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This is a supplementary information to the manuscript Fixation times on directed graphs. It contains formal
proofs of the theorems listed in the main text. In Section 1 we formally introduce the model and recall results
that we will use in our proofs. In the following sections we prove Theorems 1 to 5 from the main text.

1 Preliminaries

1.1 Moran process on a graph

A graph G is a tuple (V,E) where V is a set of vertices and E is a set of edges between vertices. Unless otherwise
specified, graphs are directed, unweighted, strongly connected, do not have self-loops, and do not have multiple
edges between vertices. The outdegree of a vertex v, denoted deg+(v), is the number of outgoing edges, and its
indegree, denoted deg−(v), is the number of incoming edges. When the outdegree equals the indegree, we call it
the degree and denote it deg(v). Given a graph, its population size is N := |V |. To emphasize the population
size of a graph G, we sometimes refer to it as GN . To model the evolutionary dynamics we consider the Moran
Birth-death processes on graphs. In this process, each vertex has an associated type at every time step: it is either
a resident or a mutant. Each type has an associated reproductive fitness: residents have fitness 1, mutants have
fitness r ⩾ 1.

The Moran Birth-death process is defined as follows: At each time step we

1. Pick a random vertex u ∈ V proportional to its type’s reproductive fitness.

2. Pick an outgoing edge of u uniformly at random; denote its endpoint v ∈ V .

3. Update the type of v to be the type of u.

Formally, the process is represented as a sequence X0, X1, X2, . . . ⊆ V , where X0 is the set of vertices that are
initially occupied by mutants, and Xt is the set of vertices occupied by mutants after t steps. The set of vertices
occupied by mutants is called a (mutant) configuration. If G is finite and strongly connected, then with probability
one eventually all vertices are occupied by mutants (if Xt = V for some t, we say that the mutants fixated) or all
vertices are occupied by residents (if Xt = ∅ for some t, we say that the mutants went extinct).

1.2 Fixation probability and time

We define some relevant quantities when studying evolutionary dynamics in a structured population. Each quantity
depends on the mutant fitness advantage r ⩾ 1; on the underlying population structure, represented by a graph
GN ; and on the set X0 of vertices that are occupied by mutants.

The fixation probability, denoted fp := fpr(G,S), is the probability that the mutants eventually take over the
population forever starting from a set of mutants occupying vertices S ⊆ V . In contrast, the extinction probability
is the probability that the mutants eventually die out forever. If the graph is strongly connected, fixation or
extinction will happen with probability 1 in finitely many expected steps. When the processes reaches fixation or
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extinction, we say that the process has absorbed. We can also study the time it takes for each of these events to
happen: the expected absorption time ATr(G,S) is the expected amount of time steps until the process absorbs.
The expected fixation time Tr(G,S) is the expected amount of time steps conditional on fixation occurring. We also
define Tr(G) = maxS⊆V,S ̸=∅{Tr(G,S)} as the slowest possible fixation time, across all possible initial conditions.
Similarly, we define the expected extinction time ExtTr(G,S) as the average number of steps over those trajectories
that eventually lead to mutant extinction. When the mutant fitness advantage r, the underlying graph G, or the
initial condition S are clear from the context we omit it. Further, for a u ∈ V , we sometimes denote fpr(G, {u})
as fpr(G, u) for notational ease.

We note that there are two types of steps in the Moran process, namely the active steps in which the configu-
ration changes, and the waiting steps in which it stays the same. The absorption, fixation, and extinction times
defined above count both the active steps and the waiting steps.

Finally, we say that if the expected absorption or fixation time is bounded from above by some polynomial in
terms of the population size N then the time is fast ; otherwise the time is slow.

1.3 Forward bias lemma

In the rest of this section, we define the notion of a forward bias and present a lemma that proves useful in
deriving Theorems 1 and 2.

