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A Supplementary Information

A.1 Benchmarking datasets for computational experiments

In our work, we evaluated MODIFY for zero-shot protein fitness prediction and starting library
design on multiple benchmarking datasets curated by previous works.

ProteinGym. ProteinGym1 is a benchmark dataset with 87 Deep Mutational Scanning (DMS)
studies, which covers a wide range of protein families and also fitnesses (e.g., ligand binding and
thermostability). We collected all single mutations from the 87 DMS studies and used the exper-
imental data to evaluate the zero-shot ensemble approach in MODIFY for robust mutation effects
prediction across diverse proteins. As three of the five models integrated in MODIFY (EVmuta-
tion, EVE, and MSA Transformer) by default were not trained on the low-coverage columns of
MSA (i.e., column coverage lower than 70%) (Supplementary Information A.3), we only evalu-
ated MODIFY on mutants whose mutation sites are in columns with coverage no less than 70%.
ProteinGym stratified the 87 DMS studies based on the MSA depth of their target proteins1. The
MSA depth is defined as Neff/L, where L is the length covered, and Neff refers to the effective
number of sequences in the MSA2. In specific, proteins with Neff/L < 1 have low MSA depth;
proteins with 1 < Neff/L < 100 have medium MSA depth; proteins with Neff/L > 100 have high
MSA depth. Intuitively, proteins with lower MSA depth have fewer homologous sequences and
are deemed more challenging than proteins with higher MSA depth for mutation effects prediction.
For formatting purposes, we used abbreviations for the DMS dataset names in the ProteinGym sub-
stitution benchmark dataset shown in Fig. 2. We provided the mapping from the abbreviations to
the DMS dataset names in Supplementary Table 1. ProteinGym v1.0 benchmark dataset3 is a re-
cently released extension of the ProteinGym benchmark dataset, which contains 217 DMS assays.
The 217 DMS assays are categorized into five different function types: catalytic and biochemical
activity, binding, expression, organismal fitness, and stability. We provided the mapping from the
abbreviations to the DMS dataset names in Supplementary Table 2.

High-order GB1 mutants dataset. The fitness landscape of GB1 at sites 39, 40, 41, and 54
was systematically determined through experiments by Wu et al.4. Among the total 204 = 160, 000
variants, 149,361 variants have reliable experimental fitness values, and the fitness of the remaining
variants was imputed through regularized regression. For zero-shot prediction performances, we
solely evaluated MODIFY on variants with experimentally determined fitness. When assessing
MODIFY for starting library design, we additionally included the variants with imputed fitness
(10,639 variants). The fitness of the variants of GB1 is characterized by both stability (fraction
of folded proteins) and function (binding affinity to IgG-Fc). The fitness of the wild-type protein
(WT) is set as 1.0. For each variant, its fitness value is computed as relative to the WT. A mutant
with a fitness value higher than 1.0 is considered beneficial, whereas a mutant with a fitness value
lower than 1.0 is considered inferior to the WT. The lowest possible fitness value is 0.0.

High-order CreiLOV mutants dataset. Chen et al.5 experimentally characterized a combi-
natorial mutagenesis library on CreiLOV across 15 sites (3, 4, 5, 7, 29, 34, 47, 60, 61, 92, 96,
98, 107, 109, and 113). CreiLOV is a prototype flavin mononucleotide (FMN)-based fluorescent
protein (FbFP) from Chlamydomonas reinhardtii. Due to their oxygen-independent fluorescence,
FbFPs are recognized as potential alternatives to the green fluorescent protein (GFP)6. Different
from the landscape of GB1, this combinatorial library only spans 20 single mutations, which were
previously determined to be beneficial or neutral through singe-site saturation mutagenesis. The
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fluorescence value is used to represent the fitness of CreiLOV variants. A higher fluorescence
value would indicate a better fitness for the given variant. Out of the 184,320 mutants, 165,428 of
them had reliable experimental fitness values. For both library design and zero-shot protein fitness
prediction, we solely evaluated MODIFY on the mutants with reliable fitness values.

