# Machine learning-guided co-optimization of fitness and diversity facilitates combinatorial library design in enzyme engineering

Kerr Ding<sup>1,†</sup>, Michael Chin<sup>2,†</sup>, Yunlong Zhao<sup>2,†</sup>, Wei Huang<sup>2</sup>, Binh Khanh Mai<sup>3</sup>, Huanan Wang<sup>2</sup>, Peng Liu<sup>3,\*</sup>, Yang Yang<sup>2,4,\*</sup>, Yunan Luo<sup>1,\*</sup>

<sup>1</sup> School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

<sup>2</sup> Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA

<sup>3</sup> Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

<sup>4</sup> Biomolecular Science and Engineering (BMSE) Program, University of California, Santa Barbara, California 93106, USA

<sup>†</sup> These authors contributed equally.

\* E-mail: pengliu@pitt.edu; yang@chem.ucsb.edu; yunan@gatech.edu

## Contents

| Α | Supp | plementary Information                                        | 1  |
|---|------|---------------------------------------------------------------|----|
|   | A.1  | Benchmarking datasets for computational experiments           | 1  |
|   | A.2  | Co-optimization of the fitness and diversity of the library   | 2  |
|   | A.3  | Zero-shot protein fitness prediction                          | 4  |
|   | A.4  | Structure-based filter                                        | 5  |
|   | A.5  | High-quality starting library design for GB1                  | 6  |
|   | A.6  | High-quality starting library design for CreiLOV              | 8  |
|   | A.7  | Experimental validation of MODIFY on engineering cytochrome c | 9  |
|   | A.8  | Classical molecular dynamics (MD) simulations.                | 13 |
| B | Supp | plementary Figures                                            | 15 |
| С | Supp | plementary Tables                                             | 23 |

### **A** Supplementary Information

#### A.1 Benchmarking datasets for computational experiments

In our work, we evaluated MODIFY for zero-shot protein fitness prediction and starting library design on multiple benchmarking datasets curated by previous works.

**ProteinGym.** ProteinGym<sup>1</sup> is a benchmark dataset with 87 Deep Mutational Scanning (DMS) studies, which covers a wide range of protein families and also fitnesses (e.g., ligand binding and thermostability). We collected all single mutations from the 87 DMS studies and used the experimental data to evaluate the zero-shot ensemble approach in MODIFY for robust mutation effects prediction across diverse proteins. As three of the five models integrated in MODIFY (EVmutation, EVE, and MSA Transformer) by default were not trained on the low-coverage columns of MSA (i.e., column coverage lower than 70%) (Supplementary Information A.3), we only evaluated MODIFY on mutants whose mutation sites are in columns with coverage no less than 70%. ProteinGym stratified the 87 DMS studies based on the MSA depth of their target proteins<sup>1</sup>. The MSA depth is defined as  $N_{\rm eff}/L$ , where L is the length covered, and  $N_{\rm eff}$  refers to the effective number of sequences in the MSA<sup>2</sup>. In specific, proteins with  $N_{\rm eff}/L < 1$  have low MSA depth; proteins with  $1 < N_{\rm eff}/L < 100$  have medium MSA depth; proteins with  $N_{\rm eff}/L > 100$  have high MSA depth. Intuitively, proteins with lower MSA depth have fewer homologous sequences and are deemed more challenging than proteins with higher MSA depth for mutation effects prediction. For formatting purposes, we used abbreviations for the DMS dataset names in the ProteinGym substitution benchmark dataset shown in Fig. 2. We provided the mapping from the abbreviations to the DMS dataset names in Supplementary Table 1. ProteinGym v1.0 benchmark dataset<sup>3</sup> is a recently released extension of the ProteinGym benchmark dataset, which contains 217 DMS assays. The 217 DMS assays are categorized into five different function types: catalytic and biochemical activity, binding, expression, organismal fitness, and stability. We provided the mapping from the abbreviations to the DMS dataset names in Supplementary Table 2.

**High-order GB1 mutants dataset.** The fitness landscape of GB1 at sites 39, 40, 41, and 54 was systematically determined through experiments by Wu et al.<sup>4</sup>. Among the total  $20^4 = 160,000$  variants, 149,361 variants have reliable experimental fitness values, and the fitness of the remaining variants was imputed through regularized regression. For zero-shot prediction performances, we solely evaluated MODIFY on variants with experimentally determined fitness. When assessing MODIFY for starting library design, we additionally included the variants with imputed fitness (10,639 variants). The fitness of the variants of GB1 is characterized by both stability (fraction of folded proteins) and function (binding affinity to IgG-Fc). The fitness of the wild-type protein (WT) is set as 1.0. For each variant, its fitness value is computed as relative to the WT. A mutant with a fitness value higher than 1.0 is considered beneficial, whereas a mutant with a fitness value lower than 1.0 is considered inferior to the WT. The lowest possible fitness value is 0.0.

**High-order CreiLOV mutants dataset.** Chen et al.<sup>5</sup> experimentally characterized a combinatorial mutagenesis library on CreiLOV across 15 sites (3, 4, 5, 7, 29, 34, 47, 60, 61, 92, 96, 98, 107, 109, and 113). CreiLOV is a prototype flavin mononucleotide (FMN)-based fluorescent protein (FbFP) from *Chlamydomonas reinhardtii*. Due to their oxygen-independent fluorescence, FbFPs are recognized as potential alternatives to the green fluorescent protein (GFP)<sup>6</sup>. Different from the landscape of GB1, this combinatorial library only spans 20 single mutations, which were previously determined to be beneficial or neutral through singe-site saturation mutagenesis. The

fluorescence value is used to represent the fitness of CreiLOV variants. A higher fluorescence value would indicate a better fitness for the given variant. Out of the 184,320 mutants, 165,428 of them had reliable experimental fitness values. For both library design and zero-shot protein fitness prediction, we solely evaluated MODIFY on the mutants with reliable fitness values.

**High-order ParD3 mutants dataset.** Ding et al.<sup>7</sup> experimentally assessed the mutation effects of antitoxin ParD3 in the ParD3-ParE3 complex. ParD3 forms an inert multimeric complex with the toxin ParE3 if co-expressed in *Escherichia coli*. Cells can grow if ParD3 and ParE3 interact, but the cell growth will be slowed down if the interaction is disrupted. The fitness of a given ParD3 variant reflects its interaction with the toxin ParE3, as measured by cell proliferation. This landscape covers  $20^3 = 8,000$  mutants across three sites. The fitness values were normalized so that the wild-type fitness is 1.0 and the mean fitness of all variants with stop codons (i.e., truncated ParD3) is 0.0. During the evaluation of MODIFY for zero-shot protein fitness prediction, we only included variants without stop codons.

#### A.2 Co-optimization of the fitness and diversity of the library

**Stochastic gradient ascent**. At the library design stage of MODIFY, we co-optimize the expected fitness of sequences sampled by the library and the library's diversity:

$$\max_{p \in \mathcal{P}} \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})} \text{ fitness}(\boldsymbol{x}) + \lambda \cdot \text{diversity}(p), \tag{1}$$

where  $\mathcal{P}$  is the set of all possible libraries and  $\lambda > 0$  is a coefficient that balances the fitness and diversity terms. The unconstrained optimization problem with respect to  $\phi$  is:

$$\max_{\phi} J(\phi) = \max_{\phi} \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})}[f(\boldsymbol{x})] + \lambda \sum_{i=1}^{M} \alpha_i H(p_i),$$
(2)

where  $\alpha_i$  is the parameter used for strengthening or reducing the diversity at residue *i*. We apply stochastic gradient ascent to solve this optimization problem. The gradient of  $J(\phi)$  is given by

$$\nabla_{\phi_{i,j}} J(\phi) \approx \frac{1}{B} \sum_{b=1}^{B} f(\boldsymbol{x}^{(b)}) (\delta_j(x_i^{(b)}) - p_{i,j}) - \lambda \alpha_i \sum_{j'=1}^{K} (1 + \log p_{i,j'}) p_{i,j'} (\delta_j(j') - p_{i,j}), \quad (3)$$

where B refers to the batch size and  $x_i^{(b)}$  is the *i*-th AA of the *b*-th sequence in the batch.

We now show the derivation of this gradient. For the first term in Supplementary Eq. 2, we have

$$\nabla_{\phi} \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})}[f(\boldsymbol{x})] = \nabla_{\phi} \sum_{\boldsymbol{x} \in \mathcal{X}} p(\boldsymbol{x}) f(\boldsymbol{x}) = \sum_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}) \nabla_{\phi} p(\boldsymbol{x})$$

$$= \sum_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}) p(\boldsymbol{x}) \nabla_{\phi} \log p(\boldsymbol{x}) = \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})}[f(\boldsymbol{x}) \nabla_{\phi} \log p(\boldsymbol{x})].$$
(4)

Following Zhu et al.<sup>8</sup>, we apply the Monte Carlo approximation to approximate the above gradient,

which takes the below form:

$$\nabla_{\phi_{i,j}} \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{x})}[f(\boldsymbol{x})] = \mathbb{E}[f(\boldsymbol{x}) \nabla_{\phi_{i,j}} \log p(\boldsymbol{x})] \approx \frac{1}{B} \sum_{b=1}^{B} f(\boldsymbol{x}^{(b)}) \nabla_{\phi_{i,j}} \log p(\boldsymbol{x}^{(b)})$$

$$= \frac{1}{B} \sum_{b=1}^{B} f(\boldsymbol{x}^{(b)}) (\delta_j(x_i^{(b)}) - p_{i,j}),$$
(5)

where B is the batch size, and  $x_i^{(b)}$  is the *i*-th AA of the *b*-th sequence in a batch. For the second term in Supplementary Eq. 2, the gradient to the entropy of site *i* can be derived as

$$\nabla_{\phi_{i,j}} H(p_i) = \nabla_{\phi_{i,j}} \sum_{j'=1}^{K} -p_{i,j'} \log p_{i,j'} = -\sum_{j'=1}^{K} \left( \nabla_{\phi_{i,j}} p_{i,j'} \log p_{i,j'} + p_{i,j'} \nabla_{\phi_{i,j}} \log p_{i,j'} \right)$$

$$= -\sum_{j'=1}^{K} (p_{i,j'} \log p_{i,j'} \nabla_{\phi_{i,j}} \log p_{i,j'} + p_{i,j'} \nabla_{\phi_{i,j}} \log p_{i,j'})$$

$$= -\sum_{j'=1}^{K} (1 + \log p_{i,j'}) p_{i,j'} \nabla_{\phi_{i,j}} \log p_{i,j'}$$

$$= -\sum_{j'=1}^{K} (1 + \log p_{i,j'}) p_{i,j'} (\delta_j(j') - p_{i,j}).$$
(6)

**Exclusion of undesired AAs**. The factorization of sequence probability as the product of sitewise AA probability, i.e.,  $p(\boldsymbol{x}) = \prod_{i=1}^{M} \sum_{k=1}^{K} \delta_k(x_i) p_{i,k}$ , allows MODIFY to completely exclude some AAs at a site based on prior knowledge, such as experimentally confirmed loss-of-function mutations. Specifically, researchers can specify a set  $\mathcal{U}_i$  of undesired AAs for position *i* (e.g., AAs that would destabilize structure), and MODIFY ensures that the final library will not include any AA from  $\mathcal{U}_i$  at position *i* by adjusting the probability  $p_{i,k}$  as

$$p_{i,k} = \exp(\phi_{i,k} \odot S_{i,k}) / \sum_{k'} \exp(\phi_{i,k'} \odot S_{i,k}),$$
(7)

where  $S \in \{0, 1\}^{M \times K}$  is a binary mask matrix such that  $S_{i,j} = 0$  if  $j \in U_i$  and one otherwise  $(\forall i)$ , and  $\odot$  represents element-wise multiplication. Since some site-wise distributions may have a support size smaller than K = 20 due to the masking, we re-scale the entropy in Eq. 3 to the same scale:

diversity(p) = 
$$\sum_{i=1}^{M} [\log K / \log(K - |\mathcal{U}_i|)] H(p_i).$$
(8)

**Parameter search space under MODIFY's default setting**. Under the default setting, we varied the value of the parameter  $\lambda/M$  from a set of values and then selected the value of  $\lambda/M$  that produces the library with the maximum area (i.e., mean predicted fitness × diversity). For GB1 and cytochrome *c*, we varied the value of  $\lambda/M$  from 0 to 2, with increments of 0.01. For CreiLOV, we varied the value of  $\lambda/M$  from 0 to 1, with increments of 0.001.

#### A.3 Zero-shot protein fitness prediction

For zero-shot protein fitness prediction, MODIFY integrates four pre-trained unsupervised ML models to capture the evolutionary plausibility of protein sequences. Here, we describe our implementation of the four unsupervised models in detail.

**Protein language model**: In MODIFY, we integrated two PLMs, ESM-1v and ESM-2, for zero-shot protein fitness prediction. ESM-1v and ESM-2 have similar neural network architecture but were trained on different training sets (UniRef90 and UniRef50, respectively). ESM-1v is a collection of 5 pre-trained models on UniRef90 (esm1v\_t33\_650M\_UR90S\_{1, ..., 5}). For each variant, we first predict its fitness using the five ESM-1v models respectively and then average the predictions as the final predictions  $s_{\text{ESM}-1v}(\boldsymbol{x})$ . For ESM-2, we use the pre-trained model esm2\_t36\_3B\_UR50D for predicting the fitness  $s_{\text{ESM}-2}(\boldsymbol{x})$  for a given variant  $\boldsymbol{x}$ . The models and scripts of ESM-1v and ESM2 are downloaded from https://github.com/facebookres earch/esm.

**Evolutionary coupling model**: We integrated EV mutation<sup>2</sup> as the evolutionary coupling model in MODIFY. For a given parent protein, we first used the EVcouplings server (https://evco uplings.org/) to generate the multiple sequence alignment (MSA) and compute the evolutionary couplings model from the MSA. For MSA generation, we varied the bit score b from  $\{0.1, 0.3, 0.5, 0.7\}$  while keeping other parameters as default. Notably, by default, columns in the MSA that have more than 30% of gaps (i.e., less than 70% of residues) will be excluded from the evolutionary couplings computation. Then, we selected the bit score  $b_{high}$ , which has the highest quality score as provided by the EV couplings server, and the EV mutation model computed on the MSA generated by  $b_{\text{high}}$ . If the sites to be mutated in our library were excluded from the model's computation, we would increase the bit score (e.g., increase b from 0.3 to 0.5) to include the sites in the MSA. If no bit score from  $\{0.1, 0.3, 0.5, 0.7\}$  satisfies this condition (e.g., CreiLOV), we would relax the position filter of no more than 30% gaps to include all sites and use the EVcouplings Python package<sup>9</sup> to recompute the evolutionary couplings with the MSA generated by bit score  $b_{high}$ . For benchmarking experiments on ProteinGym, we used the MSA pre-generated by ProteinGym and computed the evolutionary couplings model for each MSA using the EV couplings Python package with default parameters.

Latent generative sequence model: For latent generative sequence models, we integrated EVE<sup>10</sup> into MODIFY. The probability of a sequence x is defined by marginalizing out the latent variable:  $p(x) = \int_{z} p(x|z, \theta)p(z)dz$ . This is approximated using the evidence lower bound (ELBO):

$$p(\boldsymbol{x}) \approx \mathbb{E}_{q}[\log p(\boldsymbol{x}|z,\theta)] - \mathcal{D}_{\mathrm{KL}}(q(z|\boldsymbol{x};\theta)||p(z)), \tag{9}$$

where both the conditional distribution  $p(\boldsymbol{x}|z,\theta)$  and variational posterior  $q(z|\boldsymbol{x};\theta)$  are modeled by neural networks. The protein fitness is characterized as the log-odds ratio:  $s_{\text{EVE}}(\boldsymbol{x}^{\text{MT}}) = \log p(\boldsymbol{x}^{\text{MT}}) - \log p(\boldsymbol{x}^{\text{WT}})$ . Following the GitHub repository of EVE (https://github.com /OATML-Markslab/EVE), we used the same MSA that was generated by the EVcouplings webserver for EVmutation. Following Frazer et al.<sup>10</sup>, we set the sample size for computing the log-odds ratio as 2,000 and set T = 0.2 for correcting the biases in the MSA.

**MSA-based PLM**: As a hybrid PLM, MSA Transformer<sup>11</sup> combines global and local evolutionary information. Following Meier et al.<sup>12</sup> and Notin et al.<sup>1</sup>, MSA Transformer scores the

fitness also as the log-odds ratio:

$$s_{\text{MSATrans}}(\boldsymbol{x}^{\text{MT}}) = \sum_{t \in T} \log p(x_t = x_t^{\text{MT}} | \boldsymbol{x}_{\backslash T}; \text{MSA}(\boldsymbol{x}^{\text{WT}})) - \log p(x_t = x_t^{\text{WT}} | \boldsymbol{x}_{\backslash T}; \text{MSA}(\boldsymbol{x}^{\text{WT}})),$$
(10)

where T is the set of mutated sites,  $\backslash T$  represents the indices of other sites, and MSA(x) represents the MSA of sequence x. For MSA Transformer, we used the same MSA generated by the EVcouplings webserver. Following Rao et al.<sup>11</sup> and Notin et al.<sup>1</sup>, we first filtered the MSA using HHFilter<sup>13</sup> and then sub-sampled the MSA to a size of 384 using the weight proposed by Hopf et al.<sup>2</sup> to reach optimal performances during inference. We sampled the MSA five times using five different random seeds and averaged the predictions from 5 different sub-sampled MSAs as the final fitness prediction  $s_{MSATrans}(x)$ .

**Ensemble fitness predictor**: After we collected the predictions from the five unsupervised protein fitness predictors, we next ensemble them into the final predictions. As the fitness predictions from different models may have varying scales, we first performed a z-score transformation to normalize the predictions from different models to a comparable scale (zero mean and unit variance). Specifically, for each model, we first computed the mean  $\mu$  and the standard deviation  $\sigma$  of its predictions for all the variants within the combinatorial search space, and we applied the transformation:  $\tilde{s}(\boldsymbol{x}) = (s(\boldsymbol{x}) - \mu)/\sigma$ . Then, we ensemble the predictions following Eq. 7, where specifically we have  $\tilde{s}_{\text{ESM}}(\boldsymbol{x}) = (\tilde{s}_{\text{ESM}-2}(\boldsymbol{x}) + \tilde{s}_{\text{ESM}-1v}(\boldsymbol{x}))/2$ . Notably, after the z-score transformation, a random library with the uniform AA distribution at all sites would have a mean predicted fitness of 0.

#### A.4 Structure-based filter

As the four unsupervised protein fitness predictors integrated into MODIFY only leverage protein sequence and evolutionary information (MSAs) for fitness prediction, we further designed a structure-based filter as a quality check for MODIFY, aiming to improve the synthesizability of the variants in libraries designed by MODIFY (Fig. 1c). In specific, the structure-based filter in MODIFY is based on ESMFold pLDDT<sup>14</sup> for foldability and FoldX  $\Delta\Delta G^{15}$  for structure stability. A variant would pass the filter if it meets any one of the two requirements (ESMFold pLDDT  $\geq c_1$ or FoldX  $\Delta\Delta G \leq c_2$ ). The detailed implementation for each filter is described below.

Foldability filter. ESMFold predicts the 3D structures solely based on protein sequences and outputs per-atom pLDDT, reflecting the prediction confidence for the predicted structures. For each mutated sequence, MODIFY applies ESMFold to predict its structure and averages the pLDDT over the backbone carbon atoms. A higher pLDDT would indicate a higher prediction confidence of ESMFold for the given sequence and better foldability. In MODIFY, we used both the web server of ESMFold (https://esmatlas.com/resources?action=fold) and the local version of ESMFold (https://github.com/facebookresearch/esm#esmf old) for pLDDT calculations. We set the pLDDT threshold  $c_1$  as the maximum of 85 and the median pLDDT of the variants in the searched landscape. Intuitively, a pLDDT higher than 85 would indicate a high foldability of the variant, and we would further increase the threshold if the majority of the variants of pLDDT were 82.0373 and 88.3853. For cytochrome c, as it would be computationally too expensive to screen the entire 6-site landscape, we randomly sampled 1,000 mutants from the landscape and set  $c_1$  as 88 as the median was 87.7661.