Given a strongly connected directed graph GN = (V,E), a mutant fitness advantage r ⩾ 1, and a nonempty
set S ⊊ V of nodes currently occupied by mutants, we define the up-probability p+r (S) as the probability that,
in a single step of the Moran process, the number of mutants increases. In other words, p+r (S) is the probability
that a mutant is selected for reproduction and its offspring replaces a resident neighbor. Likewise, we define the
down-probability p−r (S) as the probability that the number of mutants decreases. Similarly to above, p−r (S) is the
probability that a resident is selected for reproduction and its offspring replaces a mutant neighbor. Since the
graph GN is strongly connected and S ̸∈ {∅, V } then both p+r (S) and p−r (S) are non-zero. In that case, we define
the bias at S as the ratio γr(S) = p+r (S)/p

−
r (S).

Lemma 1. Let GN = (V,E) be a strongly connected directed graph with N nodes, S ⊊ V the nonempty set of
nodes initially occupied by mutants, and r ⩾ 1 the mutant fitness advantage. Suppose that there exists a real
number f > 1 such that for any nonempty subset U ⊊ V of nodes we have γr(U) ⩾ f . Then

1. fpr(GN , S) ⩾ 1− 1/f ,

2. ATr(GN , S) ⩽ f+1
f−1 ·N3,

3. Tr(GN , S) ⩽ ATr(GN ,S)
fpr(GN ,S) ⩽ f(f+1)

(f−1)2
·N3.

Further, for any ε ∈ (0, 1) and for parameters r, GN , and S, the amount of time until absorption given the process

fixates is at most f(f+1)
(f−1)2

· N3

ε with probability at least 1− ε.

To prove Lemma 1 we need the following form of Markov’s inequality.

Lemma 2 (Conditional Markov’s inequality). Let X be an almost surely nonnegative random variable. Let a > 0
and let E be an event. Then

Pr[X > a | E ] ⩽ E [X/a | E ] . (1)

Proof. Similar to a common proof of Markov’s inequality, notice a·1{X>a} ·1{E} ⩽ X ·1{E}. Taking the expectation
of both sides yields the result.

We proceed to prove Lemma 1.

Proof of Lemma 1. The key idea is to project the process to a one-dimensional random walk by tracking the number
of nodes occupied by mutants. Formally, the random walk is a Markov chain W with states s0, s1, . . . , sN (where
state sk corresponds to those mutant configurations with precisely k mutants), and with transition probabilities
Pr[sk → sk+1] =

fk
fk+1 , Pr[sk → sk−1] =

1
fk+1 , where fk = min{γr(S) : |S| = k} is the smallest forward bias

among all the mutant configurations with precisely k mutants. For k = 0, . . . , N , let pk be the probability that
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W starting at sk eventually reaches sN (as opposed to reaching s0). Note that the random walk W models only
the active steps of the Moran process (that is, the steps in which the mutant configuration changes). Moreover, at
each configuration it always assumes the lowest possible forward bias. Let i = |S| be the number of nodes initially
occupied by mutants. Thus, we have fpr(GN , S) ⩾ pi.

First, we prove Item 1. A standard formula for one-dimensional Markov chains (see e.g. [1, Section 6.2]
immediately yields the desired

pi ⩾ p1 =
1

1 +
∑N−1

j=1

∏j
k=1

1
fk

⩾
1∑N−1

j=0 (1/f)j
⩾

1∑∞
j=0(1/f)

j
= 1− 1/f.

Next, we prove Item 2. We deal with the active steps and the waiting steps separately.
Regarding the waiting steps, consider any nonempty mutant configuration S ⊊ V with 1 ⩽ k ⩽ N − 1 mutants

and let F = k · r+ (N − k) · 1 ⩽ r ·N be the total fitness of the population. Since GN is strongly connected, there
is at least one edge going from a mutant node to a resident node. Since r ⩾ 1, the probability pa(S) that the next
step is active satisfies pa(S) ⩾ r

F · 1
N−1 ⩾ 1

N · 1
N = 1/N2. Thus, at any configuration, the expected number of

steps until an active step occurs is at most N2. Therefore, in order to get an upper bound on the absorption time
(which includes both the active and the waiting steps), it suffices to count only the active steps and then multiply
the result by N2.