High-order ParD3 mutants dataset. Ding et al.7 experimentally assessed the mutation effects
of antitoxin ParD3 in the ParD3-ParE3 complex. ParD3 forms an inert multimeric complex with
the toxin ParE3 if co-expressed in Escherichia coli. Cells can grow if ParD3 and ParE3 interact,
but the cell growth will be slowed down if the interaction is disrupted. The fitness of a given
ParD3 variant reflects its interaction with the toxin ParE3, as measured by cell proliferation. This
landscape covers 203 = 8, 000 mutants across three sites. The fitness values were normalized so
that the wild-type fitness is 1.0 and the mean fitness of all variants with stop codons (i.e., truncated
ParD3) is 0.0. During the evaluation of MODIFY for zero-shot protein fitness prediction, we only
included variants without stop codons.

A.2 Co-optimization of the fitness and diversity of the library

Stochastic gradient ascent. At the library design stage of MODIFY, we co-optimize the ex-
pected fitness of sequences sampled by the library and the library’s diversity:

max
p∈P

Ex∼p(x) fitness(x) + λ · diversity(p), (1)

where P is the set of all possible libraries and λ > 0 is a coefficient that balances the fitness and
diversity terms. The unconstrained optimization problem with respect to ϕ is:

max
ϕ

J(ϕ) = max
ϕ

Ex∼p(x)[f(x)] + λ
M∑
i=1

αiH(pi), (2)

where αi is the parameter used for strengthening or reducing the diversity at residue i. We apply
stochastic gradient ascent to solve this optimization problem. The gradient of J(ϕ) is given by

∇ϕi,j
J(ϕ) ≈ 1

B

B∑
b=1

f(x(b))(δj(x
(b)
i )− pi,j)− λαi

K∑
j′=1

(1 + log pi,j′)pi,j′(δj(j
′)− pi,j), (3)

where B refers to the batch size and x
(b)
i is the i-th AA of the b-th sequence in the batch.

We now show the derivation of this gradient. For the first term in Supplementary Eq. 2, we
have

∇ϕEx∼p(x)[f(x)] =∇ϕ

∑
x∈X

p(x)f(x) =
∑
x∈X

f(x)∇ϕp(x)

=
∑
x∈X

f(x)p(x)∇ϕ log p(x) = Ex∼p(x)[f(x)∇ϕ log p(x)].
(4)

Following Zhu et al.8, we apply the Monte Carlo approximation to approximate the above gradient,
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which takes the below form:

∇ϕi,j
Ex∼p(x)[f(x)] =E[f(x)∇ϕi,j

log p(x)] ≈ 1

B

B∑
b=1

f(x(b))∇ϕi,j
log p(x(b))

=
1

B

B∑
b=1

f(x(b))(δj(x
(b)
i )− pi,j),

(5)

where B is the batch size, and x
(b)
i is the i-th AA of the b-th sequence in a batch. For the second

term in Supplementary Eq. 2, the gradient to the entropy of site i can be derived as

∇ϕi,j
H(pi) =∇ϕi,j

K∑
j′=1

−pi,j′ log pi,j′ = −
K∑

j′=1

(
∇ϕi,j

pi,j′ log pi,j′ + pi,j′∇ϕi,j
log pi,j′

)
=−

K∑
j′=1

(pi,j′ log pi,j′∇ϕi,j
log pi,j′ + pi,j′∇ϕi,j

log pi,j′)

=−
K∑

j′=1

(1 + log pi,j′)pi,j′∇ϕi,j
log pi,j′

=−
K∑

j′=1

(1 + log pi,j′)pi,j′(δj(j
′)− pi,j).