Structure stability filter. FoldX  $\Delta\Delta G$  (kcal/mol) measures the change in the change in Gibbs free energy between the wild-type (WT) structure and the mutant (MT) structure (i.e.,  $\Delta\Delta G_{\rm MT} = \Delta G_{\rm MT} - \Delta G_{\rm WT}$ ). The lower the  $\Delta\Delta G$  is, the more stable the mutant structure is. For wild-type proteins with experimentally determined structures, we selected the commonly used PDB structures as the WT structures (PDB: 1PGA for GB1 and PDB: 3CP5 for cytochrome c). If the target proteins do not have experimentally determined structures or the experimentally determined structures miss certain sites to be mutated (PDB: 1N9L for CreiLOV), we used AlphaFold2<sup>16</sup> to predict the target protein's 3D structures. Before we used the predicted structures as the WT structure, we checked their quality by aligning the predicted structures with known PDB structures. For each mutant, we repeated the FoldX  $\Delta\Delta G$  run five times to acquire robust results. The structure stability filter  $c_2$  is set as the median of the mutants in the landscape. For GB1 and CreiLOV, we calculated  $\Delta\Delta G$  for every mutant in the landscape and set  $c_2$  as 25 kcal/mol and 3 kcal/mol, respectively, as the medians were 24.6212 kcal/mol and 2.9683 kcal/mol. For cytochrome c, as it would be computationally too expensive to perform  $\Delta\Delta G$  calculations for every mutant in the landscape, we randomly sampled 1,000 mutants from the landscape for  $\Delta\Delta G$ calculations and set  $c_2$  as 4 kcal/mol as the median was 4.0227 kcal/mol.

#### A.5 High-quality starting library design for GB1

To evaluate the performance of MODIFY in designing high-quality libraries for protein engineering, we first applied MODIFY to design a starting library on the four-site combinatorial sequence space of GB1 and further performed an *in silico* ML-guided directed evolution experiment on the GB1 landscape. Here, we described our implementation in detail.

**MODIFY's informed setting (MODIFY-informed).** We applied the informed setting of MODIFY to design starting libraries for GB1 because we observed a notable difference between MODIFY's zero-shot predictions and the ground-truth fitness of single-mutation variants (Fig. 3fg). This is an excellent example for the demonstration of how we can incorporate prior domain knowledge into MODIFY in addition to MODIFY's zero-shot protein fitness predictions, as the ground-truth single-mutation fitnesses of GB1 had been characterized in a work<sup>17</sup> prior to the experimental characterization of the combinatorial GB1 landscape. Under MODIFY's default setting,  $\lambda$  was set as 1.64 and we had  $\alpha_i = 1/4, \forall i \in \{39, 40, 41, 54\}$ . Under the informed setting, however, we aimed to increase the diversity at site 40, as guided by prior domain knowledge, and hence we fixed the values of  $\lambda$ ,  $\alpha_{39}$ ,  $\alpha_{41}$ ,  $\alpha_{54}$  and tuned only  $\alpha_{40}$ . By increasing the value of  $\alpha_{40}$ , the diversity of site 40 would increase, and the probability of D40 would drop. We here adopted a heuristic approach that uses the probability of the top-1 AAs at other sites as a reference and adjusts  $\alpha_{40}$  accordingly. In specific, under the default setting, we observed that the leading AAs at other sites were L39, G41, and V54, which had probabilities of 29%, 53%, and 63%. We tuned  $\alpha_{40}$  so that the probability of D40 is no larger than those probabilities. Eventually, we set  $\lambda \alpha_{40}$  as 0.69 (i.e.,  $\alpha_{40} = 0.69/1.64$ ) so that D40 has a probability of 29%.

**Library distribution evaluation**. In our experiment, we evaluated the library distribution of MODIFY, MODIFY-informed, and NNK as shown in Fig. 3e. For each library distribution, we sampled  $10^4$  variants from the distribution (without removing the repeating variants) and evaluated the mean experimental fitness of the sampled variants.

**Baseline methods implementation**. For Exploitation, we first scored each variant within the search space using the zero-shot protein fitness predictor of MODIFY, and then we selected the 500

variants with the highest zero-shot protein fitness predictions to form the starting library. We recalculated the MODIFY predictions (re-sampling the MSA for MSA Transformer) for 5 different seeds. For NNK, each site is characterized by the independent NNK distribution (N=A/C/G/T and K=G/T). We sampled 500 variants from the NNK distribution at the DNA level and then translated the DNA sequence to the protein sequence. As truncated GB1 variants (i.e., variants that have stop codons) have not been experimentally characterized, we excluded them during the evaluation of the library quality and the in silico MLDE experiment, which likely favored the NNK libraries as generally truncated proteins had low fitness. We repeated the sampling from NNK 5 times using different seeds. For FoldX, we performed the FoldX  $\Delta\Delta G$  calculations for each variant, ranked the variants according to  $\Delta\Delta G$  in the ascending order, and selected 500 variants with the lowest  $\Delta\Delta G$  values. We repeated the FoldX  $\Delta\Delta G$  run 5 times. For FuncLib, we used its web server (https://ablift.weizmann.ac.il/step/fl terms/) for library construction on GB1 with default parameters. We used PDB 1PGA as the query structure and selected four amino acid positions (i.e., 39, 40, 41, and 54) to diversify. To maximize the size of the designed library for downstream MLDE, we did not perform clustering to the design library, resulting in a final library of 209 GB1 mutants.

Comparing MODIFY with DeCOIL and HotSpot Wizard. To ensure consistent comparison between MODIFY and DeCOIL, we used Triad  $\Delta\Delta G^{18,19}$ , a biophysical model for stability prediction, as the unsupervised fitness predictor for both approaches. We downloaded and used the Triad  $\Delta\Delta G$  scores provided by Yang et al.<sup>20</sup> in the DeCOIL GitHub repository (https: //github.com/jsunn-y/DeCOIL). Following Yang et al.<sup>20</sup>, we implemented DeCOIL using three different values of p (0.1, 1, and 25) with the default random initialization of 240 templates and selected 10 unique templates with the top-weighted diffuse coverage (based on Hamming distance and  $\sigma = 0.4$ ) for each value of p. For HotSpot Wizard v3.1, we designed libraries using its web tool (https://loschmidt.chemi.muni.cz/hotspotwizard/). We used PDB 1PGA as the query structure. To design combinatorial libraries for GB1, we manually chose V39, D40, G41, and V54 in the web tool for library construction. The Standard design mode was used based on the analysis of stability hot spots by structural flexibility, and amino acid frequency was used for the selection of amino acids. For each selected DeCOIL template and HotSpot Wizard template, we randomly sampled 500 variants and removed duplicated variants. We further removed variants with stop codons for DeCOIL and HotSpot Wizard, favoring DeCOIL and HotSpot Wizard during comparison. For MODIFY, we first normalized the Triad  $\Delta\Delta G$  scores by z-score and then carried out the same co-optimization of the library fitness and diversity. In addition to the previously adopted values of  $\lambda/M$  (Supplementary Information A.2), we further varied the value of  $\lambda/M$  from 0 to 0.2 with increments of 0.001. Each MODIFY library corresponding to a  $\lambda$  value on the Pareto frontier generated 500 unique variants, with  $\lambda = 0.396$ leading to the maximized area (zero-shot predicted fitness  $\times$  diversity) under the Pareto frontier (Supplementary Fig. 4). We compared the libraries designed by DeCOIL, HotSpot Wizard, and MODIFY on the GB1 landscape, using mean experimental fitness and average entropy as the metrics (Supplementary Fig. 4).

**t-SNE visualization**. To visualize the combinatorial sequence search space of the GB1 protein in Figs. 4b–f, we encoded the variants within the landscape using ESM-2 (esm2\_t36\_3B\_UR50D), which has a feature dimension of 2,560. We then used t-SNE to visualize the ESM-2 embeddings of the 160,000 variants from the search space in the 2D plane.

In silico MLDE experiment. As one of the major goals for cold-start library design in protein

engineering is to collect training data as the guidance for downstream MLDE of the proteins, we have designed an in silico MLDE experiment on the GB1 landscape as a proof-of-concept and assess the ability of MODIFY's libraries for guiding the directed evolution. Using the experimentally characterized fitness data of the designed libraries, we first trained a supervised ML model to predict the variant's fitness from the sequence for each library and screened the remaining landscape with the trained ML model in search of high-fitness variants. We selected the simplest setting to demonstrate the intrinsic advantage of MODIFY's libraries. As there were four sites to be mutated on the GB1 landscape, we applied the one-hot encoding  $w(x) \in \{0,1\}^{4 \times 20}$  for each variant x, where  $w(x)_{i,j}$  equals 1 if x has the j-th AA in the alphabet at the i-th site to be mutated otherwise 0. We then flattened w(x) into a 1D vector with a length of 80. We trained the Random Forest Regressor model in the sklearn package as the supervised ML model to learn the sequenceto-function relationships under the default parameters. To have a fair comparison between the libraries, we constructed a withheld test set containing all of the variants that were not included in any of the designed libraries. Then, we screened the test set using the trained ML model and prioritized variants with top predicted fitness values for evaluation. Since all methods use the same ML model, a better prioritization performance suggests that the library used as training data is more informative for MLDE. We repeated the in silico MLDE experiment 25 times for each method (using 5 random seeds for library generation and 5 random seeds for ML model training for each designed library).

#### A.6 High-quality starting library design for CreiLOV

After we validated MODIFY on the landscape of GB1 for designing high-quality starting libraries, we further assessed MODIFY on the fitness landscape of CreiLOV<sup>5</sup> (Supplementary Note A.1) as an ablation study. Unlike the GB1 landscape that includes all possible variants for the four mutated positions (i.e.,  $20^4 = 160,000$  variants), the CreiLOV landscape is a combination of only 20 beneficial or neutral single mutations at 15 sites, which were identified in single-residue, site-saturation mutagenesis<sup>5</sup> (Supplementary Figs. 5a-b).

While the NNK approach is incapable of designing combinatorial libraries on this partial search space, MODIFY can be flexibly applied to design starting libraries on this landscape by excluding the undesired AAs at every site and only calculating diversity over the allowed AAs. Besides the default setting of MODIFY, we further included two libraries on the Pareto frontier:  $L_1$ , which has an average predicted zero-shot fitness of 95% of the maximum predicted zero-shot fitness, and  $L_2$ , which has an average entropy of 95% of the maximum average entropy (Supplementary Fig. 5c). We also compared MODIFY to the random method, which uniformly samples variants from the combinatorial search space of CreiLOV, the FoldX approach, and the Exploitation approach. For each approach, we designed a library of 500 non-repeating variants and repeated 5 times using different seeds.

We observed that the MODIFY's designed library strikes an optimal balance between the library's site-wise diversity and the mean predicted fitness even on the partial, 15-site landscape of CreiLOV (Supplementary Fig. 5c). By adjusting the parameter  $\lambda$ , MODIFY could slide through the Pareto frontier and provide the tradeoff between library fitness and diversity. We then used the ground truth fitness data of CreiLOV to evaluate MODIFY's designed libraries, where the fitness value of a CreiLOV variant represents its fluorescence. While the random approach achieved the highest diversity at the price of the lowest library fitness and Exploitation achieved the highest

library fitness at the price of the lowest library diversity, MODIFY's designed libraries achieved a controllable tradeoff between the high library fitness and the high library diversity (Supplementary Fig. 5d). For MODIFY ( $L_1$ ), MODIFY, and MODIFY ( $L_2$ ), the parameter  $\lambda$  were set as 0.3, 0.93, and 3, respectively, for all residue index *i*. As  $\lambda$  increased, the diversity of MODIFY's designed library increased while the library fitness decreased. Through this experiment, we further demonstrated the applicability of MODIFY as MODIFY is designed to be able to adapt to the landscapes of different proteins flexibly and to provide a controllable tradeoff for the users.

#### A.7 Experimental validation of MODIFY on engineering cytochrome c

Apart from the computational experiments, we applied MODIFY to designing a starting library for cytochrome *c*, and we evaluated the MODIFY's designed library against an NNK library in the wet lab for catalyzing new-to-biology reactions. Incorporating prior domain knowledge on engineering cytochrome *c*, we first designed a MODIFY library under the informed setting on 6 residues (75, 99, 100, 101, 102, and 103). Then, we expressed the cytochrome *c* variants designed by MODIFY and evaluated them for catalyzing the C–B bond formation reaction and C–Si bond formation reaction, using activity and enantioselectivity as the metrics. The computational design procedure and the experimental procedure are described below in detail.

#### A.7.1 Computational design procedure for MODIFY library

**MODIFY's informed setting (MODIFY-informed)**. The residue-level diversity control of MODIFY enabled us to incorporate findings from prior efforts of directed evolution to inform our library design, in which we increased the diversity at residue 75 that harbors several beneficial amino acids for both reactions<sup>21</sup> and excluded specific amino acids (e.g., methionine at residue 100) that would inhibit the enzymatic activity in both insertion reactions<sup>22</sup>. While MODIFY's zero-shot predictions highly prioritized variants with the mutation V75M over other single mutations at site 75, prior directed evolution studies have identified V75T and V75R as important single mutations at site 75. Furthermore, as we observed that M75 has a high probability of 78% under the default setting of MODIFY (Fig. 5e;  $\lambda = 1.44$ ,  $\alpha_i = 1/6$ ,  $\forall i \in \{75, 99, 100, 101, 102, 103\}$ ), we decided to increase the value of  $\alpha_{75}$  so that the diversity at site 75 would be promoted. Similar to the approach we adopted for the experiment on GB1, we used the top-1 AAs at other sites as the reference. We tuned  $\alpha_{75}$  so that the probability of M75 is as high as the second-highest top-1 AA, Q103, which has a probability of 59%. Eventually, we set  $\lambda \alpha_{75}$  as 0.3 (i.e.,  $\alpha_{75}$ =0.3/1.44) so that M75 has a probability of 60% (Fig. 5f). The Pareto frontier of MODIFY's designs for cytochrome *c* is shown in Fig. 5d.

# A.7.2 Experiment procedure for MODIFY library cloning and biocatalytic borylation and silylation reactions.

**Oligo pool amplification.** A DNA oligo pool (141 bp) containing 1,000 sequences designed by MODIFY was ordered from Twist Bioscience (South San Francisco, CA). The oligo pool was amplified according to the protocol provided by Twist Bioscience without modifications using the program detailed below.

**Oligo pool amplification protocol.** A stock solution of the oligo pool was resuspended in 10 mM Tris buffer, pH 8.0 to a final concentration of 20 ng/ $\mu$ L. The KAPA HiFi HotStart PCR

kit from Roche was used for amplification. In this process, 5  $\mu$ L 5x KAPA HiFi buffer, 0.75  $\mu$ L 10 mM dNTP, 0.75  $\mu$ L 10  $\mu$ M forward primer, 0.75  $\mu$ L 10  $\mu$ M reverse primer, 0.5  $\mu$ L oligo pool, and 0.5  $\mu$ L KAPA HiFi HotStart DNA polymerase (1 U/ $\mu$ L) were added into 25  $\mu$ L reaction. The solution was mixed by gently tapping the PCR tube.

PCR cycling program: PCR reaction components are included in Supplementary Table 7, and PCR reaction conditions are included in Supplementary Table 8.

Forward primer: GTGGTCCAGTTTACATCATG

Reverse primer: GAATTGCACGTGCTTGTTCTT

**Plasmid construction and transformation.** pET-22b(+) was used as a cloning vector and Gibson assembly<sup>23</sup> was used to ligate DNA fragments. Following PCR amplification, the DNA fragments were cloned into a pET-22b(+) vector. Ligated plasmids were used to transform electrocompetent *E. cloni* BL21(DE3) cells (Lucigen) containing the cytochrome *c* maturation plasmid pEC86 (GenBank: OM367995.1). The pEC86 plasmid was provided by Prof. Kara Bren (University of Rochester).

**MODIFY library sequencing.** Following the transformation, the SOC culture was plated onto  $LB_{amp/chlor}$  agar plates. Single colonies from  $LB_{amp/chlor}$  agar plates were picked using sterile toothpicks and cultured in deep-well 96-well plates containing  $LB_{amp/chlor}$  (400 µL) at 37 °C, 250 rpm shaking for 14 h. Glycerol stocks were prepared by mixing 80 µL starter culture with 50% v/v glycerol/water (80 µL) and stored in a -80 °C freezer. Frozen glycerol stocks were sent to Azenta Life Sciences (Burlington, MA) for sequencing.

Hemochrome assay for the determination of haem protein concentration <sup>24,25</sup>. In a conical tube, a solution of 0.2 M NaOH, 40% (v/v) pyridine, 0.5 mM K<sub>3</sub>Fe(CN)<sub>6</sub> was prepared (Solution I: pyridine-NaOH-K<sub>3</sub>Fe(CN)<sub>6</sub> solution). In another 1.5 mL centrifuge tube, a solution of 0.5 M sodium dithionite was prepared in 0.1 M NaOH. 500 µL of clarified lysate in M9-N minimal medium (abbreviated as M9-N buffer; pH 7.4) which contains 47.7 µM Na<sub>2</sub>HPO<sub>4</sub>, 22.0 µM KH<sub>2</sub>PO<sub>4</sub>, 8.6 µM NaCl, 2.0 µM MgSO<sub>4</sub>, and 0.1 µM CaCl<sub>2</sub>. and 500 µL of Solution I were transferred to a cuvette and carefully mixed. The UV-Vis spectrum of the oxidized Fe(III) state was recorded immediately. To the cuvette was then added 10 µL of the sodium dithionite solution (100 mg/mL). The cuvette was sealed with parafilm and the UV-Vis spectrum of the reduced Fe(II) state was recorded immediately. A cuvette containing 500 µL of M9-N and 500 µL Solution I was used as a reference for all absorbance measurements. Concentrations of cytochrome *c* were determined using a published extinction coefficient for heme *c*,  $\epsilon_{550}$ (reduced) = 30.27 mM<sup>-1</sup> cm<sup>-1</sup>.

MODIFY and NNK library screening in 96-well plates for biocatalytic C–B bond formation. Single colonies were picked using sterile toothpicks from LB<sub>amp/chlor</sub> agar plates and grown in deep-well (2 mL) 96-well plates containing LB<sub>amp/chlor</sub> (400  $\mu$ L) at 37 °C, 250 rpm shaking. After 16 h, aliquots of the overnight culture (60  $\mu$ L) were transferred to deep-well 96-well plates containing HB<sub>amp/chlor</sub> (1 mL) using a 12-channel Eppendorf ResearchPlus multichannel pipette. Glycerol stocks of the libraries were prepared by mixing the starter culture (80  $\mu$ L) with 50% v/v glycerol:water (80  $\mu$ L). Glycerol stocks were stored at –78 °C in 96-well microplates. The expression cultures were shaken at 37 °C, 250 rpm for 3 h. The culture was placed on ice for 30 min, and isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG) and 5-aminolevulinic acid (ALA) were added to final concentrations of 20  $\mu$ M and 200  $\mu$ M, respectively (total volume per well = 1.1 mL). The induced cultures were shaken at 20 °C, 220 rpm for 22 h. Cells were then pelleted (4,000 g, 5 min, 4 °C), resuspended in 370  $\mu$ L M9-N buffer (pH = 7.4), and transferred to an anaerobic chamber. Inside the anaerobic chamber, to deep-well plates of cell suspensions were added a stock solution of the NHC-BH<sub>3</sub> substrate (15 µL per well, 133 mM in MeCN) and the diazo compound (15 µL per well, 200 mM in MeCN). The final concentrations of the NHC-BH<sub>3</sub> and the diazo compound were 5 mM and 7.5 mM, respectively. The plates were then sealed with aluminum foil, shaken at 680 rpm on a Corning microplate shaker for 12 h, and then taken out of the anaerobic chamber. The reactions were quenched with hexanes:ethyl acetate (50:50 v/v, 600 µL) containing 1 mM mesitylene as the internal standard for HPLC analysis. The 96-well plates were sealed with silicone sealing mats and shaken vigorously to thoroughly mix the organic and aqueous layers. The plates were centrifuged (4,000 g, 5 min) to separate the aqueous and organic layers. 380 µL organic phase was transferred to 2.0 mL HPLC vials equipped with 500 µL inserts for HPLC analysis (Daicel IC column, 47% *i*-PrOH/Hexanes, 1.4 mL/min,  $t_{\rm R} = 5.1$  min (major), 6.6 min (minor)). HPLC traces of borane product are shown in Supplementary Figs. 7 and 8.