To count the active steps, consider the corresponding random walk W . Given 1 ⩽ k ⩽ N − 1, let xk be the
expected number of times the state sk is visited in W . We will prove that xk ⩽ f+1

f−1 for each 1 ⩽ k ⩽ N − 1.

To that end, consider a walk W currently at sk. With probability f
f+1 it next moves to sk+1. Once in sk+1,

by Item 1 the walk reaches sN before reaching sk with probability at least p1 ⩾ 1− 1/f . Thus, any time the walk
is at sk, with probability at least f

f+1 · f−1
f = f−1

f+1 it never comes back. Therefore, xk ⩽ 1/f−1
f+1 = f+1

f−1 . This is

true for any of the N − 1 states s1, . . . , sN−1, so the expected number of active steps is at most f+1
f−1 ·N and the

expected number of all steps (including the waiting steps) is at most ATr(GN , S) ⩽ N2 ·
(
f+1
f−1 ·N

)
= f+1

f−1 ·N3.

Finally, we prove Item 3. By linearity of expectation we have

ATr(GN , S) = Tr(GN , S) · fpr(GN , S) + ExtTr(GN , S) · (1− fpr(GN , S)) ,

where ExtTr(GN , S) is the conditional extinction time, that is, the average length of those stochastic trajectories
that terminate with the mutation going extinct. Applying a trivial bound ExtTr(GN , S) ⩾ 0 and Item 1, we get

ATr(GN , S) ⩾ Tr(GN , S) · fpr(GN , S) ⩾ Tr(Gn, S) · (1− 1/f). (2)

Putting this together with Item 2 gives the desired

Tr(Gn, S) ⩽
f

f − 1
·ATr(GN , S) ⩽

f(f + 1)

(f − 1)2
·N3.

For the last statement of the lemma, we apply Lemma 2 to the time a trajectory takes to absorb as X, the
event the process fixates as E , and a = ε−1 · E [X | E ] using Item 3.

2 Fixation always occurs quickly when selection advantage is strong enough

In this section we prove Theorem 1 from the main text. That is, we show that if the mutant fitness advantage is
large enough then the process terminates fast, regardless of the underlying spatial structure.

Theorem 1. Let GN be a strongly connected graph on N nodes. Suppose that r ⩾ N2. Then ATr(GN ) ⩽ 2 ·N3

and Tr(GN ) ⩽ 3 ·N3.

Proof. Suppose mutants currently occupy a nonempty set S ⊊ V of nodes. Let k = |S| and denote by F =
k · r + (N − k) · 1 the total fitness of the population.

Since GN is strongly connected, there is at least one mutant node u with a resident neighbor. We claim that
if u is selected for reproduction, then it replaces a resident with probability at least 1/k. We distinguish two cases
based on the outdegree d of u.
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1. If d ⩽ k then the claimed probability is at least 1
d ⩾ 1

k .

2. If d ⩾ k then u must have at least d− (k− 1) resident neighbors (since there are at most k− 1 other mutant
nodes altogether). Thus the claimed probability is at least d−k+1

d ⩾ 1
k , where the inequality is equivalent

with (d− k)(k − 1) ⩾ 0 which holds trivially.

Altogether, node u gets selected with probability at least r/F , thus we have:

p+r (S) ⩾
r

F
· 1
k
.

On the other hand, since there are N−k residents and each, when selected for reproduction, replaces a mutant
with probability at most 1, we have

p−r (S) ⩽
N − k

F
.

