

Years of Age 
35.9 37.0 38.5 39.9 40.9 

       

Clocks Horvath1 33.7 36.3 39.1 42.0 44.6 

(years) Horvath2 31.1 33.2 35.4 37.6 39.8 

 Hannum 26.6 28.8 31.5 34.0 36.2 

 PhenoAge 22.8 26.3 30.1 33.8 37.3 

 GrimAge 47.1 49.1 51.6 54.7 58.5 

 Lin 17.0 20.0 23.3 26.6 29.8 

 VidalBralo 50.5 52.5 54.7 57.1 59.4 

 Zhang2019 26.9 29.3 32.0 34.5 37.0 

       

PC Clocks PCHorvath1 40.4 42.7 45.1 47.6 49.9 

(years) PCHorvath2 35.9 38.6 41.2 44.0 46.3 

 PCHannum 41.1 43.5 46.1 48.6 50.8 

 PCPhenoAge 34.5 37.6 40.9 44.3 47.9 

 PCGrimAge 50.0 51.8 53.9 56.3 59.4 

       

Age Acceleration Horvath1AA -4.5 -1.7 0.0 1.6 4.1 

(years) Horvath2AA -3.1 -1.2 0.0 1.1 3.1 

 HannumAA -4.0 -1.7 -0.1 1.5 4.0 

 PhenoAgeAA -6.0 -2.4 0.0 2.2 6.0 

 GrimAgeAA -4.6 -2.4 -0.5 1.1 4.9 

 LinAA -5.6 -2.0 0.1 2.1 5.3 

 VidalBraloAA -3.8 -1.6 -0.1 1.3 3.8 

 Zhang2019AA -3.4 -1.5 -0.1 1.3 3.3 

       

PC Age 
Acceleration 

PCHorvath1AA 
-3.9 -1.6 -0.1 1.4 3.7 

(years) PCHorvath2AA -4.4 -1.7 0.0 1.7 4.2 

 PCHannumAA -4.0 -1.6 0.0 1.4 3.8 

 PCPhenoAgeAA -5.3 -2.2 -0.1 2.0 5.5 

 PCGrimAgeAA -3.8 -2.0 -0.5 0.8 3.7 

       

Rate of Aging Dunedin PoAm -1.1 -0.6 -0.1 0.6 1.3 

(SD) Dunedin PACE -1.2 -0.7 -0.1 0.6 1.3 

       

Risk of mortality 
(RR) 

         
Zhang2017 -1.8 -1.6 -1.3 -1.1 -0.8 

Notes: 

* Chronological age at Wave V blood draw. 