Analytical scale biocatalytic C-B bond forming reaction. 29 mL HB<sub>amp/chlor</sub> in a 125 mL flask was inoculated with an overnight culture (1 mL, LB<sub>amp/chlor</sub>) of recombinant E. cloni BL21(DE3) cells containing a pET-22b(+) plasmid encoding the cytochrome c variant, and the pEC86 plasmid. The culture was shaken at 37 °C and 230 rpm until the OD<sub>600</sub> was 0.7 (approximately 3 h). The culture was placed on ice for 30 min, and isopropyl β-D-1-thiogalactopyranoside (IPTG) and 5-aminolevulinic acid (ALA) were added to final concentrations of 20  $\mu$ M and 200  $\mu$ M, respectively, using a stock solution of 620  $\mu$ M IPTG and 6.2 mM ALA in HB<sub>amp/chlor</sub> (1 mL of this stock solution was added to each expression culture). The incubator temperature was reduced to 20 °C, and the culture was shaken for 20 h at 150 rpm. Cells were collected by centrifugation (4,000 g, 5 min, 4 °C) and resuspended in M9-N buffer (pH = 7.4) to a target OD<sub>600</sub> of 30. Following resuspension, 1 mL of the suspension was lysed using a QSonica Q500 ultrasonic homogenizer equipped with a stepped microtip (6 min total, 1 sec on, 1 sec off, 40% amplitude). The resulting lysed solution was centrifuged (21,000 g, 10 min, 4 °C) using an Eppendorf microcentrifuge 5425R to remove the cell debris. The supernatant (clarified lysate) was separated from the pellet and kept on ice for hemochrome assay to determine the haem protein concentration (the hemochrome assay protocol is described above).

In an anaerobic chamber, stock solutions of the NHC-BH<sub>3</sub> substrate (15  $\mu$ L, 133 mM in MeCN), diazo compound (15  $\mu$ L, 200 mM in MeCN), and sodium dithionite (40  $\mu$ L, 0.1 M in degassed water) were added to a suspension of *E. coli* cells in M9-N buffer harbouring *Rma* cyt *c* variant (370  $\mu$ L, adjusted to OD<sub>600</sub> = 15) in a 2 mL vial. The vial was sealed and shaken at 680 rpm on a Corning microplate shaker at room temperature for 12 h. The vial was then taken out of the anaerobic chamber, and the reaction mixture was quenched with hexanes:ethyl acetate (1:1 v/v, 0.6 mL) containing 1 mM mesitylene as the internal standard. The reaction mixture was transferred to a microcentrifuge tube, vortexed (20 s), then centrifuged (21,000 g, 5 min) to completely separate the organic and aqueous layers. The organic layer (400  $\mu$ L) was transferred to a 2.0 mL HPLC vial equipped with a 500  $\mu$ L insert for HPLC analysis (Daicel IC column, 47% *i*-PrOH/Hexanes, 1.4 mL/min, 8 min).

**Calibration curve development C–B bond formation.** To a 1.5 mL microcentrifuge tube were added 400  $\mu$ L of M9-N buffer solution. A stock solution of the authentic product in ethyl acetate and 600  $\mu$ L extraction solvent hexanes:ethyl acetate (1:1 v/v) containing 1 mM mesitylene were added to the buffer. Final concentrations of the analyte were 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 mM of, respectively. The mixture was vortexed (20 s for 3 times) and centrifuged (21000 g, 5 min) to separate the organic and aqueous layers. The organic layer was transferred to a vial with an insert for normal phase HPLC analysis (Daicel IC column, 47% *i*-PrOH/Hexanes, 1.4 mL/min,

8 min). The calibration curves detailed in Supplementary Fig. 9 product yield (y-axis) against the ratio of the peak area of product to the peak area of internal standard (x-axis). In the development of our calibration curves, care was taken such that our calibration curve samples were prepared in a way similar to enzymatic samples. The substrate calibration curve is made with the same method (Supplementary Fig. 10).

MODIFY and NNK library screening in 96-well plates for biocatalytic C–Si bond formation. Single colonies were picked using sterile toothpicks from LB<sub>amp/chlor</sub> agar plates and grown in deep-well (2 mL) 96-well plates containing LB<sub>amp/chlor</sub> (400 µL) at 37 °C, 250 rpm shaking. After 16 h, aliquots of the overnight culture (60 µL) were transferred to deep-well 96-well plates containing HB<sub>amp/chlor</sub> (1 mL) using a 12-channel Eppendorf ResearchPlus multichannel pipette. Glycerol stocks of the libraries were prepared by mixing the starter culture (80  $\mu$ L) with 50% v/v glycerol:water (80  $\mu$ L). Glycerol stocks were stored at -78 °C in 96-well microplates. The expression cultures were shaken at 37 °C, 250 rpm for 3 h. The culture was placed on ice for 30 min, and isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG) and 5-aminolevulinic acid (ALA) were added to final concentrations of 20  $\mu$ M and 200  $\mu$ M, respectively (total volume per well = 1.1 mL). The induced cultures were shaken at 20 °C, 220 rpm for 22 h. Cells were then pelleted (4,000 g, 5 min, 4 °C), resuspended in 370  $\mu$ L M9-N buffer (pH = 7.4), and transferred to an anaerobic chamber. Inside the anaerobic chamber, to deep-well plates of cell suspensions were added a stock solution of the PhMe<sub>2</sub>SiH substrate (15 µL per well, 133 mM in MeCN) and the diazo compound (15 µL per well, 200 mM in MeCN). The final concentrations of the PhMe<sub>2</sub>SiH and the diazo compound were 5 mM and 7.5 mM, respectively. The plates were then sealed with aluminum foil, shaken at 680 rpm on a Corning microplate shaker for 12 h, and then taken out of the anaerobic chamber. The reactions were quenched with hexanes: isopropanol (80:20 v/v, 600  $\mu$ L) containing 1 mM mesitylene as the internal standard for HPLC analysis. The 96-well plates were sealed with silicone sealing mats and shaken vigorously to thoroughly mix the organic and aqueous layers. The plates were centrifuged (4,000 g, 5 min) to separate the aqueous and organic layers. 380  $\mu$ L organic phase was transferred to 2.0 mL HPLC vials equipped with 500 µL inserts for HPLC analysis (CHIRALPAK IB N-5 column, 0.3% *i*-PrOH/Hexanes, 1.0 mL/min, 8 min,  $t_{\rm R}$  = 5.7 (major), 6.4 (minor) min). HPLC traces of silane product are shown in Supplementary Figs. 11 and 12.

Analytical scale biocatalytic C–Si bond forming reaction. 29 mL  $HB_{amp/chlor}$  in a 125 mL flask was inoculated with an overnight culture (1 mL, LB<sub>amp/chlor</sub>) of recombinant E. cloni BL21(DE3) cells containing a pET-22b(+) plasmid encoding the cytochrome c variant, and the pEC86 plasmid. The culture was shaken at 37 °C and 230 rpm until the OD<sub>600</sub> was 0.7 (approximately 3 h). The culture was placed on ice for 30 min, and isopropyl  $\beta$ -D-1-thiogalactopyranoside (IPTG) and 5-aminolevulinic acid (ALA) were added to final concentrations of 20 µM and 200  $\mu$ M, respectively, using a stock solution of 620  $\mu$ M IPTG and 6.2 mM ALA in HB<sub>amp/chlor</sub> (1 mL of this stock solution was added to each expression culture). The incubator temperature was reduced to 20 °C, and the culture was shaken for 20 h at 150 rpm. Cells were collected by centrifugation (4,000 g, 5 min, 4 °C) and resuspended in M9-N buffer (pH = 7.4) to a target OD<sub>600</sub> of 15. Then the suspension was lysed using a QSonica Q500 ultrasonic homogenizer equipped with a stepped microtip (6 min total, 1 sec on, 1 sec off, 40% amplitude). The resulting lysed solution was centrifuged (21,000 g, 10 min, 4 °C) using an Eppendorf microcentrifuge 5425R to remove the cell debris. The supernatant (clarified lysate) was separated from the pellet and kept on ice for hemochrome assay to determine the haem protein concentration (the hemochrome assay protocol is described above).

In an anaerobic chamber, stock solutions of the PhMe<sub>2</sub>SiH substrate (10  $\mu$ L, 800 mM in MeCN), diazo compound (10  $\mu$ L, 400 mM in MeCN), and sodium dithionite (40  $\mu$ L, 100 M in degassed water) were added to 370  $\mu$ L lysate in a 2 mL vial. The vial was sealed and shaken at 680 rpm on a Corning microplate shaker at room temperature for 12 h. The vial was then taken out of the anaerobic chamber, and the reaction mixture was quenched with hexanes: *i*-Pr<sub>2</sub>O (1:1 v/v, 0.6 mL) containing 1 mM mesitylene as the internal standard. The reaction mixture was transferred to a microcentrifuge tube, vortexed (20 s), and then centrifuged (21,000 g, 5 min) to completely separate the organic and aqueous layers. The organic layer (400  $\mu$ L) was transferred to a 2.0 mL HPLC vial equipped with a 500  $\mu$ L insert for HPLC analysis (CHIRALPAK IB N-5 column, 0.3% *i*-PrOH/Hexanes, 1.0 mL/min, 8 min).

Calibration curve development C–Si bond formation. To a 1.5 mL microcentrifuge tube were added 400  $\mu$ L of M9-N buffer solution. A stock solution of the authentic product in ethyl acetate and 600  $\mu$ L extraction solvent hexanes: *i*-Pr<sub>2</sub>O (1:1 v/v) containing 1 mM mesitylene were added to the buffer. Final concentrations of the analyte were 0.0, 1.0, 2.0, 4.0, 8.0, and 12 mM of, respectively. The mixture was vortexed (20 s for 3 times) and centrifuged (21,000 g, 5 min) to separate the organic and aqueous layers. The organic layer was transferred to a vial with an insert for normal phase HPLC analysis (CHIRALPAK IB N-5 column, 0.3% i-PrOH/Hexanes, 1.0 mL/min, 8 min). The calibration curve in Supplementary Fig. 13 plots product yield (y-axis) against the ratio of the peak area of product to the peak area of internal standard (x-axis). In the development of our calibration curves, care was taken such that our calibration curve samples were prepared in a way similar to enzymatic samples.

**Data processing**. After we collected the activity and enatioselectivity data of the MODIFY and NNK libraries, we next processed our data to normalize the yield of all the variants between different plates. In each 96-well plate of NNK and MODIFY libraries, we included a total of 8 MMDTDT variants as a reference in wells A1, B2, C3, D4, E5, F6, G7 and H8. We first computed the average yield  $\bar{y}$  of the reference variants on all plates. For each 96-well plate *i*, we computed the average yield  $\bar{y}_i$  of this reference variant as the reference. Then, for each plate, we scaled the experimentally determined yields by  $\bar{y}/\bar{y}_i$ . While comparing the NNK library and the MODIFY library (Figs. 5i-j), data from these reference variants was not included.

#### A.8 Classical molecular dynamics (MD) simulations.

Classical MD simulations were performed to investigate the flexible loop dynamics of new enzyme mutants. The starting structure of the Fe carbene intermediates of the TDE variant was obtained from Protein Data Bank (PDB ID: 6CUN). Missing residues were added using the Mod-Loop server<sup>26</sup>. To generate cytochrome *c* variants, residues 75 and 99-103 were mutated using the Mutagenesis tool in PyMOL<sup>27</sup>. The geometries of substrates were optimized using the B3LYP functional<sup>28,29</sup> and 6-31G(d,p) basis set in Gaussian 16<sup>30</sup>. Substrates were then docked into cytochrome *c* variants using AutoDock<sup>31</sup> with the Lamarckian genetic algorithm. A grid box with dimensions of 40 Å, 40 Å, and 40 Å was used, whose center was set to be close to the carbene center. Docking parameters were set as follows: genetic algorithm run of 30, population size of 150, and 25 million energy evaluations. The best-scored pose from the docking calculation for each substrate was then used to construct the initial input geometry for classical MD simulations.

Classical MD simulations were carried out using the pmemd module<sup>32</sup> of the GPU-accelera-ted Amber 20 software<sup>33</sup>. The Amber ff14SB force field<sup>34</sup> was used in all classical MD simulations.

Parameters for substrates were generated using the general Amber force field (gaff2)<sup>35</sup>. Force field parameters for the Fe porphyrin carbene (IPC) species were generated using the MCPB.py module<sup>36</sup>. Using the Merz-Singh-Kollman scheme<sup>37,38</sup>, RESP charge fitting<sup>39</sup> on electrostatic potential generated at the B3LYP/6-31G(d) level of theory was performed to generate partial charges at the open-shell singlet state, which was calculated to be the ground state of IPC intermediate<sup>40</sup>. Protonation states of enzyme residues were determined using the H++ server<sup>41</sup>. The enzyme was then put into a solvated cuboid box with periodic boundary condition using the TIP3P water model<sup>42</sup>. The minimum distance between the enzyme surface and the edge of the water box was set to 10 Å. Water molecules were treated with the SHAKE algorithm<sup>43</sup>. The system was neutralized by adding Na<sup>+</sup> counterions. Long-range electrostatic was calculated using the particle-mesh-Ewald method<sup>44</sup>. Lennard-Jones and electrostatic interaction cut-offs were set to 12 Å.

We first performed a 30,000-step energy minimization with positional restraints for the protein and the substrate by applying a force constant of 500 kcal·mol<sup>-1</sup>·Å<sup>-2</sup>. Next, the system was gradually heated from 0 K to 300 K in 200 ps, which was followed by an equilibration using the isothermal–isobaric ensemble (NPT) in the next 25 ns. Finally, production MD simulations were run in 1000 ns using the same conditions as the equilibration with a time step of 2 fs. In our MD simulations, to simulate the substrate near attack conformation<sup>45</sup> in the carbene insertion process and to prevent undesired substrate dissociation events, the carbene carbon and hydrogen atom distances were restrained in a range of 2.4–2.8 Å with a harmonic potential of 500 kcal·mol<sup>-1</sup>·Å<sup>-2</sup>. After the MD simulations, clustering analysis was carried out using the cpptraj module<sup>46</sup> to identify the most populated structure in 1000 ns of classical MD simulation. The RMSD value was used as the distance metric for clustering analysis.

To quantify the flexibility of each variant, B-factor values<sup>47</sup> ( $B_i$ , Å<sup>2</sup>) were calculated for C $\alpha$  atoms using root-mean-square fluctuation ( $\rho_i^{rmsf}$ ) calculations implemented in cpptraj software:

$$B_i = \frac{8\pi^2}{3} (\rho_i^{rmsf})^2.$$
(11)

## **B** Supplementary Figures







**Supplementary Figure 2. MODIFY achieves accurate and robust zero-shot protein fitness prediction.** The ensemble ML model of MODIFY was compared with five state-of-the-art unsupervised protein fitness predictors (ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer) for zero-shot protein fitness predictions on the ProteinGym v1.0 benchmark, which contains 217 Deep Mutational Scanning (DMS) assays across diverse protein families. a, The average performances of all methods on proteins with low, medium, and high MSA depths. **b,** The average performances of all methods on DMS assays with different function types (catalytic and biochemical activity, binding, expression, organismal fitness, and stability).



Supplementary Figure 3. MODIFY achieves accurate and robust zero-shot protein fitness prediction for high-order mutants. MODIFY was compared with five state-of-the-art unsupervised protein fitness predictors: ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer. **a–b**, Comparisons on predicting the fitness of the mutants from the landscapes of GB1, ParD3, and CreiLOV (covering 4, 3, and 15 residues, respectively), using the absolute improvement of Spearman correlation (**a**) and nDCG (**b**) of MODIFY over the mean performances of baseline methods as the evaluation metric. nDCG (Normalized Discounted Cumulative Gain) is a metric for assessing the ranking quality of a model: a high nDCG score would indicate that the model prioritizes variants with high fitness over variants with low fitness. The bar plots represented the mean  $\pm$  SD of the data.



Supplementary Figure 4. MODIFY outperforms DeCOIL and HotSpot Wizard in combinatorial starting library design for GB1. MODIFY, DeCOIL, and HotSpot Wizard v3.1 were evaluated for designing a starting library for GB1 of size 500, using mean experimental fitness and average entropy as the metrics. For a fair comparison, Triad  $\Delta\Delta G$  was used as the zero-shot prediction scores for both MODIFY and DeCOIL. Following Yang et al.<sup>20</sup>, 10 unique DeCOIL templates with top-weighted diffuse coverages were selected from the 240 templates provided by each DeCOIL implementation as parameterized by *p*. For HotSpot Wizard, Standard design mode was employed, and five random seeds were used for sampling. As DeCOIL and HotSpot Wizard employed degenerate-codon libraries, duplicated variants were dropped for them. In contrast, MODIFY directly designed 500 unique variants.



Supplementary Figure 5. MODIFY designs high-quality combinatorial starting libraries for CreiLOV. a, AlphaFold2 predicted 3D structure of CreiLOV. The residues mutated to create combinatorial libraries are colored in blue. b, The combinatorial search space of CreiLOV, unlike the GB1 landscape, only includes 20 single mutations that were previously determined beneficial or neutral (Supplementary Information A.1). c, The Pareto frontier of the CreiLOV library designs, with each point representing a library corresponding to a diversity strength  $\lambda$ . d–e, The mean experimental fitness and diversity (average entropy) of the designed libraries, each with 500 CreiLOV variants. In addition to MODIFY (default setting), MOD-IFY ( $L_1$ ), which has an average predicted zero-shot fitness of 95% of the maximum predicted zero-shot fitness, and MODIFY ( $L_2$ ), which has an average entropy of 95% of the maximum average entropy, were included. Random sampling, FoldX, and Exploitation were included as the baseline methods. The bar plots represented the mean  $\pm$  SD over 5 independent repetitions.



Supplementary Figure 6. MODIFY achieves accurate and robust zero-shot protein fitness prediction. MODIFY's ensemble-based zero-shot fitness prediction model was compared with different subset combinations of its constituent models (ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer). **a**–**b**, Comparison on the ProteinGym benchmark, which contains 87 Deep Mutational Scanning (DMS) assays across diverse protein families, using Spearman correlation averaged over all proteins (**a**) and over proteins with low MSA depths (**b**) as the evaluation metrics. For each combination, constituent models colored in black were included using the same  $\beta_i$  weight (Eq. 7). The bar plot represented the mean  $\pm$  SD of the data.



Supplementary Figure 7. Borane product: racemic authentic sample (HPLC analysis).



Supplementary Figure 8. Borane product: enantioenriched product obtained using MELQNQ variant: 96:4 e.r. (HPLC analysis).



Supplementary Figure 9. The product calibration curve for C–B bond formation.



Supplementary Figure 10. The substrate calibration curve for C–B bond formation.



Supplementary Figure 11. Silane product: racemic authentic sample (HPLC analysis).



Supplementary Figure 12. Silane product: enantioenriched product obtained using TDE variant: 99:1 e.r. (HPLC analysis).



Supplementary Figure 13. The product calibration curve for C-Si bond formation.