Combining those two bounds, we get

γr(S) ⩾
r

k(N − k)
⩾

r

N2/4
⩾ 4,

where we have used an AM-GM inequality for k and N − k. Thus, Lemma 1 applies with f = 4 and we get the
desired ATr(GN ) ⩽ 5

3N
3 < 2N3 and Tr(GN ) ⩽ 20

9 N
3 < 3N3.

3 Fixation occurs quickly on Eulerian graphs

In this section we prove Theorem 2 from the main text. That is, we show that if a graph is Eulerian with degrees
sandwiched between δ and ∆ then the time is fast, provided that the mutant fitness advantage satisfies r > ∆/δ.
Recall that a graph is Eulerian if deg−(v) = deg+(v) holds for each v ∈ V .

First, we point out one useful property of such graphs. Let S ⊆ V . Let E+(S) be the set of the edges whose
starting vertex is in S. Let E−(S) be the set of the edges whose ending vertex is in S. Let m+

S be the number
edges outgoing from S and incoming to V \ S. Similarly, let m−

S be the number edges outgoing from V \ S and
incoming to S.

Lemma 3. A graph G = (V,E) is Eulerian if and only if m+
S = m−

S for every S ⊆ V .

Proof. Suppose G is Eulerian and let S ⊆ V . We have that

m+
S = |E+(S)| −#{u → v ∈ E | u ∈ S, v ∈ S} and

m−
S = |E−(S)| −#{u → v ∈ E | u ∈ S, v ∈ S}.

Noticing that

|E+(S)| =
∑
u∈S

deg+(u) =
∑
u∈S

deg−(u) = |E−(S)|

since G is Eulerian completes one direction of the proof.
For the other direction, suppose we know that m+(S) = m−(S) for each S ⊆ V . Then for every u ∈ V we

know deg−(u) = m−
{u} = m+

{u} = deg+(u), so G is Eulerian.

Theorem 2. Let GN be a strongly connected Eulerian graph on N nodes with smallest degree δ and largest degree
∆. Suppose that r ⩾ ∆

δ · (1 + ε) for some ε > 0. Then ATr(GN ) ⩽ 2+ε
ε ·N3 and Tr(GN ) ⩽ (1+ε)(2+ε)

ε2
·N3.

Proof. Suppose mutants currently occupy a nonempty set S ⊊ V of nodes. Let E+ = {(u, v) ∈ E | u ∈ S, v ̸∈ S}|
be the set of those edges that go from a mutant to a resident. Likewise, let E− = {(u, v) ∈ E | u ̸∈ S, v ∈ S} be
the set of those edges that go from a resident to a mutant. By Lemma 3 we know that the two sets E+ and E−

have the same size, denote it by s. Denoting by F = |S| · r + (N − |S|) · 1 the total fitness of the population, we
have

p+r (S) ⩾
∑

(u,v)∈E+

r

F
· 1

deg(u)
⩾ s · r

F∆

4



and

p−r (S) ⩽
∑

(u,v)∈E−

1

F
· 1

deg(u)
⩽ s · 1

Fδ
.

Thus

γr(S) ⩾
rδ

∆
= 1 + ε,

hence Lemma 1 applies with f = 1 + ε. The claims follow by straightforward algebra.

4 Fixation can occur slightly faster for small selective advantages

In this section we prove Theorem 3 from the main text. That is, we bound the fixation time on any graph GN with
any mutant fitness advantage r ⩾ 1 in terms of the minimum fixation probability fpmin := minS⊆V,S ̸=∅ fpr=1(G,S).
The proof has two ingredients. As our first ingredient, we bound the fixation time in the neutral regime (r = 1).
To that end, we first recall a standard lemma.

Lemma 4 (Corollary 26 of [2], martingale upper additive drift). Let Z0, Z1, Z2, . . . be random variables over
[α, β] ⊆ R, and let τ := inf{t ⩾ 0 | Zt ∈ {α, β}}. Furthermore, suppose that,

1. E [Zt+1 | Z0, . . . , Zt] = Zt for all t < τ , and

2. there is some δ > 0 such that Var [Zt+1|Z0, . . . , Zt] ⩾ δ for all t < τ .

Then

E [τ | Z0] ⩽
(Z0 − α)(β − Z0)

δ
. (3)

Lemma 4 allows us to bound the absorption time and the fixation time in the neutral regime (r = 1).