(6)

Exclusion of undesired AAs. The factorization of sequence probability as the product of site-
wise AA probability, i.e., p(x) =

∏M
i=1

∑K
k=1 δk(xi)pi,k, allows MODIFY to completely exclude

some AAs at a site based on prior knowledge, such as experimentally confirmed loss-of-function
mutations. Specifically, researchers can specify a set Ui of undesired AAs for position i (e.g., AAs
that would destabilize structure), and MODIFY ensures that the final library will not include any
AA from Ui at position i by adjusting the probability pi,k as

pi,k = exp(ϕi,k ⊙ Si,k)/
∑
k′

exp(ϕi,k′ ⊙ Si,k), (7)

where S ∈ {0, 1}M×K is a binary mask matrix such that Si,j = 0 if j ∈ Ui and one otherwise
(∀i), and ⊙ represents element-wise multiplication. Since some site-wise distributions may have a
support size smaller than K = 20 due to the masking, we re-scale the entropy in Eq. 3 to the same
scale:

diversity(p) =
M∑
i=1

[logK/ log(K − |Ui|)]H(pi). (8)

Parameter search space under MODIFY’s default setting. Under the default setting, we
varied the value of the parameter λ/M from a set of values and then selected the value of λ/M that
produces the library with the maximum area (i.e., mean predicted fitness × diversity). For GB1
and cytochrome c, we varied the value of λ/M from 0 to 2, with increments of 0.01. For CreiLOV,
we varied the value of λ/M from 0 to 1, with increments of 0.001.
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A.3 Zero-shot protein fitness prediction

For zero-shot protein fitness prediction, MODIFY integrates four pre-trained unsupervised ML
models to capture the evolutionary plausibility of protein sequences. Here, we describe our imple-
mentation of the four unsupervised models in detail.

Protein language model: In MODIFY, we integrated two PLMs, ESM-1v and ESM-2, for
zero-shot protein fitness prediction. ESM-1v and ESM-2 have similar neural network architecture
but were trained on different training sets (UniRef90 and UniRef50, respectively). ESM-1v is a
collection of 5 pre-trained models on UniRef90 (esm1v t33 650M UR90S {1, ..., 5}). For each
variant, we first predict its fitness using the five ESM-1v models respectively and then average
the predictions as the final predictions sESM−1v(x). For ESM-2, we use the pre-trained model
esm2 t36 3B UR50D for predicting the fitness sESM−2(x) for a given variant x. The models and
scripts of ESM-1v and ESM2 are downloaded from https://github.com/facebookres
earch/esm.

Evolutionary coupling model: We integrated EVmutation2 as the evolutionary coupling model
in MODIFY. For a given parent protein, we first used the EVcouplings server (https://evco
uplings.org/) to generate the multiple sequence alignment (MSA) and compute the evo-
lutionary couplings model from the MSA. For MSA generation, we varied the bit score b from
{0.1, 0.3, 0.5, 0.7} while keeping other parameters as default. Notably, by default, columns in the
MSA that have more than 30% of gaps (i.e., less than 70% of residues) will be excluded from the
evolutionary couplings computation. Then, we selected the bit score bhigh, which has the highest
quality score as provided by the EVcouplings server, and the EVmutation model computed on the
MSA generated by bhigh. If the sites to be mutated in our library were excluded from the model’s
computation, we would increase the bit score (e.g., increase b from 0.3 to 0.5) to include the sites
in the MSA. If no bit score from {0.1, 0.3, 0.5, 0.7} satisfies this condition (e.g., CreiLOV), we
would relax the position filter of no more than 30% gaps to include all sites and use the EVcou-
plings Python package9 to recompute the evolutionary couplings with the MSA generated by bit
score bhigh. For benchmarking experiments on ProteinGym, we used the MSA pre-generated by
ProteinGym and computed the evolutionary couplings model for each MSA using the EVcouplings
Python package with default parameters.

Latent generative sequence model: For latent generative sequence models, we integrated
EVE10 into MODIFY. The probability of a sequence x is defined by marginalizing out the la-
tent variable: p(x) =

∫
z
p(x|z, θ)p(z)dz. This is approximated using the evidence lower bound

(ELBO):
p(x) ≈ Eq[log p(x|z, θ)]− DKL(q(z|x; θ)||p(z)), (9)

where both the conditional distribution p(x|z, θ) and variational posterior q(z|x; θ) are modeled
by neural networks. The protein fitness is characterized as the log-odds ratio: sEVE(x

MT) =
log p(xMT) − log p(xWT). Following the GitHub repository of EVE (https://github.com
/OATML-Markslab/EVE), we used the same MSA that was generated by the EVcouplings
webserver for EVmutation. Following Frazer et al.10, we set the sample size for computing the
log-odds ratio as 2,000 and set T = 0.2 for correcting the biases in the MSA.