# **C** Supplementary Tables

| Abbreviation | ProteinGym DMS dataset name            | Abbreviation | ProteinGym DMS dataset name              |
|--------------|----------------------------------------|--------------|------------------------------------------|
| A0A140D2T1   | A0A140D2T1_ZIKV_Sourisseau_growth_2019 | MTH3         | MTH3_HAEAE_Rockah-Shmuel_2015            |
| A0A192B1T2   | A0A192B1T2_9HIV1_Haddox_2018           | NCAP         | NCAP_I34A1_Doud_2015                     |
| A0A1I9GEU1   | A0A1I9GEU1_NEIME_Kennouche_2019        | NRAM         | NRAM_I33A0_Jiang_standard_2016           |
| A0A2Z5U3Z0-1 | A0A2Z5U3Z0_9INFA_Doud_2016             | NUD15        | NUD15_HUMAN_Suiter_2020                  |
| A0A2Z5U3Z0-2 | A0A2Z5U3Z0_9INFA_Wu_2014               | P53-1        | P53_HUMAN_Giacomelli_NULL_Etoposide_2018 |
| A4D664       | A4D664_9INFA_Soh_CCL141_2019           | P53-2        | P53_HUMAN_Giacomelli_NULL_Nutlin_2018    |
| A4GRB6       | A4GRB6_PSEAI_Chen_2020                 | P53-3        | P53_HUMAN_Giacomelli_WT_Nutlin_2018      |
| A4           | A4_HUMAN_Seuma_2021                    | P53-4        | P53_HUMAN_Kotler_2018                    |
| AACC1        | AACC1_PSEAI_Dandage_2018               | P84126       | P84126_THETH_Chan_2017                   |
| ADRB2        | ADRB2_HUMAN_Jones_2020                 | PABP         | PABP_YEAST_Melamed_2013                  |
| AMIE         | AMIE_PSEAE_Wrenbeck_2017               | PA           | PA_I34A1_Wu_2015                         |
| B3VI55       | B3VI55_LIPST_Klesmith_2015             | POLG-1       | POLG_CXB3N_Mattenberger_2021             |
| BLAT-1       | BLAT_ECOLX_Deng_2012                   | POLG-2       | POLG_HCVJF_Qi_2014                       |
| BLAT-2       | BLAT_ECOLX_Firnberg_2014               | PTEN-1       | PTEN_HUMAN_Matreyek_2021                 |
| BLAT-3       | BLAT_ECOLX_Jacquier_2013               | PTEN-2       | PTEN_HUMAN_Mighell_2018                  |
| BLAT-4       | BLAT_ECOLX_Stiffler_2015               | Q2N0S5       | Q2N0S5_9HIV1_Haddox_2018                 |
| BRCA1        | BRCA1_HUMAN_Findlay_2018               | Q59976       | Q59976_STRSQ_Romero_2015                 |
| C6KNH7       | C6KNH7_9INFA_Lee_2018                  | R1AB         | R1AB_SARS2_Flynn_growth_2022             |
| CALM1        | CALM1_HUMAN_Weile_2017                 | RASH         | RASH_HUMAN_Bandaru_2017                  |
| CAPSD        | CAPSD_AAV2S_Sinai_substitutions_2021   | REV          | REV_HV1H2_Fernandes_2016                 |
| CCDB-1       | CCDB_ECOLI_Adkar_2012                  | RL401-1      | RL401_YEAST_Mavor_2016                   |
| CCDB-2       | CCDB_ECOLI_Tripathi_2016               | RL401-2      | RL401_YEAST_Roscoe_2013                  |
| CP2C9-1      | CP2C9_HUMAN_Amorosi_abundance_2021     | RL401-3      | RL401_YEAST_Roscoe_2014                  |
| CP2C9-2      | CP2C9_HUMAN_Amorosi_activity_2021      | SC6A4        | SC6A4_HUMAN_Young_2021                   |
| DLG4-1       | DLG4_HUMAN_Faure_2021                  | SCN5A        | SCN5A_HUMAN_Glazer_2019                  |
| DLG4-2       | DLG4_RAT_McLaughlin_2012               | SPG1         | SPG1_STRSG_Olson_2014                    |
| DYR          | DYR_ECOLI_Thompson_plusLon_2019        | SPIKE-1      | SPIKE_SARS2_Starr_bind_2020              |
| ENV-1        | ENV_HV1B9_DuenasDecamp_2016            | SPIKE-2      | SPIKE_SARS2_Starr_expr_2020              |
| ENV-2        | ENV_HV1BR_Haddox_2016                  | SRC          | SRC_HUMAN_Ahler_CD_2019                  |
| ESTA         | ESTA_BACSU_Nutschel_2020               | SUMO1        | SUMO1_HUMAN_Weile_2017                   |
| F7YBW8       | F7YBW8_MESOW_Aakre_2015                | SYUA         | SYUA_HUMAN_Newberry_2020                 |
| GAL4         | GAL4_YEAST_Kitzman_2015                | TADBP        | TADBP_HUMAN_Bolognesi_2019               |
| GCN4         | GCN4_YEAST_Staller_induction_2018      | TAT          | TAT_HV1BR_Fernandes_2016                 |
| GFP          | GFP_AEQVI_Sarkisyan_2016               | TPK1         | TPK1_HUMAN_Weile_2017                    |
| GRB2         | GRB2_HUMAN_Faure_2021                  | TPMT         | TPMT_HUMAN_Matreyek_2018                 |
| HIS7         | HIS7_YEAST_Pokusaeva_2019              | TPOR         | TPOR_HUMAN_Bridgford_S505N_2020          |
| HSP82-1      | HSP82_YEAST_Flynn_2019                 | TRPC-1       | TRPC_SACS2_Chan_2017                     |
| HSP82-2      | HSP82_YEAST_Mishra_2016                | TRPC-2       | TRPC_THEMA_Chan_2017                     |
| I6TAH8       | I6TAH8_I68A0_Doud_2015                 | UBC9         | UBC9_HUMAN_Weile_2017                    |
| IF1          | IF1_ECOLI_Kelsic_2016                  | UBE4B        | UBE4B_MOUSE_Starita_2013                 |
| KCNH2        | KCNH2_HUMAN_Kozek_2020                 | VKOR1-1      | VKOR1_HUMAN_Chiasson_abundance_2020      |
| KKA2         | KKA2_KLEPN_Melnikov_2014               | VKOR1-2      | VKOR1_HUMAN_Chiasson_activity_2020       |
| MK01         | MK01_HUMAN_Brenan_2016                 | YAP1         | YAP1_HUMAN_Araya_2012                    |
| MSH2         | MSH2_HUMAN_Jia_2020                    |              |                                          |

**Supplementary Table 1. The abbreviations for DMS dataset names in the ProteinGym substitution benchmark dataset.** For formatting purposes, the DMS dataset names used in the ProteinGym dataset were abbreviated in Fig. 2. Digit suffixes were used to further distinguish between different DMS studies targeting the same protein.

| Abbreviation       | ProteinGym DMS dataset name          | Abbreviation    | ProteinGym DMS dataset name                     | Abbreviation   | ProteinGym DMS dataset name                  |
|--------------------|--------------------------------------|-----------------|-------------------------------------------------|----------------|----------------------------------------------|
| A0A140D2T1         | A0A140D2T1_ZIKV_Sourisseau_2019      | HIS7            | HIS7_YEAST_Pokusaeva_2019                       | Q837P5         | Q837P5_ENTFA_Meier_2023                      |
| A0A192B1T2         | A0A192B1T2_9HIV1_Haddox_2018         | HMDH            | HMDH_HUMAN_Jiang_2019                           | Q8WTC7         | Q8WTC7_9CNID_Somermeyer_2022                 |
| A0A1I9GEU1         | A0A1I9GEU1_NEIME_Kennouche_2019      | HSP82-1         | HSP82_YEAST_Cote-Hammarlof_2020_growth-H2O2     | R1AB           | R1AB_SARS2_Flynn_2022                        |
| A0A247D711         | A0A247D711_LISMN_Stadelmann_2021     | HSP82-2         | HSP82_YEAST_Flynn_2019                          | RAD            | RAD_ANTMA_Tsuboyama_2023_2CJJ                |
| A0A2Z5U3Z0-1       | A0A2Z5U3Z0_9INFA_Doud_2016           | HSP82-3         | HSP82_YEAST_Mishra_2016                         | RAF1           | RAF1_HUMAN_Zinkus-Boltz_2019                 |
| A0A2Z5U3Z0-2       | A0A2Z5U3Z0 9INFA Wu 2014             | HXK4-1          | HXK4 HUMAN Gersing 2022 activity                | RASH           | RASH HUMAN Bandaru 2017                      |
| A4D664             | A4D664 9INFA Sob 2019                | HXK4-2          | HXK4 HUMAN Gersing 2023 abundance               | RASK-1         | RASK HUMAN Weng 2022 abundance               |
| A4GRB6             | A4GRB6 PSFAI Chen 2020               | 16TA H8         | I6TAH8 I6840 Doud 2015                          | RASK-2         | RASK HUMAN Weng 2022 binding-DARPin K55      |
| A4                 | A4 HUMAN Seuma 2022                  | IF1             | IE1 ECOLI Kelsic 2016                           | R R R PI       | PBP1 HUMAN Teuboyama 2023 2KWH               |
| A4CC1              | AACC1 DEEAL Dondogo 2018             | 11 12           | II F2 HUMAN Teuboyeme 2022 2I 22                | RD1            | PCD1 APATH Teuboyeme 2022 5040               |
| ACE2               | ACE2 HUMAN Chap 2020                 | ISDU            | ISDH STAAW Taubayama 2023-21 HP                 | PCPO           | PCPO I AMPD Teuboyama 2023 10PC              |
| ACE2               | ADDD2 HUMAN Lance 2020               | VCNE1 1         | KCNE1 HUMAN Muhammad 2022 aummasian             | DD22A          | DD22A HUMAN Tenhauama 2022 HEV               |
| ADKB2              | ADKB2_HUMAN_Jones_2020               | KCNE1-1         | KCNE1_HUMAN_Muhammad_2023_expression            | RD25A<br>RDDDD | RD25A_HUMAN_ISUO0yallia_2025_HF I            |
| AICDA              | AICDA_HUMAN_Gajula_2014_3cycles      | KCNEI-2         | KUNET_HUMAN_Munammad_2023_function              | RDRP           | KDKP_133A0_L1_2023                           |
| AMFR               | AMFR_HUMAN_I suboyama_2023_4G3O      | KCNH2           | KCNH2_HUMAN_Kozek_2020                          | REV            | REV_HV1H2_Fernandes_2016                     |
| AMIE               | AMIE_PSEAE_Wrenbeck_2017             | KCNJ2-1         | KCNJ2_MOUSE_Coyote-Maestas_2022_function        | RFAH           | RFAH_ECOLI_Tsuboyama_2023_2LCL               |
| ANCSZ              | ANCSZ_Hobbs_2022                     | KCNJ2-2         | KCNJ2_MOUSE_Coyote-Maestas_2022_surface         | RL20           | RL20_AQUAE_Tsuboyama_2023_IGYZ               |
| ARGR               | ARGR_ECOLI_Tsuboyama_2023_1AOY       | KKA2            | KKA2_KLEPN_Melnikov_2014                        | RL40A-1        | RL40A_YEAST_Mavor_2016                       |
| B2L11              | B2L11_HUMAN_Dutta_2010_binding-Mcl-1 | LGK             | LGK_LIPST_Klesmith_2015                         | RL40A-2        | RL40A_YEAST_Roscoe_2013                      |
| BBC1               | BBC1_YEAST_Tsuboyama_2023_1TG0       | LYAM1           | LYAM1_HUMAN_Elazar_2016                         | RL40A-3        | RL40A_YEAST_Roscoe_2014                      |
| BCHB               | BCHB_CHLTE_Tsuboyama_2023_2KRU       | MAFG            | MAFG_MOUSE_Tsuboyama_2023_1K1V                  | RNC            | RNC_ECOLI_Weeks_2023                         |
| BLAT-1             | BLAT_ECOLX_Deng_2012                 | MBD11           | MBD11_ARATH_Tsuboyama_2023_6ACV                 | RPC1-1         | RPC1_BP434_Tsuboyama_2023_1R69               |
| BLAT-2             | BLAT_ECOLX_Firnberg_2014             | MET             | MET_HUMAN_Estevam_2023                          | RPC1-2         | RPC1_LAMBD_Li_2019_high-expression           |
| BLAT-3             | BLAT_ECOLX_Jacquier_2013             | MK01            | MK01_HUMAN_Brenan_2016                          | RPC1-3         | RPC1_LAMBD_Li_2019_low-expression            |
| BLAT-4             | BLAT_ECOLX_Stiffler_2015             | MLAC            | MLAC_ECOLI_MacRae_2023                          | RS15           | RS15_GEOSE_Tsuboyama_2023_1A32               |
| BRCA1              | BRCA1_HUMAN_Findlay_2018             | MSH2            | MSH2_HUMAN_Jia_2020                             | S22A1-1        | S22A1_HUMAN_Yee_2023_abundance               |
| BRCA2              | BRCA2 HUMAN Erwood 2022 HEK293T      | MTH3            | MTH3 HAEAE RockahShmuel 2015                    | S22A1-2        | S22A1 HUMAN Yee 2023 activity                |
| C6KNH7             | C6KNH7 9INFA Lee 2018                | MTHR            | MTHR HUMAN Weile 2021                           | SAV1           | SAV1 MOUSE Tsuboyama 2023 2YSB               |
| CALM1              | CAI M1 HUMAN Weile 2017              | MY03            | MYO3 VEAST Tsuboyama 2023 2BTT                  | SBI            | SBI STAAM Tsuboyama 2023 2IVG                |
| CARSD              | CARSD AAV2S Sinoi 2021               | NCAR            | NCAP 124A1 David 2015                           | SC614          | SC644 HUMAN Young 2021                       |
| CAP11.1            | CAP11 HUMAN Maidia 2020 cof          | NKV21           | NKX21 HUMAN Tenhoveme 2022 21 0P                | SCOA4<br>SCIN  | SCIN STAAP Touboyome 2022 20EE               |
| CARII-I<br>CARII-I | CAR11_HUMAN_Meitlis_2020_g01         | NDC1 1          | NRASI_HUMAN_ISuboyania_2023_225K                | SCIN<br>SCN5A  | SCIN_STAAK_ISUOOyania_2025_2QT               |
| CARTI-2            | CARTIERUMAN Metuls 2020-101          | NPC1-1          | NPC1_HUMAN_EIW00d_2022_HEK2951                  | SCNJA          | SUNJA_HUMAN_Glazer_2019                      |
| CAS9               | CAS9_STRP1_Spencer_2017_positive     | NPC1-2          | NPC1_HUMAN_Erwood_2022_RPE1                     | SDA            | SDA_BACSU_Isuboyama_2023_IPV0                |
| CASP3              | CASP3_HUMAN_Roychowdhury_2020        | NRAM            | NRAM_I33A0_Jiang_2016                           | SERC           | SERC_HUMAN_X1e_2023                          |
| CASP7              | CASP7_HUMAN_Roychowdhury_2020        | NUD15           | NUD15_HUMAN_Suiter_2020                         | SHOC2          | SHOC2_HUMAN_Kwon_2022                        |
| CATR               | CATR_CHLRE_Tsuboyama_2023_2AMI       | NUSA            | NUSA_ECOLI_Tsuboyama_2023_1WCL                  | SOX30          | SOX30_HUMAN_Tsuboyama_2023_7JJK              |
| CBPA2              | CBPA2_HUMAN_Tsuboyama_2023_106X      | NUSG            | NUSG_MYCTU_Tsuboyama_2023_2MI6                  | SPA            | SPA_STAAU_Tsuboyama_2023_1LP1                |
| CBS                | CBS_HUMAN_Sun_2020                   | OBSCN           | OBSCN_HUMAN_Tsuboyama_2023_1V1C                 | SPG1-1         | SPG1_STRSG_Olson_2014                        |
| CBX4               | CBX4_HUMAN_Tsuboyama_2023_2K28       | ODP2            | ODP2_GEOSE_Tsuboyama_2023_1W4G                  | SPG1-2         | SPG1_STRSG_Wu_2016                           |
| CCDB-1             | CCDB_ECOLI_Adkar_2012                | OPSD            | OPSD_HUMAN_Wan_2019                             | SPG2           | SPG2_STRSG_Tsuboyama_2023_5UBS               |
| CCDB-2             | CCDB_ECOLI_Tripathi_2016             | OTC             | OTC_HUMAN_Lo_2023                               | SPIKE-1        | SPIKE_SARS2_Starr_2020_binding               |
| CCR5               | CCR5_HUMAN_Gill_2023                 | OTU7A           | OTU7A_HUMAN_Tsuboyama_2023_2L2D                 | SPIKE-2        | SPIKE_SARS2_Starr_2020_expression            |
| CD19               | CD19_HUMAN_Klesmith_2019_FMC_singles | OXDA-1          | OXDA_RHOTO_Vanella_2023_activity                | SPTN1          | SPTN1_CHICK_Tsuboyama_2023_1TUD              |
| CP2C9-1            | CP2C9 HUMAN Amorosi 2021 abundance   | OXDA-2          | OXDA RHOTO Vanella 2023 expression              | SOSTM          | SOSTM MOUSE Tsuboyama 2023 2RRU              |
| CP2C9-2            | CP2C9 HUMAN Amorosi 2021 activity    | P53-1           | P53 HUMAN Giacomelli 2018 Null Etoposide        | SR43C          | SR43C ARATH Tsuboyama 2023 2N88              |
| CSN4               | CSN4 MOUSE Tsuboyama 2023 1UEM       | P53-2           | P53 HUMAN Giacomelli 2018 Null Nutlin           | SRBS1          | SRBS1 HUMAN Tsuboyama 2023 202W              |
| CUE1               | CUE1 VEAST Teuboyama 2023 2MVY       | P53_3           | P53 HUMAN Giacomelli 2018 WT Nutlin             | SPC-1          | SRD HIMAN Abler 2019                         |
| D7DM05             | D7DM05 CLVCD Sememory 2022           | D52.4           | D52 HUMAN Ketler 2019                           | SRC-1          | SDC HUMAN Chalanahantu 2022 hinding DAS 250M |
| D/PM05             | DI CA HUMAN Fours 2021               | P35-4<br>D94126 | P35_HUMAN_Koller_2016<br>D84126 THETH Chan 2017 | SRC-2          | SRC_HUMAN_CHARTADORY_2025_DHIUHIg-DA5_25uM   |
| DLG4-1<br>DLG4-2   | DLC4 DAT MAL multim 2012             | P64120          | P84120_1 HE1 H_Chan_2017                        | SKC-5          | SKC_HUMAN_Nguyen_2022                        |
| DLG4-2             | DLG4_KAI_MCLaugnin_2012              | PABP            | PABP_YEAST_Metamed_2015                         | SUMOI          | SUMOLHUMAN_weile_2017                        |
| DN/A               | DN/A_SACS2_1suboyama_2023_1JIC       | PAII            | PAI1_HUMAN_Huttinger_2021                       | SYUA           | SYUA_HUMAN_Newberry_2020                     |
| DNJAI              | DNJA1_HUMAN_Tsuboyama_2023_2LO1      | PA              | PA_I34A1_Wu_2015                                | TADBP          | TADBP_HUMAN_Bolognesi_2019                   |
| DOCKI              | DOCK1_MOUSE_Tsuboyama_2023_2M0Y      | PHOT            | PHOT_CHLRE_Chen_2023                            | TAT            | TAT_HV1BR_Fernandes_2016                     |
| DYR-1              | DYR_ECOLI_Nguyen_2023                | PIN1            | PIN1_HUMAN_Tsuboyama_2023_116C                  | TCRG1          | TCRG1_MOUSE_Tsuboyama_2023_1E0L              |
| DYR-2              | DYR_ECOLI_Thompson_2019              | PITX2           | PITX2_HUMAN_Tsuboyama_2023_2L7M                 | THO1           | THO1_YEAST_Tsuboyama_2023_2WQG               |
| ENVZ               | ENVZ_ECOLI_Ghose_2023                | PKN1            | PKN1_HUMAN_Tsuboyama_2023_1URF                  | TNKS2          | TNKS2_HUMAN_Tsuboyama_2023_5JRT              |
| ENV-1              | ENV_HV1B9_DuenasDecamp_2016          | POLG-1          | POLG_CXB3N_Mattenberger_2021                    | TPK1           | TPK1_HUMAN_Weile_2017                        |
| ENV-2              | ENV_HV1BR_Haddox_2016                | POLG-2          | POLG_DEN26_Suphatrakul_2023                     | TPMT           | TPMT_HUMAN_Matreyek_2018                     |
| EPHB2              | EPHB2_HUMAN_Tsuboyama_2023_1F0M      | POLG-3          | POLG_HCVJF_Qi_2014                              | TPOR           | TPOR_HUMAN_Bridgford_2020                    |
| ERBB2              | ERBB2_HUMAN_Elazar_2016              | POLG-4          | POLG_PESV_Tsuboyama_2023_2MXD                   | TRPC-1         | TRPC_SACS2_Chan_2017                         |
| ESTA               | ESTA_BACSU_Nutschel_2020             | PPARG           | PPARG_HUMAN_Majithia_2016                       | TRPC-2         | TRPC_THEMA_Chan_2017                         |
| F7YBW7             | F7YBW7_MESOW_Ding_2023               | PPM1D           | PPM1D_HUMAN_Miller_2022                         | UBC9           | UBC9_HUMAN_Weile_2017                        |
| F7YBW8             | F7YBW8 MESOW Aakre 2015              | PR40A           | PR40A HUMAN Tsuboyama 2023 1UZC                 | UBE4B-1        | UBE4B HUMAN Tsuboyama 2023 3L1X              |
| FECA               | FECA ECOLI Tsubovama 2023 2D1U       | PRKN            | PRKN HUMAN Clausen 2023                         | UBE4B-2        | UBE4B MOUSE Starita 2013                     |
| FKRP3              | FKBP3 HUMAN Tsuboyama 2023 2KFV      | PSAF            | PSAE SYNP2 Tsubovama 2023 1PSE                  | UBR5           | UBR5 HUMAN Tsuboyama 2023 112T               |
| GALA               | GAL4 YEAST Kitzman 2015              | PTEN_1          | PTEN HUMAN Material 2023                        | VG08           | VG08 BPP22 Teuboyama 2023 2CD8               |
| CCN4               | CONA VEAST Stallar 2019              | DTEN 2          | DTEN LIUMAN Markall 2019                        | VUU            | VIII I CHICK Taubarrana 2022 1VU5            |
| CDIA               | CDIA HUMAN S'human's 2021            | PIEN-2          | CONCESSION AND MIGNET 2018                      | VILI           | VILLETICK_ISUOOYAMA_2025_IYU5                |
| GDIA               | GDIA_HUMAN_Silverstein_2021          | Q2IN0S5         | Q2INUS5_9HIV1_Haddox_2018                       | VKORI-I        | VKOR1_HUMAN_Chiasson_2020_abundance          |
| GFP                | GFP_AEQV1_Sarkisyan_2016             | Q53Z42-1        | Q55Z42_HUMAN_McShan_2019_binding-TAPBPR         | VKOR1-2        | VKORI_HUMAN_Chiasson_2020_activity           |
| GLPA               | GLPA_HUMAN_Elazar_2016               | Q53Z42-2        | Q53Z42_HUMAN_McShan_2019_expression             | VRPI           | VRPI_BPI/_Tsuboyama_2023_2WNM                |
| GRB2               | GRB2_HUMAN_Faure_2021                | Q59976          | Q599/6_STRSQ_Romero_2015                        | YAIA           | YAIA_ECOLI_Tsuboyama_2023_2KVT               |
| HCP                | HCP_LAMBD_Tsuboyama_2023_2L6Q        | Q6WV13          | Q6WV13_9MAXI_Somermeyer_2022                    | YAP1           | YAP1_HUMAN_Araya_2012                        |
| HECD1              | HECD1_HUMAN_Tsuboyama_2023_3DKM      | Q837P4          | Q837P4_ENTFA_Meier_2023                         | YNZC           | YNZC_BACSU_Tsuboyama_2023_2JVD               |
| HEM3               | HEM3_HUMAN_Loggerenberg_2023         |                 |                                                 |                |                                              |