Lemma 5 (Bounding absorption time and fixation time when r = 1). Let G = (V,E) be strongly connected. Then

ATr=1(G) ⩽
N4

4fp2min

and Tr=1(G) ⩽
N4

4fp3min

.

Proof. Note that for any nonempty set S ⊊ V of mutants, the probability of making an active step is at least
1/N2. Indeed, since G is strongly connected, there is a mutant node u with a resident out-neighbor v. Node
u is selected for reproduction with probability r/(r · |S| + (N − |S|)) ⩾ 1/N , and the offspring replaces v with
probability 1/ deg+(u) > 1/N . Moreover, since in the neutral regime (r = 1) the fixation probability is additive
over the set of nodes occupied by mutants, if such an active step happens and node v becomes a mutant, then the
fixation probability increases by fpr=1(G, {v}) ⩾ fpmin.

Let (Xt)t⩾0 be the mutant configuration after t steps of the Moran process. We aim to apply Lemma 4, where
Zt = fp(Xt), α = 0, and β = 1. To do that, we bound the conditional variance Var [Zt+1 | Z0, . . . , Zt] from below
as follows:

Var [Zt+1 | Z0, . . . , Zt] = E
[
(Zt+1 − E [Zt+1 | Z0, . . . , Zt])

2 | Z0, . . . , Zt

]
(4)

= E
[
(Zt+1 − Zt)

2 | Z0, . . . , Zt

]
(5)

⩾
(
E
[∣∣Zt+1 − Zt

∣∣ | Z0, . . . , Zt

])2
(6)

⩾

(
1

N2
· fpmin

)2

, (7)

where in the respective steps we used the definition of conditional variance, the fact that fixation probability does
not change in expectation in one step of the process, Jensen’s inequality for a convex function f(x) = x2, and the
observation that with probability at least 1/N2 the fixation probability changes by at least fpmin.

Applying Lemma 4, we find that

ATr=1(G,S) ⩽

(
N2

fpmin

)2

· fp(S)(1− fp(S)) ⩽
N4

4fp2min

, (8)
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for any S ⊆ V where in the last step we used an inequality x(1− x) ⩽ 1/4 that holds for any x ∈ (0, 1).
Finally, we turn the obtained bound on absorption time into a bound on fixation time. Let S ⊆ V and denote

by ExtTr=1(G,S) the extinction time starting from S. Then

ATr=1(G,S) = fpr=1(G,S) · Tr=1(G,S) + (1− fpr=1(G,S)) · ExtTr=1(G,S) ⩾ fpmin · Tr=1(G,S),

thus taking the maximum over S ⊆ V we obtain Tr=1(G) ⩽ ATr=1(G)/fpmin.

As our second ingredient, we relate the fixation time in the neutral regime (r = 1) and the fixation time when
r > 1.

Lemma 6. Let G = (V,E) be strongly connected, r ⩾ 1, and let fpmin := minS⊆V,S ̸=∅ fpr=1(G,S). Then Tr(G) ⩽
4r

fpmin
· Tr=1(G).

Proof. Consider the process M1 with r = 1 and the process Mr with r ⩾ 1. In M1, there exist fixating trajectories
with probability mass at least fpmin. They fixate on average in at most T1 = Tr=1(G) steps. Let A1 be a
random variable for the absorption time of a trajectory drawn from M1 according to the birth-death updating
rule. Let F be the event that a trajectory drawn from M1 according to the birth-death updating rule fixates.
Thus T1 = E [A1 | F ]. By applying Lemma 2 with X = A1, a = 2T1, and E = F ,

Pr[A1 > 2T1 | F ] ⩽ E [A1 | F ] /(2T1) = 1/2. (9)

So for the complementary event A1 ⩽ 2T1, we have

Pr[A1 ⩽ 2T1 and F ] = Pr[A1 ⩽ 2T1 | F ] · Pr[F ] (10)

⩾ (1/2) · fpmin. (11)