MSA-based PLM: As a hybrid PLM, MSA Transformer11 combines global and local evo-
lutionary information. Following Meier et al.12 and Notin et al.1, MSA Transformer scores the
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fitness also as the log-odds ratio:

sMSATrans(x
MT) =

∑
t∈T

log p(xt = xMT
t |x\T ;MSA(xWT))− log p(xt = xWT

t |x\T ;MSA(xWT)),

(10)
where T is the set of mutated sites, \T represents the indices of other sites, and MSA(x) repre-
sents the MSA of sequence x. For MSA Transformer, we used the same MSA generated by the
EVcouplings webserver. Following Rao et al.11 and Notin et al.1, we first filtered the MSA using
HHFilter13 and then sub-sampled the MSA to a size of 384 using the weight proposed by Hopf et
al.2 to reach optimal performances during inference. We sampled the MSA five times using five
different random seeds and averaged the predictions from 5 different sub-sampled MSAs as the
final fitness prediction sMSATrans(x).

Ensemble fitness predictor: After we collected the predictions from the five unsupervised
protein fitness predictors, we next ensemble them into the final predictions. As the fitness predic-
tions from different models may have varying scales, we first performed a z-score transformation
to normalize the predictions from different models to a comparable scale (zero mean and unit vari-
ance). Specifically, for each model, we first computed the mean µ and the standard deviation σ
of its predictions for all the variants within the combinatorial search space, and we applied the
transformation: s̃(x) = (s(x)− µ)/σ. Then, we ensemble the predictions following Eq. 7, where
specifically we have s̃ESM(x) = (s̃ESM−2(x)+ s̃ESM−1v(x))/2. Notably, after the z-score transfor-
mation, a random library with the uniform AA distribution at all sites would have a mean predicted
fitness of 0.

A.4 Structure-based filter

As the four unsupervised protein fitness predictors integrated into MODIFY only leverage
protein sequence and evolutionary information (MSAs) for fitness prediction, we further designed
a structure-based filter as a quality check for MODIFY, aiming to improve the synthesizability of
the variants in libraries designed by MODIFY (Fig. 1c). In specific, the structure-based filter in
MODIFY is based on ESMFold pLDDT14 for foldability and FoldX ∆∆G15 for structure stability.
A variant would pass the filter if it meets any one of the two requirements (ESMFold pLDDT ≥ c1
or FoldX ∆∆G ≤ c2). The detailed implementation for each filter is described below.