**Supplementary Table 2. The abbreviations for DMS dataset names in the ProteinGym v1.0 substitution benchmark dataset.** For formatting purposes, the DMS dataset names used in the ProteinGym v1.0 dataset were abbreviated in Supplementary Fig. 1. Digit suffixes were used to further distinguish between different DMS studies targeting the same protein.

| entry    | plate | variant (75,99-103) | yield (%) | e.r.          | entry | plate | variant (75,99-103) | yield (%) | e.r.         |
|----------|-------|---------------------|-----------|---------------|-------|-------|---------------------|-----------|--------------|
| 1        | 1     | MMLTDQ              | 89        | 95:5          | 81    | 3     | MTVPNQ              | 81        | 96:4         |
| 2        | 1     | MLYPPT              | 88        | 96:4<br>95:5  | 82    | 3     | MPQPNQ              | 78        | 95:5         |
| 4        | 1     | MGAANO              | 88        | 95.5          | 83    | 3     | APIANO              | 81        | 88.12        |
| 5        | 1     | MELQNQ              | 86        | 95:5          | 85    | 3     | SNAPPT              | 81        | 83:17        |
| 6        | 1     | MPEPNQ              | 86        | 95:5          | 86    | 3     | MRFPDQ              | 70        | 95:5         |
| 7        | 1     | MLLTAQ              | 87        | 94:6          | 87    | 3     | ALLGQT              | 80        | 84:16        |
| 8        | 1     | MVKPNP              | 85        | 96:4          | 88    | 3     | SRFIDM              | 75        | 84:16        |
| 10       | 1     | MPIPDO              | 82        | 95:5          | 90    | 3     | MLLSDA              | 63        | 95:5         |
| 11       | 1     | MPIPDQ              | 81        | 95:5          | 91    | 3     | LQIPNQ              | 76        | 78:22        |
| 12       | 1     | MDEPPQ              | 81        | 95:5          | 92    | 3     | MPAEFQ              | 62        | 95:5         |
| 13       | 1     | MPIPGQ              | 81        | 95:5          | 93    | 3     | MAIPAQ              | 62        | 96:4         |
| 14       | 1     | MVAAPL              | 80        | 93:7<br>86:14 | 94    | 3     | MPFPVQ              | 63        | 94:6         |
| 16       | 1     | MALMNM              | 76        | 94·6          | 95    | 3     | MHLRNN              | 61        | 94.6         |
| 17       | 1     | MQLVDQ              | 74        | 96:4          | 97    | 3     | KPWPNY              | 70        | 82:18        |
| 18       | 1     | MPNTNV              | 72        | 94:6          | 98    | 3     | MIITNQ              | 60        | 95:5         |
| 19       | 1     | MPNPNQ              | 70        | 95:5          | 99    | 3     | LAIPPQ              | 73        | 77:23        |
| 20       | 1     | MGKPDL              | 73        | 92:8          | 100   | 3     | MKIVNQ              | 58        | 95:5         |
| 21       | 1     | MTLLNH              | 69        | 94:0          | 101   | 3     | MILTNO              | 58        | 90:4         |
| 23       | 1     | VMTPTQ              | 76        | 83:17         | 103   | 3     | MPPSNQ              | 55        | 96:4         |
| 24       | 1     | MFAPNQ              | 66        | 96:4          | 104   | 3     | MCYLNQ              | 54        | 95:5         |
| 25       | 1     | MPLPNF              | 67        | 91:9          | 105   | 3     | MRLPNQ              | 54        | 95:5         |
| 26       | 1     | MSYTNA              | 61        | 93:7          | 106   | 3     | MLAINQ              | 52        | 96:4         |
| 27       | 1     | MIHSPA              | 53        | 94:6<br>90:10 | 107   | 3     | MULPDV              | 54        | 95:5         |
| 29       | 1     | QTVDDQ              | 50        | 91:9          | 100   | 3     | MMIVNQ              | 50        | 93:7         |
| 30       | 1     | MIAHVQ              | 51        | 88:12         | 110   | 3     | MPQTDQ              | 49        | 94:6         |
| 31       | 1     | MPLPKR              | 49        | 92:8          | 111   | 3     | MPTSEM              | 49        | 92:8         |
| 32       | 1     | HDAPNA              | 45        | 82:18         | 112   | 3     | VQFPPQ              | 52        | 82:18        |
| 33       | 1     | MPPPRO              | 32        | 08:52<br>94:6 | 113   | 3     | MUWCAN              | 45        | 94:0         |
| 35       | 1     | KVLPNV              | 46        | 73:27         | 115   | 3     | LAFPNQ              | 57        | 74:26        |
| 36       | 1     | VPLTNL              | 38        | 87:13         | 116   | 3     | MERRNR              | 43        | 95:5         |
| 37       | 1     | FPNPNQ              | 42        | 73:27         | 117   | 3     | LQLTNL              | 55        | 71:29        |
| 38       | 1     | FRAPDP              | 41        | 72:28         | 118   | 3     | MPVTSL              | 41        | 92:8         |
| 40       | 1     | FLLPDO              | 38        | 74.26         | 120   | 3     | VOFPPO              | 40        | 80:20        |
| 41       | 1     | FIRLNO              | 38        | 69:31         | 120   | 3     | NKLPEG              | 46        | 76:24        |
| 42       | 1     | FIRLNQ              | 35        | 67:33         | 122   | 3     | QPNPNA              | 40        | 86:14        |
| 43       | 2     | MPLVSQ              | 101       | 95:5          | 123   | 3     | NVIPNQ              | 41        | 79:21        |
| 44       | 2     | MVQYNE              | 98        | 97:3          | 124   | 3     | FMLPSQ              | 46        | 70:30        |
| 45       | 2     | MOIPNO              | 99        | 95:5<br>96:4  | 125   | 3     | YPLTNO              | 26        | 72.28        |
| 47       | 2     | MVALDQ              | 88        | 95:5          | 120   | 3     | FIRLNQ              | 24        | 69:31        |
| 48       | 2     | MQVANQ              | 86        | 96:4          | 128   | 4     | MAFPDQ              | 121       | 96:4         |
| 49       | 2     | MVCMNQ              | 84        | 96:4          | 129   | 4     | MALPDM              | 110       | 96:4         |
| 50       | 2     | ALLPER              | 116       | 67:33         | 130   | 4     | MLLSDA              | 108       | 96:4         |
| 52       | 2     | OPVPNE              | 91<br>89  | 86:14         | 131   | 4     | MEVPEO              | 105       | 96:4         |
| 53       | 2     | MECTDQ              | 77        | 96:4          | 132   | 4     | MESANQ              | 105       | 97:3         |
| 54       | 2     | MPTPNH              | 77        | 95:5          | 134   | 4     | MPPANQ              | 104       | 96:4         |
| 55       | 2     | MTLTNT              | 76        | 96:4          | 135   | 4     | MQQAGR              | 103       | 95:5         |
| 56       | 2     | MALPDM              | 74        | 96:4<br>96:4  | 136   |       | MRLTNQ              | 102       | 96:4         |
| 58       | 2     | MCOPYL              | 71        | 95:5          | 137   | 4     | MIVTNO              | 101       | 96:4         |
| 59       | 2     | MALPNM              | 70        | 96:4          | 139   | 4     | MAIPPQ              | 100       | 97:3         |
| 60       | 2     | LSPYDQ              | 78        | 80:20         | 140   | 4     | MSLPAQ              | 101       | 96:4         |
| 61       | 2     | MPLVSQ              | 64        | 94:6          | 141   | 4     | ILEPNL              | 99        | 97:3         |
| 62       | 2     | MPSWNQ              | 64        | 95:5          | 142   |       | MALPDM              | 98        | 96:4         |
| 64       | 2     | VSPPTO              | 70        | 90:4<br>84·16 | 143   | 4     | MQFAAQ              | 98<br>96  | 90:4<br>96·4 |
| 65       | 2     | MHLDPO              | 62        | 94:6          | 145   | 4     | MODAGR              | 95        | 95:5         |
| 66       | 2     | MPRKDA              | 61        | 95:5          | 146   | 4     | MVFHEP              | 89        | 96:4         |
| 67       | 2     | MVLNST              | 58        | 95:5          | 147   | 4     | MPFPNQ              | 86        | 96:4         |
| 68       | 2     | MDAPKH              | 54        | 95:5          | 148   | 4     | MKLTHQ              | 77        | 96:4         |
| 69<br>70 | 2     | MLLPAC<br>MPI PTK   | 52<br>47  | 91:9<br>90:10 | 149   | 4     | MKKTNA<br>MPLADE    | 74        | 96:4         |
| 71       | 2     | MPLIAL              | 43        | 88:12         | 150   | 4     | MFRAKO              | 63        | 95:5         |
| 72       | 2     | MRFAAQ              | 41        | 92:8          | 152   | 4     | MLVPNQ              | 71        | 79:21        |
| 73       | 2     | MFTKRQ              | 36        | 92:8          | 153   | 4     | YWVPNQ              | 42        | 77:23        |
| 74       | 2     | YPLPNQ              | 41        | 75:25         | 154   | 4     | FNAINR              | 45        | 67:33        |
| 75       | 2     | MACTDK              | 29        | 94:6          | 155   | 4     | YGHLSQ              | 40        | 74:26        |
| /6<br>77 | 2     | HQLPQM<br>FPVAFI    | 34<br>37  | 80:20         | 156   | 4     | FPCASQ<br>MYLTNO    | 58<br>41  | 66:34        |
| 78       | 2     | RSLPNO              | 19        | 81:19         | 158   | 4     | DCLVNO              | 29        | 70:30        |
| 79       | 2     | MALPNQ              | 14        | 92:8          | 159   | 4     | MNFPNQ              | 32        | 58:42        |
| 80       | 3     | MSETMQ              | 85        | 96:4          | 160   | 4     | MPLNDF              | 7         | 55:45        |

Supplementary Table 3. Screening results of the MODIFY library of *Rma* cytochrome *c* for C–B bond formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.)) of the variants in the MODIFY library were reported. For each plate, the variants were ranked according to the values of yield  $\times$  major\_enantiomer in descending order.

| entry | plate | variant (75,99-103)                   | yield (%) | e.r.          | entry | plate | variant (75,99-103) | yield (%) | e.r.      |
|-------|-------|---------------------------------------|-----------|---------------|-------|-------|---------------------|-----------|-----------|
| 1     | 1     | MVKPNP                                | 53        | 99:1          | 81    | 3     | MRWPWQ              | 39        | 99:1      |
| 2     | 1     | MLLTAQ                                | 51        | 98:2          | 82    | 3     | VQFPPQ              | 36        | 99:1      |
| 3     | 1     | MELQNQ                                | 44        | 99:1          | 83    | 3     | LAFPNQ              | 33        | 98:2      |
| 4     | 1     | MLYPPT                                | 44        | 99:1          | 84    | 3     | KPWPNY              | 33        | 99:1      |
| 5     | 1     | MVYGDQ                                | 44        | 98:2          | 85    | 3     | LQIPNQ              | 33        | 99:1      |
| 6     |       | MPEPNQ                                | 42        | >99.9:0.1     | 86    | 3     | MQVPTQ              | 32        | 99:1      |
| 1     |       | MGAANQ                                | 40        | 99:1          | 87    | 3     | MTVPNQ              | 32        | 97:3      |
| 8     |       | SFLINQ                                | 40        | 96:4          | 88    | 3     | MRLPNQ              | 30        | 99:1      |
| 10    |       | MIMILIDQ                              | 39        | 98:2          | 89    | 2     | MVWAHA              | 30        | 99:1      |
| 11    | 1     | MOLVDO                                | 39        | 96.2          | 01    | 2     | SNA DDT             | 30        | 99.0.0.4  |
| 12    | 1     | MENTNV                                | 30        | 08.2          | 02    | 3     | MPEPNO              | 20        | 90.2      |
| 13    | 1     | MGKPDL                                | 38        | 97.3          | 93    | 3     | MCYLNO              | 29        | 99.1      |
| 14    | 1     | MVAAPL                                | 38        | 97.3          | 94    | 3     | ALLGOT              | 28        | 99.1      |
| 15    | 1     | MTLLNH                                | 37        | 98:2          | 95    | 3     | MLLSDA              | 27        | 99:1      |
| 16    | 1     | MPIPDQ                                | 36        | 98:2          | 96    | 3     | MOWCAN              | 27        | 99:1      |
| 17    | 1     | MALMNM                                | 36        | 98:2          | 97    | 3     | MSETMQ              | 27        | 99:1      |
| 18    | 1     | MDEPPQ                                | 36        | 98:2          | 98    | 3     | SRFTDM              | 27        | 98:2      |
| 19    | 1     | MKKPNQ                                | 36        | 97:3          | 99    | 3     | APIANQ              | 27        | 99:1      |
| 20    | 1     | MFAPNQ                                | 35        | 98:2          | 100   | 3     | MLATNQ              | 27        | 97:3      |
| 21    | 1     | MPLPNF                                | 34        | 97:3          | 101   | 3     | MPVTSL              | 26        | 99:1      |
| 22    | 1     | MPIPGQ                                | 33        | 95:5          | 102   | 3     | QPNPNA              | 26        | 99:1      |
| 23    |       | MPIPDQ                                | 32        | 99:1          | 103   | 3     | MMIVNQ              | 26        | 99:1      |
| 24    |       | VMTPTQ                                | 33        | 95:5          | 104   | 3     | LAIPPQ              | 26        | 98:2      |
| 25    |       | MPLPKR                                | 30        | 99:1          | 105   | 3     | MQLPDV              | 25        | 99:1      |
| 20    |       | HDAPNA                                | 31        | 97:3          | 100   | 2     | MRFPDQ              | 25        | 99:1      |
| 27    |       | MSTINA                                | 30        | 97:3          | 107   | 2     | MILKINN             | 25        | 99:1      |
| 20    | 1     | MENIPNO                               | 26        | 97.3          | 100   | 2     | MAIRAO              | 23        | 97.5      |
| 30    | 1     | VPI TNI                               | 20        | 97.5          | 110   | 3     | LOLTNI              | 23        | 96:4      |
| 31    | 1     | MPPPRO                                | 23        | 98.2          | 111   | 3     | MIITNO              | 23        | 98.2      |
| 32    | 1     | MIAHVO                                | 21        | 97.3          | 112   | 3     | MPPSNO              | 22        | 99.1      |
| 33    | 1     | MIHSPA                                | 19        | 92:8          | 113   | 3     | MPOPNO              | 22        | 99:1      |
| 34    | 1     | OTVDDQ                                | 20        | 90:10         | 114   | 3     | MPVVPS              | 22        | 99:1      |
| 35    | 1     | <b>KVLPNV</b>                         | 18        | 82:18         | 115   | 3     | IPLANQ              | 19        | 99.8:0.2  |
| 36    | 1     | FIRLNQ                                | 19        | 68:32         | 116   | 3     | NVIPNQ              | 19        | 96:4      |
| 37    | 1     | NALTNF                                | 16        | 80:20         | 117   | 3     | MPQTDQ              | 19        | 99:1      |
| 38    | 1     | FLLPDQ                                | 16        | 76:24         | 118   | 3     | MPTSEM              | 17        | 99:1      |
| 39    | 1     | FIRLNQ                                | 17        | 70:30         | 119   | 3     | NKLPEG              | 17        | 97:3      |
| 40    | 1     | FPNPNQ                                | 15        | 75:25         | 120   | 3     | MERRNR              | 15        | 98:2      |
| 41    | 1     | YPLPVQ                                | 12        | 77:23         | 121   | 3     | MKIVNQ              | 15        | 98:2      |
| 42    | 1     | FRAPDP                                | 11        | 75:25         | 122   | 3     | MHIPNL              | 16        | 91:9      |
| 43    | 2     | ALLPER                                | 34        | 97:3          | 123   | 3     | MPFPVQ              | 14        | 97:3      |
| 44    | 2     | MQVANQ                                | 33        | 99:1          | 124   | 2     | FILINO              | 14        | 89:11     |
| 45    |       | MILINI                                | 20        | 90:4          | 125   | 2     | EMLIPSO             | 9         | 84:10     |
| 40    | 2     | SPIDAM                                | 29        | 98.2          | 120   | 3     | FIRI NO             | 5         | 84:16     |
| 48    | 2     | MLLPAC                                | 29        | 99.1          | 127   | 4     | MPIPNO              | 32        | 99.1      |
| 49    | 2     | MVLNST                                | 29        | 99:1          | 129   | 4     | MPNPNO              | 31        | 99:1      |
| 50    | 2     | MPLIAL                                | 29        | 97:3          | 130   | 4     | MRLTNO              | 31        | 99:1      |
| 51    | 2     | MCQPYL                                | 28        | 98:2          | 131   | 4     | MEVPFQ              | 30        | 99:1      |
| 52    | 2     | MPTPNH                                | 28        | 96:4          | 132   | 4     | MPPANQ              | 29        | 99:1      |
| 53    | 2     | MECTDQ                                | 27        | 99:1          | 133   | 4     | MLLSDA              | 29        | 99:1      |
| 54    | 2     | MALPNM                                | 26        | 99:1          | 134   | 4     | MPFPNQ              | 28        | 99:1      |
| 55    | 2     | MALPDM                                | 26        | 98:2          | 135   | 4     | MIVTNQ              | 27        | 99:1      |
| 56    | 2     | MELVYM                                | 26        | 96:4          | 136   | 4     | MALPDM              | 26        | 99:1      |
| 57    | 2     | MPLVSQ                                | 25        | 99:1          | 137   | 4     | MAFPDQ              | 25        | 99:1      |
| 58    | 2     | MALPNQ                                | 24        | 99:1          | 138   | 4     | MAIDDO              | 25        | 98:2      |
| 59    |       | MOIPNO                                | 24        | 98:2          | 139   | 4     | MAIPPQ              | 24        | 97:5      |
| 61    |       | MALTNO                                | 23        | 99:1<br>00-1  | 140   | 4     | MESANO              | 24        | 99:1      |
| 62    |       | LSPYDO                                | 23        | 97.1          | 141   | 4     | MOOAGR              | 23        | 99.6.0.4  |
| 63    | 2     | MPLVSO                                | 23        | 96.4          | 143   | 4     | YWVPNO              | 23        | 94.6      |
| 64    | 2     | MVALDO                                | 22        | 99.1          | 143   | 4     | ILEPNI              | 22        | 99.1      |
| 65    | 2     | MVQYNE                                | 22        | 95:5          | 145   | 4     | MQQAGR              | 22        | 99:1      |
| 66    | 2     | MRFAAO                                | 22        | 95:5          | 146   | 4     | MPLADF              | 21        | 98:2      |
| 67    | 2     | MMVTNQ                                | 21        | 99:1          | 147   | 4     | MKKTNA              | 18        | 99:1      |
| 68    | 2     | MVCMNQ                                | 21        | 97:3          | 148   | 4     | MGLTQM              | 18        | 99:1      |
| 69    | 2     | VSPPTQ                                | 19        | 99:1          | 149   | 4     | MQFAAQ              | 18        | 95:5      |
| 70    | 2     | MPRKDA                                | 19        | 99:1          | 150   | 4     | MFRAKQ              | 16        | 95:5      |
| 71    | 2     | MHLDPQ                                | 18        | 98:2          | 151   | 4     | DCLVNQ              | 17        | 87:13     |
| 72    | 2     | MACTDK                                | 17        | 99:1          | 152   | 4     | MLVPNQ              | 15        | 94:6      |
| 73    | 2     | QPVPNF                                | 16        | 98:2          | 153   | 4     | YGHLSQ              | 14        | 89:11     |
| 74    | 2     | MFTKRQ                                | 15        | 97:3          | 154   | 4     | FPCASQ              | 12        | 79:21     |
| 75    | 2     | YPLPNQ                                | 14        | 92:8          | 155   | 4     | MVFHEP              | 11        | 87:13     |
| /6    | 2     | MPLPTK                                | 12        | 98:2          | 156   | 4     | MSLPAQ              | 9         | 94:6      |
| 70    |       | D SI DNO                              | 10        | 94:0<br>05:5  | 15/   | 4     | FINALINK            | 6         | 07:13     |
| 70    |       | FPVAFI                                | 7         | 93:3<br>85:15 | 150   | 4     | MNEPNO              | 5         | 75.25     |
| 80    | 3     | VOFPPO                                | 42        | 99.1          | 160   | 4     | MPLNDF              | 4         | 91.9      |
| L     |       | · · · · · · · · · · · · · · · · · · · | .2        | //.1          | 1 .00 | · ·   |                     |           | · · · · / |