Thus in M1 there exist fixating trajectories with total probability mass at least fpmin/2 that fixate in at most 2T1

steps each.
Let M̃1 and M̃r denote the continuous-time versions of the processes as described in [3]. Then by Lemma 5 of

[3], there is a coupling between the continuous-time versions of the two processes such that if the processes start
with the same set of mutants (that is, M̃1[0] = M̃r[0]), then M̃1[t] ⊆ M̃r[t] for all t ⩾ 0. Let τ̃1 be one possible
mutant set trajectory that fixates for M̃1. Then the coupling implies that the corresponding trajectory τ̃r for M̃r

fixates even earlier, when measured in the continuous time.
Next, we transfer this relationship back into the world of discrete-time processes M1 and Mr. Note that at

each moment in time, the total fitness of the population in M̃r is at most rN , that is, it is at most r times as
large as the total fitness of the population in M̃1. Thus, reproduction events in M̃r occur at a rate that is at most
r times larger than the rate at which reproduction events occur in M̃1. When we move from continuous time to
discrete time, we count each reproduction event as lasting 1 unit of time. Thus, any time a trajectory τ̃1 ∈ M̃1

gives rise to a trajectory τ1 ∈ M1 with length ℓ, the coupled trajectory τ̃r ∈ M̃r gives rise to a trajectory τr ∈ Mr

with length at most rℓ.
Because in M1 there exist fixating trajectories with total probability mass at least fpmin/2 that fixate in at

most 2T1 steps each, in Mr there exist fixating trajectories with total probability mass fpmin/2 that fixate in at
most 2rT1 steps each. Now imagine we run Mr for stages of 2rT1 steps each. Within each stage, the process fixates
with probability at least fpmin/2 so in expectation we observe fixation after at most 2/fpmin stages. In total, this
gives the desired

Tr(G) ⩽
2

fpmin

· 2r · T1 =
4r

fpmin

· T1(G).

It remains to combine the two ingredients.

Theorem 3. Let GN be a strongly connected graph on N vertices and let r ⩾ 1. Then Tr(GN ) ⩽ N6

fp4min
.

Proof. We distinguish two cases. If r ⩾ N2 then Theorem 1 implies that Tr(GN ) ⩽ 3N3 which is stronger than
the claimed bound. So suppose r < N2. Then Lemmas 5 and 6 yield

Tr(GN ) ⩽
4r

fpmin

· Tr=1(GN ) ⩽
4r

fpmin

· N4

4fp3min

⩽
N6

fp4min

.
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5 Balanced graphs (and others) fixate quickly

Lemma 7. Let G = (V,E) be strongly connected. Suppose there exist |V | numbers {xv | v ∈ V } that satisfy

xv ·
∑

u:u→v∈E

1

deg+(u)
=

1

deg+(v)
·

∑
w:v→w∈E

xw (12)

for each v ∈ V . In addition, suppose
∑

v∈V xv = 1. Then xv = fp({v}).

Proof. Suppose r = 1 and denote N = |V |. Then the fixation probability is additive, that is, fp(S) =
∑

v∈S fp({v})
for every S ⊆ V [4]. Thus, the list of 2N fixation probabilities fp(S) for S ⊆ V is determined by the list of N
fixation probabilities fp({v}) for v ∈ V . The fixation probabilities fp({v}) are the unique solutions to the linear
system

fp({v}) = 1

N

∑
v→w∈E

1

deg+(v)
·fp({v, w})+ 1

N

∑
u→v∈E

1

deg+(u)
·fp(∅)+

(
1− 1

N
− 1

N

∑
u→v∈E

1

deg+(u)

)
·fp({v}), (13)

where the first term on the right-hand side corresponds to the mutant reproducing, the second term corresponds
to the mutant being replaced, and the third term corresponds to a resident replacing a resident. Using fp(∅) = 0
and fp({v, w}) = fp({v}) + fp({w}) we obtain

fp({v}) ·
∑

u:u→v∈E

1

deg+(u)
=

1

deg+(v)
·

∑
w:v→w∈E

fp({w}) (14)

which is precisely the system satisfied by {xv | v ∈ V }.