Foldability filter. ESMFold predicts the 3D structures solely based on protein sequences and
outputs per-atom pLDDT, reflecting the prediction confidence for the predicted structures. For each
mutated sequence, MODIFY applies ESMFold to predict its structure and averages the pLDDT
over the backbone carbon atoms. A higher pLDDT would indicate a higher prediction confidence
of ESMFold for the given sequence and better foldability. In MODIFY, we used both the web
server of ESMFold (https://esmatlas.com/resources?action=fold) and the
local version of ESMFold (https://github.com/facebookresearch/esm#esmf
old) for pLDDT calculations. We set the pLDDT threshold c1 as the maximum of 85 and the
median pLDDT of the variants in the searched landscape. Intuitively, a pLDDT higher than 85
would indicate a high foldability of the variant, and we would further increase the threshold if the
majority of the variants’ pLDDT is higher than 85. For GB1 and CreiLOV, we set c1 as 85 and 88,
respectively, as the medians of pLDDT were 82.0373 and 88.3853. For cytochrome c, as it would
be computationally too expensive to screen the entire 6-site landscape, we randomly sampled 1,000
mutants from the landscape and set c1 as 88 as the median was 87.7661.
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Structure stability filter. FoldX ∆∆G (kcal/mol) measures the change in the change in
Gibbs free energy between the wild-type (WT) structure and the mutant (MT) structure (i.e.,
∆∆GMT = ∆GMT − ∆GWT). The lower the ∆∆G is, the more stable the mutant structure
is. For wild-type proteins with experimentally determined structures, we selected the commonly
used PDB structures as the WT structures (PDB: 1PGA for GB1 and PDB: 3CP5 for cytochrome
c). If the target proteins do not have experimentally determined structures or the experimentally
determined structures miss certain sites to be mutated (PDB: 1N9L for CreiLOV), we used Al-
phaFold216 to predict the target protein’s 3D structures. Before we used the predicted structures as
the WT structure, we checked their quality by aligning the predicted structures with known PDB
structures. For each mutant, we repeated the FoldX ∆∆G run five times to acquire robust results.
The structure stability filter c2 is set as the median of the mutants in the landscape. For GB1
and CreiLOV, we calculated ∆∆G for every mutant in the landscape and set c2 as 25 kcal/mol
and 3 kcal/mol, respectively, as the medians were 24.6212 kcal/mol and 2.9683 kcal/mol. For
cytochrome c, as it would be computationally too expensive to perform ∆∆G calculations for ev-
ery mutant in the landscape, we randomly sampled 1,000 mutants from the landscape for ∆∆G
calculations and set c2 as 4 kcal/mol as the median was 4.0227 kcal/mol.

A.5 High-quality starting library design for GB1

To evaluate the performance of MODIFY in designing high-quality libraries for protein engi-
neering, we first applied MODIFY to design a starting library on the four-site combinatorial se-
quence space of GB1 and further performed an in silico ML-guided directed evolution experiment
on the GB1 landscape. Here, we described our implementation in detail.

MODIFY’s informed setting (MODIFY-informed). We applied the informed setting of
MODIFY to design starting libraries for GB1 because we observed a notable difference between
MODIFY’s zero-shot predictions and the ground-truth fitness of single-mutation variants (Fig. 3f-
g). This is an excellent example for the demonstration of how we can incorporate prior domain
knowledge into MODIFY in addition to MODIFY’s zero-shot protein fitness predictions, as the
ground-truth single-mutation fitnesses of GB1 had been characterized in a work17 prior to the
experimental characterization of the combinatorial GB1 landscape. Under MODIFY’s default set-
ting, λ was set as 1.64 and we had αi = 1/4,∀i ∈ {39, 40, 41, 54}. Under the informed setting,
however, we aimed to increase the diversity at site 40, as guided by prior domain knowledge, and
hence we fixed the values of λ, α39, α41, α54 and tuned only α40. By increasing the value of α40,
the diversity of site 40 would increase, and the probability of D40 would drop. We here adopted
a heuristic approach that uses the probability of the top-1 AAs at other sites as a reference and
adjusts α40 accordingly. In specific, under the default setting, we observed that the leading AAs at
other sites were L39, G41, and V54, which had probabilities of 29%, 53%, and 63%. We tuned
α40 so that the probability of D40 is no larger than those probabilities. Eventually, we set λα40 as
0.69 (i.e., α40 = 0.69/1.64) so that D40 has a probability of 29%.

Library distribution evaluation. In our experiment, we evaluated the library distribution of
MODIFY, MODIFY-informed, and NNK as shown in Fig. 3e. For each library distribution, we
sampled 104 variants from the distribution (without removing the repeating variants) and evaluated
the mean experimental fitness of the sampled variants.