Supplementary Table 4. Screening results of the MODIFY library of *Rma* cytochrome *c* for C–Si bond formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.)) of the variants in the MODIFY library were reported. For each plate, the variants were ranked according to the values of yield  $\times$  major\_enantiomer in descending order.

| entry | plate | well     | yield (%) | e.r.  | entry | plate | well     | yield (%) | e.r.  | entry | plate | well       | yield (%) | e.r.  | entry | plate | well     | yield (%) | e.r.  |
|-------|-------|----------|-----------|-------|-------|-------|----------|-----------|-------|-------|-------|------------|-----------|-------|-------|-------|----------|-----------|-------|
| 1     | 1     | A2       | 27        | 71:29 | 93    | 2     | A2       | 32        | 87:13 | 185   | 3     | A2         | 23        | 60:40 | 277   | 4     | A2       | 58        | 74:26 |
| 2     | 1     | A3       | 71        | 76.24 | 94    | 2     | A3       | 15        | 53.47 | 186   | 3     | A3         | 51        | 83.17 | 278   | 4     | A3       | 34        | 72.28 |
| 2     | 1     | A.4      | 69        | 77.23 | 05    | 2     | A.4      | 24        | 92.17 | 197   | 2     | A4         | 65        | 76:24 | 270   | 4     |          | 54        | 78.20 |
| 5     | 1     | A4       | 50        | 77.23 | 95    | 2     | A4       | 24        | 03.17 | 107   | 5     | A4         | 0.5       | 70.24 | 219   | -     | A4       | 34        | 78.22 |
| 4     | 1     | A5       | 50        | 77:23 | 96    | 2     | A5       | 57        | 83:17 | 188   | 3     | A5         | 16        | 51:49 | 280   | 4     | A5       | 16        | 53:47 |
| 5     | 1     | A6       | 29        | 68:32 | 97    | 2     | A6       | 24        | 69:31 | 189   | 3     | A6         | 15        | 54:46 | 281   | 4     | A6       | 47        | 78:22 |
| 6     | 1     | A7       | 7         | 55:45 | 98    | 2     | A7       | 18        | 51:49 | 190   | 3     | A7         | 63        | 94:6  | 282   | 4     | A7       | 31        | 67:33 |
| 7     | 1     | 4.8      | 31        | 62:38 | 00    | 2     | 48       | 38        | 87.13 | 101   | 3     | 4.8        | 30        | 64:36 | 283   | 4     | 4.8      | 33        | 01.0  |
| 6     | 1     | 10       | 51        | 02.56 | 100   | 2     | 10       | 40        | 70.21 | 102   | 2     | 10         | 20        | 52.47 | 205   |       | 10       | 10        | 57.42 |
| 8     | 1     | A9       | 55        | 91:9  | 100   | 2     | A9       | 42        | 79:21 | 192   | 3     | A9         | 22        | 55:47 | 284   | 4     | A9       | 12        | 57:45 |
| 9     | 1     | A10      | 62        | 81:19 | 101   | 2     | A10      | 18        | 58:42 | 193   | 3     | A10        | 24        | 53:47 | 285   | 4     | A10      | 45        | 73:27 |
| 10    | 1     | A11      | 51        | 79:21 | 102   | 2     | A11      | 35        | 84:16 | 194   | 3     | A11        | 19        | 52:48 | 286   | 4     | A11      | 26        | 65:35 |
| 11    | 1     | A12      | 30        | 72.28 | 103   | 2     | A12      | 44        | 87.13 | 195   | 3     | A12        | 8         | 53.47 | 287   | 4     | A12      | 48        | 80.20 |
| 12    | 1     | D1       | 50        | 04.6  | 103   | 2     | D1       | 21        | 71.20 | 106   | 2     | D1         | 20        | 62.29 | 207   | 4     | D1       | 40        | 62.20 |
| 12    | 1     | DI       | 59        | 94:0  | 104   | 2     | DI       | 21        | /1:29 | 190   | 5     | DI         | 29        | 02:58 | 200   | 4     | DI       | 0         | 02:58 |
| 13    | 1     | B3       | 53        | 82:18 | 105   | 2     | B3       | 51        | 92:8  | 197   | 3     | B3         | 26        | 80:20 | 289   | 4     | B3       | 18        | 58:42 |
| 14    | 1     | B4       | 42        | 81:19 | 106   | 2     | B4       | 53        | 81:19 | 198   | 3     | B4         | 47        | 91:9  | 290   | 4     | B4       | 14        | 52:48 |
| 15    | 1     | B5       | 21        | 59:41 | 107   | 2     | B5       | 35        | 78:22 | 199   | 3     | B5         | 50        | 91:9  | 291   | 4     | B5       | 25        | 66:34 |
| 16    | 1     | B6       | 13        | 60.40 | 108   | 2     | R6       | 47        | 90.10 | 200   | 3     | B6         | 46        | 72.28 | 202   | 4     | B6       | 5         | 54.46 |
| 10    | 1     | D0       | 15        | 00.40 | 100   | 2     | D0       | 47        | 20.10 | 200   | 5     | D0         | 40        | 72.20 | 202   |       | D0       | 24        | 71.00 |
| 1/    | 1     | B/       | 37        | 88:12 | 109   | 2     | B/       | 46        | 82:18 | 201   | - 3   | В/         | 63        | 69:31 | 293   | 4     | B/       | 26        | /1:29 |
| 18    | 1     | B8       | 29        | 67:33 | 110   | 2     | B8       | 51        | 82:18 | 202   | 3     | B8         | 25        | 64:36 | 294   | 4     | B8       | 15        | 64:36 |
| 19    | 1     | B9       | 20        | 71:29 | 111   | 2     | B9       | 18        | 68:32 | 203   | 3     | B9         | 55        | 84:16 | 295   | 4     | B9       | 16        | 52:48 |
| 20    | 1     | B10      | 39        | 88:12 | 112   | 2     | B10      | 28        | 62:38 | 204   | 3     | B10        | 0         | 50:50 | 296   | 4     | B10      | 17        | 52:48 |
| 21    | 1     | B11      | 70        | 87.13 | 113   | 2     | B11      | 16        | 65.35 | 205   | 3     | B11        | 38        | 70.30 | 207   | 4     | B11      | 18        | 61.30 |
| 21    | 1     | DII      | ,,,       | 50.50 | 113   | 2     | DII      | 20        | 70.21 | 205   |       | D11        | 21        | (4.20 | 200   |       | DII      | 26        | 77.02 |
| 22    | 1     | B12      | 0         | 50:50 | 114   | 2     | B12      | 29        | 79:21 | 206   | 3     | BIZ        | 21        | 04:30 | 298   | 4     | BIZ      | 30        | 11:23 |
| 23    | 1     | Cl       | 20        | 63:37 | 115   | 2     | Cl       | 30        | 66:34 | 207   | 3     | C1         | 43        | 78:22 | 299   | 4     | C1       | 8         | 54:46 |
| 24    | 1     | C2       | 11        | 51:49 | 116   | 2     | C2       | 20        | 65:35 | 208   | 3     | C2         | 41        | 81:19 | 300   | 4     | C2       | 9         | 51:49 |
| 25    | 1     | C4       | 7         | 50:50 | 117   | 2     | C4       | 26        | 72:28 | 209   | 3     | C4         | 8         | 50:50 | 301   | 4     | C4       | 22        | 53:47 |
| 26    | 1     | C5       | 62        | 85.15 | 118   | 2     | C5       | 44        | 76.24 | 210   | 3     | C5         | 28        | 88.12 | 302   | 4     | C5       | 42        | 83.17 |
| 20    | 1     | CS<br>CC | 02        | 52.49 | 110   | 2     | C5       | 14        | 52.47 | 210   |       |            | 20        | 51.40 | 202   |       |          | 42        | 59.42 |
| 27    | 1     | 0        | 9         | 52:48 | 119   | 2     | 0        | 10        | 55:47 | 211   | 3     | 0          |           | 51:49 | 303   | 4     | 0        | 11        | 58:42 |
| 28    | 1     | C/       | 68        | 95:5  | 120   | 2     | C/       | 43        | 91:9  | 212   | 3     | C/         | 25        | 61:39 | 304   | 4     | C/       | 7         | 52:48 |
| 29    | 1     | C8       | 31        | 75:25 | 121   | 2     | C8       | 17        | 56:44 | 213   | 3     | C8         | 10        | 67:33 | 305   | 4     | C8       | 29        | 69:31 |
| 30    | 1     | C9       | 46        | 70:30 | 122   | 2     | C9       | 16        | 59:41 | 214   | 3     | C9         | 24        | 85:15 | 306   | 4     | C9       | 20        | 61:39 |
| 31    | 1     | C10      | 28        | 78.22 | 123   | 2     | C10      | 13        | 51.40 | 215   | 3     | C10        | 17        | 60.40 | 307   | 4     | C10      | 45        | 03.7  |
| 20    | 1     | C10      | 20        | 01.10 | 123   | 2     | C10      | 15        | 52.47 | 215   |       | C10        | 17        | 50.41 | 209   |       | C10      | 45        | 90.11 |
| 32    | 1     | CII      | 32        | 81:19 | 124   | 2     | CII      | 11        | 53:47 | 216   | 3     | CII        | 17        | 59:41 | 308   | 4     | CII      | 50        | 89:11 |
| 33    | 1     | C12      | 41        | 80:20 | 125   | 2     | C12      | 19        | 53:47 | 217   | 3     | C12        | 30        | 70:30 | 309   | 4     | C12      | 41        | 70:30 |
| 34    | 1     | D1       | 15        | 52:48 | 126   | 2     | D1       | 20        | 68:32 | 218   | 3     | D1         | 17        | 61:39 | 310   | 4     | D1       | 38        | 74:26 |
| 35    | 1     | D2       | 18        | 63:37 | 127   | 2     | D2       | 68        | 85:15 | 219   | 3     | D2         | 53        | 93:7  | 311   | 4     | D2       | 15        | 65:35 |
| 36    | 1     | D3       | 0         | 52:48 | 128   | 2     | D3       | 14        | 58.42 | 220   | 3     | D3         | 28        | 86:14 | 312   | 4     | D3       | 37        | 01.0  |
| 27    | 1     | D5       | ó         | 50.50 | 120   | 2     | D5       | 14        | 77.02 | 220   |       | D5         | 12        | 66.14 | 212   |       | D5       | 20        | 96.14 |
| 5/    | 1     | D5       | 9         | 50:50 | 129   | 2     | D5       | 45        | 11:23 | 221   | 3     | D5         | 13        | 66:34 | 313   | 4     | D5       | 26        | 86:14 |
| 38    | 1     | D6       | 22        | 71:29 | 130   | 2     | D6       | 21        | 70:30 | 222   | 3     | D6         | 17        | 58:42 | 314   | 4     | D6       | 18        | 68:32 |
| 39    | 1     | D7       | 28        | 83:17 | 131   | 2     | D7       | 53        | 90:10 | 223   | 3     | D7         | 9         | 54:46 | 315   | 4     | D7       | 26        | 61:39 |
| 40    | 1     | D8       | 14        | 50:50 | 132   | 2     | D8       | 31        | 69:31 | 224   | 3     | D8         | 34        | 80:20 | 316   | 4     | D8       | 28        | 59:41 |
| 41    | 1     | D0       | 40        | 74:26 | 133   | 2     | D0       | 46        | 72.28 | 225   | 3     | D0         | 0         | 53:47 | 317   | 4     | D0       | 38        | 70.30 |
| 41    | 1     | D)       | 47        | 74.20 | 100   | 2     | D)       | 40        | 72.20 | 225   | 5     |            | í.        | 76.04 | 310   |       | DIO      | 30        | 70.50 |
| 42    | 1     | D10      | 16        | 51:49 | 134   | 2     | D10      | 42        | 67:33 | 226   | 3     | D10        | 46        | /6:24 | 318   | 4     | DIO      | 33        | 87:13 |
| 43    | 1     | D11      | 39        | 81:19 | 135   | 2     | D11      | 46        | 74:26 | 227   | 3     | D11        | 39        | 90:10 | 319   | 4     | D11      | 42        | 70:30 |
| 44    | 1     | D12      | 28        | 53:47 | 136   | 2     | D12      | 22        | 76:24 | 228   | 3     | D12        | 48        | 92:8  | 320   | 4     | D12      | 57        | 95:5  |
| 45    | 1     | E1       | 20        | 61:39 | 137   | 2     | E1       | 23        | 53:47 | 229   | 3     | E1         | 38        | 72:28 | 321   | 4     | E1       | 39        | 70:30 |
| 46    | 1     | E2       | 16        | 60.40 | 138   | 2     | E2       | 27        | 63.37 | 230   | 3     | E2         | 23        | 56.44 | 322   | 4     | E2       | 64        | 94.6  |
| 40    | 1     | E2<br>E2 | 10        | 64.26 | 130   | 2     | E2<br>E2 | 27        | 51.40 | 230   | 5     | E2<br>E2   | 23        | 79.00 | 322   | 4     | E2<br>E2 | 10        | 50.41 |
| 47    | 1     | ES       | 25        | 04:50 | 139   | 2     | E3       | 0         | 51:49 | 231   | 5     | ES         | 52        | 16:22 | 525   | 4     | ES       | 19        | 39:41 |
| 48    | 1     | E4       | 14        | 65:35 | 140   | 2     | E4       | 21        | 71:29 | 232   | 3     | E4         | 20        | 53:47 | 324   | 4     | E4       | 38        | 56:44 |
| 49    | 1     | E5       | 10        | 51:49 | 141   | 2     | E5       | 29        | 76:24 | 233   | 3     | E5         | 9         | 51:49 | 325   | 4     | E5       | 50        | 76:24 |
| 50    | 1     | E6       | 44        | 86:14 | 142   | 2     | E6       | 39        | 90:10 | 234   | 3     | E6         | 45        | 92:8  | 326   | 4     | E6       | 58        | 93:7  |
| 51    | 1     | E7       | 20        | 50:41 | 1/2   | 2     | E7       | 22        | 65.25 | 225   | 2     | E7         | 0         | 50:50 | 327   |       | E7       | 25        | 76.24 |
| 51    | 1     | E7       | 29        | 39.41 | 143   | 2     | E/       | 52        | 05.55 | 235   | 5     | E/         | 0         | 50.50 | 327   | -     |          | 35        | 70.24 |
| 52    | 1     | E8       | 47        | 92:8  | 144   | 2     | E8       | 63        | 93:7  | 236   | - 3   | E8         | 29        | 85:15 | 328   | 4     | E8       | 30        | 66:34 |
| 53    | 1     | E9       | 20        | 59:41 | 145   | 2     | E9       | 32        | 64:36 | 237   | 3     | E9         | 24        | 86:14 | 329   | 4     | E9       | 18        | 62:38 |
| 54    | 1     | E10      | 40        | 78:22 | 146   | 2     | E10      | 0         | 50:50 | 238   | 3     | E10        | 10        | 55:45 | 330   | 4     | E10      | 31        | 63:37 |
| 55    | 1     | E11      | 38        | 63:37 | 147   | 2     | E11      | 30        | 54:46 | 239   | 3     | E11        | 25        | 77:23 | 331   | 4     | E11      | 22        | 64:36 |
| 56    | 1     | E12      | 24        | 97.12 | 1/19  | 2     | E12      | 20        | 62.28 | 240   | 2     | E12        | 19        | 52.47 | 222   | 4     | E12      | 45        | 71.20 |
| 50    | 1     | E12      | 34        | 67.13 | 140   | 2     | E12      | 20        | 02.30 | 240   | 5     | E12        | 10        | 55.47 | 332   | -     | E12      | 45        | 71.29 |
| 5/    | 1     | FI       | 20        | 59:41 | 149   | 2     | FI       | 50        | 79:21 | 241   | 3     | FI         | 19        | 58:42 | 333   | 4     | FI       | 50        | /1:29 |
| 58    | 1     | F2       | 25        | 77:23 | 150   | 2     | F2       | 30        | 55:45 | 242   | 3     | F2         | 48        | 69:31 | 334   | 4     | F2       | 11        | 51:49 |
| 59    | 1     | F3       | 10        | 55:45 | 151   | 2     | F3       | 50        | 76:24 | 243   | 3     | F3         | 49        | 82:18 | 335   | 4     | F3       | 27        | 68:32 |
| 60    | 1     | F4       | 15        | 51:49 | 152   | 2     | F4       | 0         | 50:50 | 244   | 3     | F4         | 46        | 90:10 | 336   | 4     | F4       | 42        | 72:28 |
| 61    | 1     | E5       | 13        | 56.44 | 153   | 2     | E5       | 54        | 80.20 | 245   | 3     | E5         | 10        | 63.37 | 337   | 4     | E5       | 35        | 67.33 |
| 62    | 1     | E6       | 25        | 74.26 | 153   | 2     | E6       | 54        | 02.8  | 245   | 2     | F6         | 20        | 70.21 | 229   | 4     | E6       | 63        | 75.25 |
| 62    | 1     | 10       | 20        | (9.27 | 154   | 2     | 10       | 27        | 70.00 | 240   |       | 10         | 10        | 01.10 | 330   |       | 10       | 05        | 15.25 |
| 0.5   | 1     | F/       | 20        | 03:37 | 155   | 2     | F/       | 5/        | 70:30 | 247   | 3     | F/         | 19        | 81:19 | 539   | 4     | F/       | 32        | 69:31 |
| 64    | 1     | F8       | 15        | 70:30 | 156   | 2     | F8       | 43        | 91:9  | 248   | 3     | F8         | 13        | 52:48 | 340   | 4     | F8       | 34        | 63:37 |
| 65    | 1     | F9       | 9         | 51:49 | 157   | 2     | F9       | 64        | 75:25 | 249   | 3     | F9         | 51        | 94:6  | 341   | 4     | F9       | 41        | 60:40 |
| 66    | 1     | F10      | 16        | 56:44 | 158   | 2     | F10      | 55        | 69:31 | 250   | 3     | F10        | 12        | 52:48 | 342   | 4     | F10      | 26        | 54:46 |
| 67    | 1     | F11      | 23        | 62:38 | 159   | 2     | F11      | 12        | 51:49 | 251   | 3     | F11        | 23        | 59:41 | 343   | 4     | F11      | 72        | 84:16 |
| 69    | 1     | E12      | 0         | 51:40 | 160   | 2     | E12      | 25        | 66:24 | 252   | 2     | E12        | 42        | 01-0  | 244   | 4     | E12      | 20        | 62.28 |
| 00    | 1     | F12      | 50        | 51.49 | 100   | 2     | F12      | 35        | 00.34 | 252   | 5     | 1112<br>C1 | 42        | 91.9  | 344   | -     | 112      | 30        | 02.36 |
| 69    | 1     | GI       | 58        | 77:23 | 161   | 2     | GI       | 37        | 90:10 | 253   | 3     | GI         | 40        | 81:19 | 345   | 4     | GI       | 72        | 84:16 |
| 70    | 1     | G2       | 21        | 61:39 | 162   | 2     | G2       | 34        | 73:27 | 254   | 3     | G2         | 5         | 50:50 | 346   | 4     | G2       | 43        | 78:22 |
| 71    | 1     | G3       | 8         | 53:47 | 163   | 2     | G3       | 8         | 50:50 | 255   | 3     | G3         | 28        | 83:17 | 347   | 4     | G3       | 66        | 76:24 |
| 72    | 1     | G4       | 13        | 52.48 | 164   | 2     | G4       | 34        | 65.35 | 256   | 3     | G4         | 5         | 51.49 | 348   | 4     | G4       | 45        | 63.37 |
| 72    | 1     | C5       | 12        | 51.40 | 165   | 2     | C5       | 10        | 52.47 | 250   | 2     | C5         | 24        | 00.10 | 240   | 4     | 04       | -+5       | 57.42 |
| 15    | 1     | 05       | 12        | 51:49 | 105   | 2     | 05       | 18        | 55:47 | 237   | 5     | 05         | 54        | 90.10 | 549   | 4     | 05       | 24        | 57:45 |
| 74    | 1     | G6       | 24        | 68:32 | 166   | 2     | G6       | 23        | 64:36 | 258   | 3     | G6         | 39        | 79:21 | 350   | 4     | G6       | 23        | 57:43 |
| 75    | 1     | G7       | 28        | 73:27 | 167   | 2     | G7       | 36        | 85:15 | 259   | 3     | G7         | 0         | 50:50 | 351   | 4     | G7       | 8         | 54:46 |
| 76    | 1     | G8       | 55        | 73:27 | 168   | 2     | G8       | 38        | 70:30 | 260   | 3     | G8         | 47        | 93:7  | 352   | 4     | G8       | 67        | 82:18 |
| 77    | 1     | G9       | 14        | 52.48 | 169   | 2     | G9       | 38        | 75.25 | 261   | 3     | G9         | 26        | 83.17 | 353   | 4     | GQ       | 35        | 78.22 |
| 70    | 1     | CIA      | 47        | 70.00 | 170   | 2     | CIO      | 40        | 00.20 | 201   |       | CIA        | 24        | Q/.17 | 253   |       | C10      | 20        | 66.24 |
| /6    | 1     | 010      | 4/        | 10.22 | 1/0   | 2     | 010      | 40        | 80:20 | 202   | 3     | 010        | 24        | 04.10 | 554   | 4     | 010      | 50        | 00:34 |
| 79    | 1     | G11      | 59        | 79:21 | 171   | 2     | G11      | 43        | 71:29 | 263   | 3     | G11        | 40        | 91:9  | 355   | 4     | G11      | 49        | 91:9  |
| 80    | 1     | G12      | 66        | 83:17 | 172   | 2     | G12      | 34        | 88:12 | 264   | 3     | G12        | 9         | 54:46 | 356   | 4     | G12      | 17        | 61:39 |
| 81    | 1     | H1       | 61        | 95:5  | 173   | 2     | H1       | 29        | 90:10 | 265   | 3     | H1         | 44        | 85:15 | 357   | 4     | H1       | 18        | 53:47 |
| 82    | 1     | H2       | 30        | 91.0  | 174   | 2     | H2       | 45        | 76.24 | 266   | 3     | Н2         | 47        | 79.21 | 358   | 4     | H2       | 35        | 73.27 |
| 02    | 1     | 112      | 57        | 76.24 | 175   | á     | 112      | 2         | 60.21 | 200   |       | 112        | 21        | 62.27 | 250   |       | 112      | 20        | 50:41 |
| 85    | 1     | H3       | 51        | /0:24 | 1/5   | 2     | H3       | 26        | 09:31 | 267   | 5     | H3         | 21        | 03:57 | 359   | 4     | H3       | 22        | 59:41 |
| 84    | 1     | H4       | 12        | 64:36 | 176   | 2     | H4       | 26        | 64:36 | 268   | 3     | H4         | 5         | 50:50 | 360   | 4     | H4       | 40        | 78:22 |
| 85    | 1     | H5       | 52        | 93:7  | 177   | 2     | H5       | 31        | 90:10 | 269   | 3     | H5         | 10        | 54:46 | 361   | 4     | H5       | 39        | 84:16 |
| 86    | 1     | H6       | 34        | 89:11 | 178   | 2     | H6       | 23        | 72:28 | 270   | 3     | H6         | 34        | 94:6  | 362   | 4     | H6       | 52        | 81:19 |
| 87    | i     | H7       | 12        | 62.38 | 170   | 2     | H7       | 37        | 66.34 | 271   | 2     | H7         | 11        | 63.27 | 363   |       | H7       | 17        | 61.30 |
| 0/    | 1     | 11/      | 14        | 02.30 | 100   | 2     | 11/      | 20        | 62.27 | 272   |       | 11/        | 11        | 66.24 | 264   |       | 11/      | 20        | 64-26 |
| 88    | 1     | H8       | 55        | 80:14 | 180   | 2     | H8       | 20        | 03:57 | 272   | 3     | H8         | 10        | 00:34 | 364   | 4     | H8       | 20        | 04:36 |
| 89    | 1     | H9       | 29        | 83:17 | 181   | 2     | H9       | 34        | 68:32 | 273   | 3     | H9         | 24        | 76:24 | 365   | 4     | H9       | 33        | 90:10 |
| 90    | 1     | H10      | 36        | 71:29 | 182   | 2     | H10      | 42        | 60:40 | 274   | 3     | H10        | 6         | 52:48 | 366   | 4     | H10      | 18        | 58:42 |
| 91    | 1     | H11      | 10        | 50:50 | 183   | 2     | H11      | 15        | 66:34 | 275   | 3     | HII        | 11        | 59:41 | 367   | 4     | HII      | 20        | 61.39 |
| 92    | 1     | H12      | 18        | 63.37 | 184   | 2     | H12      | 7         | 64.36 | 276   | 3     | H12        | 12        | 70.30 | 368   | 4     | H12      | 37        | 60.40 |