Definition 1. A strongly connected graph G = (V,E) is balanced if and only if

1

deg−(v)
·
∑

u:u→v∈E

1

deg+(u)
=

1

deg+(v)
·

∑
w:v→w∈E

1

deg−(w)
. (15)

Theorem 4. Let GN be a balanced strongly connected graph. Then:

1. fpr=1(GN , u) = 1/ deg−(u)∑
v∈V 1/ deg−(v)

⩾ 1/N2 for any node u.

2. Tr(GN ) ⩽ N14 for any r ⩾ 1.

Proof. The equality in Item 1 follows from Lemma 7 and the bound follows from the fact that the numerator is at
least 1/N and the denominator is at most N . Item 2 follows immediately from Item 1 and from Theorem 3.

In the rest of this section we verify that the undirected graphs, carousels, books, metafunnels, and superstars are all
balanced. Thus, the fixation probability under neutral drift (r = 1) starting from node v is inversely proportional
to deg−(v). Moreover, we provide an explicit formula for fixation probability on Megastars under neutral drift.
This gives an upper bound on the fixation time for any r ⩾ 1 by Theorem 3. We use the notation fp({v}) ∝ pv to
mean that fp({v}) = pv/

∑
w∈V pw.;

Recall that a graph is undirected if all edges are two-way, that is, if u → v ∈ E then v → u ∈ E as well. A
weakly connected undirected graph is also strongly connected since each edge can be traversed in either direction.

Claim 1. Suppose G = (V,E) is undirected. Then fp({v}) ∝ 1/deg(v).

Proof. Checking by substituting,

1

deg(v)

∑
v→w∈E

1

deg(w)
=

1

deg(v)

∑
u→v∈E

1

deg(u)
(16)

⇐⇒ 1

deg(v)

∑
v→w∈E
w→v∈E

1

deg(w)
=

1

deg(v)

∑
u→v∈E
v→u∈E

1

deg(u)
(17)

⇐⇒ 1

deg(v)
=

1

deg(v)
(18)

which is always true.
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For the following claims, we omit the proofs since the technique is similar of that of the proof of claim 1.

Definition 2. A carousel is multipartite graph consisting of a partition of V into sets S1, . . . , Sℓ such that u → v ∈
E if and only if there exists an i such that u ∈ Si and v ∈ Si+1. We say that Sℓ+1 := S1, S0 := Sℓ, S−1 := Sℓ−1,
etc.

Claim 2. Suppose G = (V,E) is a carousel with sets S1, . . . , Sℓ. Then for v ∈ Si we have that fp({v}) ∝ |Si−1|−1.

Proof. We have

|Si−1|−1 ·
∑

u→v∈E

1

deg+(u)
= |Si−1| · |Si|−1|Si−1|−1 = |Si|−1 (19)

and

1

deg+(v)

∑
v→w∈E

|Si|−1 = |Si|−1. (20)

Definition 3. An (s1, . . . , sℓ)-book is a graph with vertices b (beginning), e (end), and piji for i = 1, . . . , ℓ and

ji = 2, . . . , si−1. We say that pi1 = pisi+1 = b and pisi = e for each i. We have piji → piji+1 ∈ E for all ji = 1, . . . , si

Claim 3. Suppose G = (V,E) is a (s1, . . . , sℓ)-book. Then

1. fp({b}) ∝ ℓ

2. fp({e}) ∝ 1

3. fp({pi2}) ∝ ℓ for each i

4. fp({pij}) ∝ 1 for each i and each j > 1.

Proof. This can be easily checked by plugging into the equations of (14).

Definition 4. See §1.1.1 of [5] for the definition of a (k, ℓ,m)-metafunnel.

Claim 4. Suppose G = (V,E) is a (k, ℓ,m)-metafunnel. Then

1. fp({v}) ∝ m1−i for each v ∈ Vi such that i ̸= 1

2. fp({v}) ∝ ℓ for each v ∈ V1.