**Supplementary Table 5.** Screening results of the NNK library of *Rma* cytochrome *c* for C–B bond formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.)) of the variants in the NNK library were reported.

|       |       |      |           |       | 1     |       |           | 1.1.1 (60) |       |       |       |           | 1.1.1.(0()) |       |       |       |           | 1.1.1.(0()) |       |
|-------|-------|------|-----------|-------|-------|-------|-----------|------------|-------|-------|-------|-----------|-------------|-------|-------|-------|-----------|-------------|-------|
| entry | plate | well | yield (%) | e.r.  | entry | plate | well      | yield (%)  | e.r.  | entry | plate | well      | yield (%)   | e.r.  | entry | plate | well      | yield (%)   | e.r.  |
| 1     | 1     | A2   | 25        | 96:4  | 93    | 2     | A2        | 6          | 95:5  | 185   | 3     | A2        | 7           | 90:10 | 277   | 4     | A2        | 25          | 98:2  |
| 2     | 1     | A3   | 33        | 98:2  | 94    | 2     | A3        | 3          | 89:11 | 186   | 3     | A3        | 33          | 99:1  | 278   | 4     | A3        | 20          | 96:4  |
| 3     | 1     | A.4  | 30        | 08.2  | 05    | 2     | A.4       | 11         | 08.2  | 187   | 3     | A.4       | 24          | 08.2  | 270   |       | A4        | 30          | 00.1  |
| 4     | 1     | 1.5  | 10        | 08.2  | 00    | 2     | A.5       | 12         | 07.2  | 100   |       | A4<br>A5  | 24          | 90.20 | 200   |       | 15        | 50          | 75.05 |
| 4     | 1     | AS   | 19        | 98:2  | 96    | 2     | AS        | 15         | 97:3  | 188   | 3     | AS        | 5           | 80:20 | 280   | 4     | AS        | 0           | 15:25 |
| 5     | 1     | A6   | 4         | 95:5  | 97    | 2     | A6        | 12         | 98:2  | 189   | 3     | A6        | 6           | 77:23 | 281   | 4     | A6        | 21          | 96:4  |
| 6     | 1     | A7   | 8         | 67:33 | 98    | 2     | A7        | 5          | 68:32 | 190   | 3     | A7        | 30          | 99:1  | 282   | 4     | A7        | 13          | 83:17 |
| 7     | 1     | A8   | 14        | 87:13 | 99    | 2     | A8        | 13         | 98:2  | 191   | 3     | A8        | 10          | 88:12 | 283   | 4     | A8        | 25          | 99:1  |
| 8     | 1     | A9   | 15        | 98:2  | 100   | 2     | A9        | 16         | 98:2  | 192   | 3     | A9        | 7           | 75:25 | 284   | 4     | A9        | 5           | 85:15 |
| ő     | 1     | A 10 | 28        | 08.2  | 101   | 2     | A 10      | 4          | 76.24 | 103   | 3     | A10       | 7           | 75.25 | 285   | 4     | A 10      | 25          | 08.2  |
| 10    | 1     | A10  | 20        | 90.2  | 101   | 2     | A10       | 4          | 70.24 | 193   | 5     | A10       | 7           | 75.25 | 205   | 4     | A10       | 23          | 90.2  |
| 10    | 1     | AII  | 29        | 98:2  | 102   | 2     | AII       | /          | 96:4  | 194   | 3     | AII       | /           | /0:24 | 280   | 4     | AII       | 11          | 80:14 |
| 11    | 1     | A12  | 14        | 95:5  | 103   | 2     | A12       | 8          | 96:4  | 195   | 3     | AI2       | 7           | 73:27 | 287   | 4     | A12       | 21          | 98:2  |
| 12    | 1     | B1   | 33        | 100:0 | 104   | 2     | B1        | 9          | 96:4  | 196   | 3     | B1        | 5           | 82:18 | 288   | 4     | B1        | 7           | 96:4  |
| 13    | 1     | B3   | 23        | 98:2  | 105   | 2     | B3        | 8          | 98:2  | 197   | 3     | B3        | 12          | 97:3  | 289   | 4     | B3        | 11          | 97:3  |
| 14    | 1     | B4   | 25        | 98:2  | 106   | 2     | B4        | 15         | 98:2  | 198   | 3     | B4        | 18          | 99:1  | 290   | 4     | B4        | 7           | 68:32 |
| 15    | 1     | B5   | 12        | 84.16 | 107   | 2     | B5        | 14         | 96.4  | 199   | 3     | B5        | 16          | 98.2  | 291   | 4     | B5        | 16          | 96.4  |
| 16    | 1     | P6   | 0         | 86.14 | 109   | 2     | D6        | 12         | 08.2  | 200   | 2     | D6        | 20          | 08.2  | 202   |       | D6        | 6           | 71.20 |
| 10    | 1     | D0   | 0         | 00.14 | 108   | 2     | D0        | 12         | 90.2  | 200   | 5     | D0        | 20          | 90.2  | 292   | -     | D0        | 0           | /1.29 |
| 1/    | 1     | В/   | 21        | 98:2  | 109   | 2     | B/        | 16         | 98:2  | 201   | 3     | В/        | 26          | 98:2  | 293   | 4     | В/        | 24          | 98:2  |
| 18    | 1     | B8   | 15        | 85:15 | 110   | 2     | B8        | 17         | 98:2  | 202   | 3     | B8        | 14          | 89:11 | 294   | 4     | B8        | 10          | 91:9  |
| 19    | 1     | B9   | 11        | 95:5  | 111   | 2     | B9        | 6          | 91:9  | 203   | 3     | B9        | 26          | 98:2  | 295   | 4     | B9        | 6           | 69:31 |
| 20    | 1     | B10  | 13        | 97:3  | 112   | 2     | B10       | 7          | 91:9  | 204   | 3     | B10       | 6           | 100:0 | 296   | 4     | B10       | 7           | 68:32 |
| 21    | 1     | B11  | 5         | 100:0 | 113   | 2     | B11       | 3          | 84:16 | 205   | 3     | B11       | 18          | 88:12 | 297   | 4     | B11       | 9           | 87:13 |
| 22    | 1     | B12  | 5         | 99.1  | 114   | 2     | B12       | 8          | 95.5  | 206   | 3     | B12       | 8           | 82.18 | 298   | 4     | B12       | 21          | 98.2  |
| 23    | 1     | CI   | 8         | 87.13 | 115   | 2     | C1        | 12         | 07.3  | 207   | 3     | Cl        | 21          | 07.3  | 200   |       | CI        | 4           | 82.18 |
| 2.5   | 1     |      | 7         | (9.22 | 110   | 2     | C1        | 12         | 95.15 | 207   |       |           | 16          | 07.2  | 200   | 7     |           | 7           | 80.20 |
| 24    | 1     | C2   | /         | 08:32 | 110   | 2     | C2        | 0          | 85:15 | 208   | 3     | 02        | 10          | 97:3  | 300   | 4     | C2        | 0           | 80:20 |
| 25    | 1     | C4   | 5         | 83:17 | 117   | 2     | C4        | 12         | 97:3  | 209   | 3     | C4        | 7           | 72:28 | 301   | 4     | C4        | 7           | 67:33 |
| 26    | 1     | C5   | 26        | 98:2  | 118   | 2     | C5        | 18         | 96:4  | 210   | 3     | C5        | 25          | 99:1  | 302   | 4     | C5        | 30          | 98:2  |
| 27    | 1     | C6   | 5         | 75:25 | 119   | 2     | C6        | 6          | 63:37 | 211   | 3     | C6        | 8           | 70:30 | 303   | 4     | C6        | 9           | 89:11 |
| 28    | 1     | C7   | 33        | 100:0 | 120   | 2     | C7        | 11         | 99:1  | 212   | 3     | C7        | 16          | 84:16 | 304   | 4     | C7        | 7           | 70:30 |
| 29    | 1     | C8   | 5         | 100.0 | 121   | 2     | C8        | 6          | 72.28 | 213   | 3     | C8        | 21          | 98.2  | 305   | 4     | C8        | 17          | 94.6  |
| 20    | 1     |      | 21        | 08.2  | 122   | 2     | CO        | 4          | 72.20 | 213   | 2     |           | 27          | 00:1  | 306   | 4     |           | 14          | 95.15 |
| 30    | 1     | 0.9  | 21        | 96.2  | 122   | 2     | C9        | 7          | 77.23 | 214   | 5     |           | 57          | 99.1  | 300   | -     | 0.0       | 14          | 00.1  |
| 51    | 1     | C10  | 17        | 97:3  | 123   | 2     | C10       | 4          | 72:28 | 215   | 3     | C10       | 13          | 88:12 | 307   | 4     | C10       | 22          | 99:1  |
| 32    | 1     | C11  | 16        | 98:2  | 124   | 2     | C11       | 4          | 84:16 | 216   | 3     | C11       | 7           | 74:26 | 308   | 4     | C11       | 25          | 99:1  |
| 33    | 1     | C12  | 17        | 96:4  | 125   | 2     | C12       | 4          | 71:29 | 217   | 3     | C12       | 10          | 88:12 | 309   | 4     | C12       | 14          | 87:13 |
| 34    | 1     | D1   | 6         | 73:27 | 126   | 2     | D1        | 12         | 91:9  | 218   | 3     | D1        | 8           | 89:11 | 310   | 4     | D1        | 20          | 97:3  |
| 35    | 1     | D2   | 7         | 79:21 | 127   | 2     | D2        | 8          | 91:9  | 219   | 3     | D2        | 23          | 100:0 | 311   | 4     | D2        | 16          | 97:3  |
| 36    | 1     | D3   | 6         | 72.28 | 128   | 2     | D3        | 11         | 07.3  | 220   | 3     | D3        | 17          | 00.1  | 312   | 4     | D3        | 33          | 100.0 |
| 27    | 1     | DS   | 0         | (0.21 | 120   | 2     | D5        | 17         | 09.0  | 220   |       | D5        | 17          | 90.11 | 212   |       | D5        | 55          | 02.7  |
| 3/    | 1     | D5   | 8         | 09:31 | 129   | 2     | D5        | 1/         | 98:2  | 221   | 3     | 05        | 8           | 89:11 | 313   | 4     | 05        | 9           | 93:7  |
| 38    | 1     | D6   | 6         | 95:5  | 130   | 2     | D6        | 6          | 90:10 | 222   | 3     | D6        | 8           | 75:25 | 314   | 4     | D6        | 15          | 95:5  |
| 39    | 1     | D7   | 18        | 98:2  | 131   | 2     | D7        | 4          | 88:12 | 223   | 3     | D7        | 9           | 83:17 | 315   | 4     | D7        | 7           | 74:26 |
| 40    | 1     | D8   | 7         | 66:34 | 132   | 2     | D8        | 8          | 87:13 | 224   | 3     | D8        | 21          | 98:2  | 316   | 4     | D8        | 10          | 79:21 |
| 41    | 1     | D9   | 20        | 97:3  | 133   | 2     | D9        | 4          | 99:1  | 225   | 3     | D9        | 5           | 84:16 | 317   | 4     | D9        | 14          | 87:13 |
| 42    | 1     | D10  | 8         | 67:33 | 134   | 2     | D10       | 12         | 82:18 | 226   | 3     | D10       | 36          | 99:1  | 318   | 4     | D10       | 13          | 99:1  |
| 43    | 1     | D11  | 20        | 97.3  | 135   | 2     | D11       | 15         | 98.2  | 227   | 3     | D11       | 21          | 99.1  | 319   | 4     | D11       | 17          | 85.15 |
| 44    | 1     | D12  | 7         | 68.22 | 135   | 2     | D12       | 10         | 07.2  | 220   | 2     | D12       | 10          | 05:5  | 320   | 4     | D12       | 25          | 00.15 |
| 44    | 1     | E1   | 20        | 07.2  | 127   | 2     | D12<br>E1 | 10         | 67.22 | 220   | 2     | D12<br>E1 | 10          | 95.5  | 320   | 4     | D12<br>E1 | 23          | 99.1  |
| 45    | 1     | EI   | 20        | 97:5  | 157   | 2     | EI        | 5          | 07:55 | 229   | 5     | EI        | 9           | 89:11 | 521   | 4     | EI        | 0           | 80:14 |
| 46    | 1     | E2   | 15        | 89:11 | 138   | 2     | E2        | 5          | 71:29 | 230   | 3     | E2        | 8           | 75:25 | 322   | 4     | E2        | 30          | 100:0 |
| 47    | 1     | E3   | 12        | 86:14 | 139   | 2     | E3        | 4          | 74:26 | 231   | 3     | E3        | 9           | 97:3  | 323   | 4     | E3        | 6           | 74:26 |
| 48    | 1     | E4   | 11        | 90:10 | 140   | 2     | E4        | 8          | 96:4  | 232   | 3     | E4        | 8           | 69:31 | 324   | 4     | E4        | 8           | 67:33 |
| 49    | 1     | E5   | 7         | 68:32 | 141   | 2     | E5        | 11         | 95:5  | 233   | 3     | E5        | 5           | 75:25 | 325   | 4     | E5        | 20          | 98:2  |
| 50    | 1     | E6   | 21        | 98.2  | 142   | 2     | E6        | 13         | 99.1  | 234   | 3     | E6        | 14          | 97.3  | 326   | 4     | E6        | 32          | 100.0 |
| 51    | 1     | E7   | 14        | 94.16 | 142   | 2     | E7        | 0          | 70.21 | 225   | 2     | E7        | 6           | 100.0 | 227   | 4     | E7        | 20          | 00.1  |
| 51    | 1     |      | 14        | 84:10 | 145   | 2     | E/        | 9          | 19:21 | 255   | 5     | E/        | 0           | 100.0 | 327   | 4     |           | 50          | 99:1  |
| 52    | 1     | E8   | 24        | 99:1  | 144   | 2     | E8        | /          | 96:4  | 236   | 3     | E8        | 0           | 97:3  | 328   | 4     | E8        | 11          | 86:14 |
| 53    | 1     | E9   | 8         | 84:16 | 145   | 2     | E9        | 8          | 84:16 | 237   | 3     | E9        | 12          | 96:4  | 329   | 4     | E9        | 7           | 87:13 |
| 54    | 1     | E10  | 16        | 97:3  | 146   | 2     | E10       | 4          | 100:0 | 238   | 3     | E10       | 8           | 90:10 | 330   | 4     | E10       | 9           | 82:18 |
| 55    | 1     | E11  | 9         | 84:16 | 147   | 2     | E11       | 4          | 68:32 | 239   | 3     | E11       | 13          | 95:5  | 331   | 4     | E11       | 9           | 89:11 |
| 56    | 1     | E12  | 11        | 98:2  | 148   | 2     | E12       | 5          | 75:25 | 240   | 3     | E12       | 8           | 70:30 | 332   | 4     | E12       | 23          | 98:2  |
| 57    | 1     | F1   | 12        | 67.33 | 149   | 2     | F1        | 12         | 97.3  | 241   | 3     | F1        | 5           | 80.20 | 333   | 4     | F1        | 17          | 96.4  |
| 58    | 1     | E2   | 21        | 00.1  | 150   | 2     | E2        | 6          | 68.32 | 242   | 3     | E2        | 24          | 08.2  | 334   | 4     | E2        | 5           | 81.10 |
| 50    | 1     | F2   | 15        | 94.10 | 150   | 2     | F2        | 10         | 00.52 | 242   |       | F2        | 24          | 08.2  | 225   |       | F2        | 3           | 02.7  |
| 59    | 1     | F3   | 15        | 84:10 | 151   | 2     | F3        | 12         | 90:4  | 243   | 5     | F3<br>F4  | 20          | 98:2  | 333   | 4     | F3        | 4           | 95:7  |
| 00    | 1     | F4   | 0         | 70:30 | 152   | 2     | F4        | 3          | 100:0 | 244   | 3     | F4        | 17          | 98:2  | 330   | 4     | F4        | 18          | 97:3  |
| 61    | 1     | F5   | 6         | 76:24 | 153   | 2     | F5        | 15         | 95:5  | 245   | 3     | F5        | 7           | 83:17 | 337   | 4     | F5        | 14          | 91:9  |
| 62    | 1     | F6   | 29        | 98:2  | 154   | 2     | F6        | 8          | 98:2  | 246   | 3     | F6        | 21          | 98:2  | 338   | 4     | F6        | 27          | 99:1  |
| 63    | 1     | F7   | 13        | 88:12 | 155   | 2     | F7        | 10         | 83:17 | 247   | 3     | F7        | 22          | 99:1  | 339   | 4     | F7        | 13          | 91:9  |
| 64    | 1     | F8   | 12        | 97:3  | 156   | 2     | F8        | 10         | 97:3  | 248   | 3     | F8        | 7           | 72:28 | 340   | 4     | F8        | 14          | 87:13 |
| 65    | 1     | F9   | 8         | 66:34 | 157   | 2     | F9        | 8          | 98:2  | 249   | 3     | F9        | 28          | 99:1  | 341   | 4     | F9        | 10          | 82:18 |
| 66    | 1     | F10  | 13        | 79.21 | 158   | 2     | F10       | 11         | 97.3  | 250   | 3     | F10       | 8           | 69.31 | 342   | 4     | F10       | 8           | 72.28 |
| 67    | i     | F11  | 17        | 94.6  | 159   | 2     | F11       | 4          | 69:31 | 251   | 3     | F11       | 13          | 83:17 | 343   | 4     | F11       | 30          | 98.2  |
| 68    | 1     | E12  | 6         | 67.33 | 160   | 2     | F12       | 8          | 87.13 | 252   | 2     | E12       | 17          | 98.2  | 3/1/  |       | E12       | 8           | 86.14 |
| 60    | 1     | C1   | 27        | 07.2  | 161   | 2     | C1        | 12         | 00.1  | 252   | 2     | C1        | 27          | 00.1  | 245   |       | C1        | 21          | 08.2  |
| 09    | 1     |      | 27        | 97:3  | 101   | 2     | 01        | 12         | 99:1  | 253   | 3     |           | 21          | 99:1  | 345   | 4     |           | 21          | 98:2  |
| /0    | 1     | G2   | 13        | 85:15 | 162   | 2     | G2        |            | 83:17 | 254   | 3     | G2        | 0           | 94:0  | 546   | 4     | 62        | 10          | 96:4  |
| 71    | 1     | G3   | 5         | 74:26 | 163   | 2     | G3        | 4          | 74:26 | 255   | 3     | G3        | 15          | 98:2  | 347   | 4     | G3        | 25          | 98:2  |
| 72    | 1     | G4   | 5         | 71:29 | 164   | 2     | G4        | 7          | 85:15 | 256   | 3     | G4        | 4           | 82:18 | 348   | 4     | G4        | 7           | 73:27 |
| 73    | 1     | G5   | 8         | 75:25 | 165   | 2     | G5        | 4          | 71:29 | 257   | 3     | G5        | 6           | 94:6  | 349   | 4     | G5        | 8           | 73:27 |
| 74    | 1     | G6   | 12        | 86:14 | 166   | 2     | G6        | 8          | 85:15 | 258   | 3     | G6        | 26          | 97:3  | 350   | 4     | G6        | 6           | 75:25 |
| 75    | 1     | G7   | 23        | 96:4  | 167   | 2     | G7        | 6          | 88:12 | 259   | 3     | G7        | 6           | 100:0 | 351   | 4     | G7        | 8           | 68:32 |
| 76    | 1     | G8   | 15        | 96.4  | 168   | 2     | G8        | 12         | 85.15 | 260   | 3     | G8        | 16          | 98.2  | 352   | 4     | G8        | 17          | 97.3  |
| 70    | 1     | CO   | 6         | 71.20 | 160   | 2     | CO        | 12         | 06.4  | 200   | 2     | 60        | 0           | 00.2  | 252   |       | C0        | 22          | 00.0  |
| 70    | 1     | 0.10 | 15        | 07/2  | 109   | 2     | C10       | 1.5        | 90:4  | 201   |       | 09        | 0           | 07.0  | 252   | 4     | 09        | 32          | 20:2  |
| /8    | 1     | 610  | 15        | 97:3  | 1/0   | 2     | 610       | 1/         | 97:3  | 262   | 5     | 610       | 14          | 97:3  | 354   | 4     | 610       | 22          | 98:2  |
| 79    | 1     | GII  | 22        | 9/:3  | 171   | 2     | GII       | 10         | 84:16 | 263   | 3     | GII       | 14          | 9/:3  | 355   | 4     | GII       | 10          | 96:4  |
| 80    | 1     | G12  | 28        | 99:1  | 172   | 2     | G12       | 7          | 97:3  | 264   | 3     | G12       | 36          | 98:2  | 356   | 4     | G12       | 6           | 84:16 |
| 81    | 1     | H1   | 28        | 99:1  | 173   | 2     | H1        | 5          | 94:6  | 265   | 3     | H1        | 19          | 97:3  | 357   | 4     | H1        | 6           | 68:32 |
| 82    | 1     | H2   | 17        | 98:2  | 174   | 2     | H2        | 12         | 98:2  | 266   | 3     | H2        | 20          | 98:2  | 358   | 4     | H2        | 14          | 97:3  |
| 83    | 1     | H3   | 19        | 98:2  | 175   | 2     | H3        | 8          | 96:4  | 267   | 3     | H3        | 11          | 81:19 | 359   | 4     | H3        | 4           | 82:18 |
| 84    | 1     | H4   | 12        | 84.16 | 176   | 2     | H4        | 5          | 84.16 | 268   | 3     | H4        | 4           | 81.10 | 360   | 4     | H4        | 27          | 99.1  |
| 85    | 1     | H5   | 20        | 100.0 | 177   | 2     | H5        | 8          | 99.1  | 260   | 2     | H5        | 5           | 78.22 | 361   |       | H5        | 12          | 98.2  |
| 00    | 1     |      | 27        | 100.0 | 170   | 2     | 115       | 7          | 01:0  | 209   |       |           | 5           | 06:4  | 2(2   |       | 115       | 14          | 08-2  |
| 80    | 1     | HO   | 23        | 100:0 | 1/8   | 2     | HO        | /          | 91:9  | 2/0   | 5     | HO        | 9           | 90:4  | 362   | 4     | HO        | 24          | 98:2  |
| 8/    | 1     | H7   | 5         | 87:13 | 1/9   | 2     | H7        | 15         | 97:3  | 2/1   | 3     | H7        | 10          | 87:13 | 363   | 4     | H7        | 9           | 90:10 |
| 88    | 1     | H8   | 24        | 99:1  | 180   | 2     | H8        | 6          | 85:15 | 272   | 3     | H8        | 7           | 85:15 | 364   | 4     | H8        | 6           | 89:11 |
| 89    | 1     | H9   | 4         | 100:0 | 181   | 2     | H9        | 11         | 97:3  | 273   | 3     | H9        | 29          | 98:2  | 365   | 4     | H9        | 4           | 100:0 |
| 90    | 1     | H10  | 9         | 86:14 | 182   | 2     | H10       | 13         | 97:3  | 274   | 3     | H10       | 5           | 81:19 | 366   | 4     | H10       | 7           | 82:18 |
| 91    | 1     | H11  | 5         | 75:25 | 183   | 2     | H11       | 4          | 86:14 | 275   | 3     | H11       | 4           | 86:14 | 367   | 4     | H11       | 8           | 85:15 |
| 92    | 1     | H12  | 15        | 96:4  | 184   | 2     | H12       | 4          | 88:12 | 276   | 3     | H12       | 9           | 87:13 | 368   | 4     | H12       | 22          | 98:2  |

Supplementary Table 6. Screening results of the NNK library of *Rma* cytochrome *c* for C–Si bond formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.)) of the variants in the NNK library were reported.

| Component                                  | Final concentration | Per 25 µL reaction |
|--------------------------------------------|---------------------|--------------------|
| 5x KAPA HiFi Fidelity Buffer               | 1x                  | 5.0 μL             |
| 10  mM dNTP Mix                            | 0.3 mM dNTP         | 0.75 μL            |
| 10 µM Forward Primer                       | 0.3 μM              | 0.75 μL            |
| 10 µM Reverse Primer                       | 0.3 μM              | 0.75 μL            |
| Twist Oligo Pool (20 ng/µL)                | 0.4 ng/µL           | 0.5 μL             |
| KAPA HiFi HotStart DNA Polymerase (1 U/µL) | 0.5 U/reaction      | 0.5 μL             |
| PCR grade water                            | -                   | 16.75 μL           |

Supplementary Table 7. PCR reaction components.

| Cycling Step                | Temperature     | Duration  |
|-----------------------------|-----------------|-----------|
| Initialization denaturation | 3 min at 95 °C  | 1x        |
| Denaturation                | 20 sec at 98 °C |           |
| Annealing                   | 15 sec at 52 °C | 12 cycles |
| Extension                   | 15 sec at 72 °C |           |
| Final Extension             | 1 min at 72 °C  | 1x        |

## References

- 1 Notin, P. *et al.* Tranception: protein fitness prediction with autoregressive transformers and inference-time retrieval. In *International Conference on Machine Learning*, 16990–17017 (PMLR, 2022).
- 2 Hopf, T. A. *et al.* Mutation effects predicted from sequence co-variation. *Nat. Biotechnol.* **35**, 128–135 (2017).
- 3 Notin, P. *et al.* Proteingym: Large-scale benchmarks for protein design and fitness prediction. *bioRxiv* 2023–12 (2023).
- 4 Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein fitness landscapes is facilitated by indirect paths. *Elife* **5**, e16965 (2016).
- 5 Chen, Y. *et al.* Deep mutational scanning of an oxygen-independent fluorescent protein creilov for comprehensive profiling of mutational and epistatic effects. *ACS Synth. Biol.* **12**, 1461–1473 (2023).
- 6 Mukherjee, A. & Schroeder, C. M. Flavin-based fluorescent proteins: emerging paradigms in biological imaging. *Curr. Opin. Biotechnol.* **31**, 16–23 (2015).
- 7 Ding, D. *et al.* Co-evolution of interacting proteins through non-contacting and non-specific mutations. *Nat. Ecol. Evol.* **6**, 590–603 (2022).
- 8 Zhu, D. *et al.* Optimal trade-off control in machine learning–based library design, with application to adeno-associated virus (aav) for gene therapy. *Sci. Adv.* **10**, eadj3786 (2024).
- 9 Hopf, T. A. *et al.* The evcouplings python framework for coevolutionary sequence analysis. *Bioinformatics* **35**, 1582–1584 (2019).
- 10 Frazer, J. *et al.* Disease variant prediction with deep generative models of evolutionary data. *Nature* **599**, 91–95 (2021).
- 11 Rao, R. M. *et al.* MSA transformer. In *International Conference on Machine Learning*, 8844–8856 (PMLR, 2021).
- 12 Meier, J. *et al.* Language models enable zero-shot prediction of the effects of mutations on protein function. *Advances in Neural Information Processing Systems* **34**, 29287–29303 (2021).
- 13 Steinegger, M. *et al.* Hh-suite3 for fast remote homology detection and deep protein annotation. *BMC Bioinf.* **20**, 1–15 (2019).
- 14 Lin, Z. *et al.* Evolutionary-scale prediction of atomic-level protein structure with a language model. *Science* **379**, 1123–1130 (2023).
- 15 Schymkowitz, J. *et al.* The FoldX web server: an online force field. *Nucleic Acids Res.* **33**, W382–W388 (2005).
- 16 Jumper, J. *et al.* Highly accurate protein structure prediction with alphafold. *Nature* **596**, 583–589 (2021).
- 17 Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise epistasis throughout an entire protein domain. *Curr Biol* **24**, 2643–2651 (2014).
- 18 Protabit. https://triad.protabit.com/. [Online; accessed March 4, 2024].
- 19 Alford, R. F. *et al.* The rosetta all-atom energy function for macromolecular modeling and design. *J. Chem. Theory Comput.* **13**, 3031–3048 (2017).
- 20 Yang, J. *et al.* Decoil: Optimization of degenerate codon libraries for machine learning-assisted protein engineering. *ACS Synth. Biol.* **12**, 2444–2454 (2023).
- 21 Kan, S. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. *Nature* **552**, 132–136 (2017).

- 22 Kan, S. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. *Science* **354**, 1048–1051 (2016).
- 23 Gibson, D. G. *et al.* Enzymatic assembly of dna molecules up to several hundred kilobases. *Nat. Methods* **6**, 343–345 (2009).
- 24 Berry, E. A. & Trumpower, B. L. Simultaneous determination of hemes a, b, and c from pyridine hemochrome spectra. *Anal. Biochem.* **161**, 1–15 (1987).
- 25 Barr, I. & Guo, F. Pyridine hemochromagen assay for determining the concentration of heme in purified protein solutions. *Bio-Protoc.* **5**, e1594–e1594 (2015).
- 26 Fiser, A. & Sali, A. ModLoop: automated modeling of loops in protein structures. *Bioinformatics* **19**, 2500–2501 (2003).
- 27 Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8 (2015).
- 28 Lee, C., Yang, W. & Parr, R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev. B* **37**, 785–789 (1988).
- 29 Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **98**, 5648–5652 (1993).
- 30 Frisch, M. J. et al. Gaussian 16 Revision C.01 (2016). Gaussian Inc. Wallingford CT.
- 31 Morris, G. M. *et al.* Autodock4 and autodocktools4: Automated docking with selective receptor flexibility. *J. Comput. Chem.* **30**, 2785–2791 (2009).
- 32 Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with amber on gpus. 2. explicit solvent particle mesh ewald. *J. Chem. Theory Comput.* 9, 3878–3888 (2013).
- 33 Case, D. et al. Amber 20 (2020). University of California, San Francisco, CA.
- 34 Maier, J. A. *et al.* ff14sb: Improving the accuracy of protein side chain and backbone parameters from ff99sb. *J. Chem. Theory Comput.* **11**, 3696–3713 (2015).
- 35 He, X., Man, V. H., Yang, W., Lee, T.-S. & Wang, J. A fast and high-quality charge model for the next generation general AMBER force field. *J. Chem. Phys.* **153**, 114502 (2020).
- 36 Li, P. & Merz, K. M. J. Mcpb.py: A python based metal center parameter builder. J. Chem. Inf. Model. 56, 599–604 (2016).
- 37 Singh, U. C. & Kollman, P. A. An approach to computing electrostatic charges for molecules. *J. Comput. Chem.* **5**, 129–145 (1984).
- 38 Besler, B. H., Merz Jr., K. M. & Kollman, P. A. Atomic charges derived from semiempirical methods. *J. Comput. Chem.* **11**, 431–439 (1990).
- 39 Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. J. Phys. Chem. 97, 10269–10280 (1993).
- 40 Garcia-Borràs, M. *et al.* Origin and control of chemoselectivity in cytochrome c catalyzed carbene transfer into si-h and n-h bonds. *J. Am. Chem. Soc* **143**, 7114–7123 (2021).
- 41 Anandakrishnan, R., Aguilar, B. & Onufriev, A. V. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. *Nucleic Acids Res.* **40**, W537–W541 (2012).
- 42 Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. *J. Chem. Phys.* **79**, 926–935 (1983).
- 43 Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).

- 44 Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An  $N \cdot \log(N)$  method for Ewald sums in large systems. J. Chem. Phys. **98**, 10089–10092 (1993).
- 45 Knorrscheidt, A. *et al.* Accessing chemo- and regioselective benzylic and aromatic oxidations by protein engineering of an unspecific peroxygenase. *ACS Catal.* **11**, 7327–7338 (2021).
- 46 Roe, D. R. & Cheatham, T. E. I. Ptraj and cpptraj: Software for processing and analysis of molecular dynamics trajectory data. *J. Chem. Theory Comput.* **9**, 3084–3095 (2013).
- 47 Sun, Z., Liu, Q., Qu, G., Feng, Y. & Reetz, M. T. Utility of b-factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability. *Chem. Rev.* **119**, 1626–1665 (2019).