Definition 5. See §1.1.2 of [5] for the definition of a (k, ℓ,m)-superstar.

Claim 5. Suppose G = (V,E) is a (k, ℓ,m)-superstar. Then

1. fp({vi,j}) ∝ 1 for each i and each j > 1

2. fp({vi,1}) ∝ 1/m for each i

3. fp({v}) ∝ ℓ for each v ∈ Ri for each i

4. fp({v∗}) ∝ 1.

Corollary 1. Undirected graphs, carousels, books, metafunnels, and superstars are balanced.

Proof. This follows from Theorem 4, and Claims 1 to 5.

Definition 6. See §1.1.3 of [5] for the definition of a (k, ℓ,m)-megastar.

Claim 6. Suppose G = (V,E) is a (k, ℓ,m)-megastar. Then

1. fp({v∗}) ∝ m

8



2. fp({v}) ∝ ℓm for each v ∈ R1 ∪ · · · ∪Rℓ

3. fp({v}) ∝ m for each v ∈ K1 ∪ · · · ∪Kℓ

4. fp({ai}) ∝ 1 for each i ∈ [ℓ].

Corollary 2. A (k, ℓ,m)-megastar has fpmin ⩾ 1/h(N) for some polynomial N so long as

1 · ℓ+m · (kℓ) + (ℓm) · (ℓm) +m ⩽ h(N). (21)

In particular, so long as k, ℓ, and m are each bounded above by some polynomial in N then fpmin is bounded
below by the inverse of a polynomial.

6 Quickly estimating fixation probabilities with provable confidence

Theorem 5. For strongly connected G = (V,E), u ∈ V , and r ⩾ 1, there is a fully polynomial randomised
approximation scheme (FPRAS) for computing fpr(G, u) if there is some polynomial h such that fpmin ⩾ 1/h(N).

Proof. What follows is a standard technique. We aim to approximate the fixation probability within a multiplica-
tive factor of ε > 0 with probability 1−ν. Let ν1, ν2 ⩾ 0 be constants and let ν := ν1+ν2. We first compute fpmin

and then T1 in poly(N) time by Lemma 7. We run s = ⌈2(ln 2/ν1)/(εfpmin)
2⌉ independent simulations of the birth-

death process onG for at most t = ⌈T1s/ν2⌉ steps. If any simulation does not reach absorption in the allocated time,
we return some arbitrary number as the fixation probability. Otherwise, take X1, . . . , Xs to be random 0-1 indica-
tor variables such that Xi = 1 if and only if the simulation reaches fixation. We estimate f̂pr(G, u) := 1

s

∑s
i=1Xi

as the fixation probability. Then Pr[|f̂pr(G, u) − fpr(G, u)| > ε fpr(G, u)] ⩽ 2 exp(−ε2s fpr(G, u)2/2) ⩽ ν1 by a
Chernoff bound. The probability that a simulation does not reach absorption in the allocated amount of time
is at most ν2/s by Markov’s inequality. By a union bound, the probability that there is some simulation that
does not reach absorption in the allocated time is at most ν2. Thus the probability of error in this approximation
algorithm is at most ν1 + ν2 = ν. Both s and t are polynomial in N and each step of the birth-death process can
be computed in a constant amount of time.

7 Computer experiments

ca b

Fan graph F11

Vortex graph V8

Fan graphs Vortex graphs

Figure 1: Fixation time on slow oriented graphs. a, The Fan graph with k blades has N = 2k+1 nodes and
3k one-way edges (here k = 5 which yields N = 11). The Vortex graph with batch size k has N = 2k + 2 nodes
and 4k edges (here k = 3 which yields N = 8). b-c, For both the Fan graphs and the Vortex graphs the fixation
time scales roughly as N2, both for r = 1.1 and r = 100. Each data point is an average over 100 simulations. We
note that the plots are on a log-log scale.
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