Baseline methods implementation. For Exploitation, we first scored each variant within the
search space using the zero-shot protein fitness predictor of MODIFY, and then we selected the 500

6



variants with the highest zero-shot protein fitness predictions to form the starting library. We re-
calculated the MODIFY predictions (re-sampling the MSA for MSA Transformer) for 5 different
seeds. For NNK, each site is characterized by the independent NNK distribution (N=A/C/G/T and
K=G/T). We sampled 500 variants from the NNK distribution at the DNA level and then translated
the DNA sequence to the protein sequence. As truncated GB1 variants (i.e., variants that have stop
codons) have not been experimentally characterized, we excluded them during the evaluation of
the library quality and the in silico MLDE experiment, which likely favored the NNK libraries as
generally truncated proteins had low fitness. We repeated the sampling from NNK 5 times using
different seeds. For FoldX, we performed the FoldX ∆∆G calculations for each variant, ranked
the variants according to ∆∆G in the ascending order, and selected 500 variants with the lowest
∆∆G values. We repeated the FoldX ∆∆G run 5 times. For FuncLib, we used its web server
(https://ablift.weizmann.ac.il/step/fl_terms/) for library construction on
GB1 with default parameters. We used PDB 1PGA as the query structure and selected four amino
acid positions (i.e., 39, 40, 41, and 54) to diversify. To maximize the size of the designed library
for downstream MLDE, we did not perform clustering to the design library, resulting in a final
library of 209 GB1 mutants.

Comparing MODIFY with DeCOIL and HotSpot Wizard. To ensure consistent compari-
son between MODIFY and DeCOIL, we used Triad ∆∆G18,19, a biophysical model for stability
prediction, as the unsupervised fitness predictor for both approaches. We downloaded and used
the Triad ∆∆G scores provided by Yang et al.20 in the DeCOIL GitHub repository (https:
//github.com/jsunn-y/DeCOIL). Following Yang et al.20, we implemented DeCOIL
using three different values of p (0.1, 1, and 25) with the default random initialization of 240 tem-
plates and selected 10 unique templates with the top-weighted diffuse coverage (based on Ham-
ming distance and σ = 0.4) for each value of p. For HotSpot Wizard v3.1, we designed libraries
using its web tool (https://loschmidt.chemi.muni.cz/hotspotwizard/). We
used PDB 1PGA as the query structure. To design combinatorial libraries for GB1, we manually
chose V39, D40, G41, and V54 in the web tool for library construction. The Standard design
mode was used based on the analysis of stability hot spots by structural flexibility, and amino
acid frequency was used for the selection of amino acids. For each selected DeCOIL template
and HotSpot Wizard template, we randomly sampled 500 variants and removed duplicated vari-
ants. We further removed variants with stop codons for DeCOIL and HotSpot Wizard, favoring
DeCOIL and HotSpot Wizard during comparison. For MODIFY, we first normalized the Triad
∆∆G scores by z-score and then carried out the same co-optimization of the library fitness and
diversity. In addition to the previously adopted values of λ/M (Supplementary Information A.2),
we further varied the value of λ/M from 0 to 0.2 with increments of 0.001. Each MODIFY library
corresponding to a λ value on the Pareto frontier generated 500 unique variants, with λ = 0.396
leading to the maximized area (zero-shot predicted fitness × diversity) under the Pareto frontier
(Supplementary Fig. 4). We compared the libraries designed by DeCOIL, HotSpot Wizard, and
MODIFY on the GB1 landscape, using mean experimental fitness and average entropy as the met-
rics (Supplementary Fig. 4).

t-SNE visualization. To visualize the combinatorial sequence search space of the GB1 protein
in Figs. 4b–f, we encoded the variants within the landscape using ESM-2 (esm2 t36 3B UR50D),
which has a feature dimension of 2,560. We then used t-SNE to visualize the ESM-2 embeddings
of the 160,000 variants from the search space in the 2D plane.

In silico MLDE experiment. As one of the major goals for cold-start library design in protein
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engineering is to collect training data as the guidance for downstream MLDE of the proteins, we
have designed an in silico MLDE experiment on the GB1 landscape as a proof-of-concept and as-
sess the ability of MODIFY’s libraries for guiding the directed evolution. Using the experimentally
characterized fitness data of the designed libraries, we first trained a supervised ML model to pre-
dict the variant’s fitness from the sequence for each library and screened the remaining landscape
with the trained ML model in search of high-fitness variants. We selected the simplest setting to
demonstrate the intrinsic advantage of MODIFY’s libraries. As there were four sites to be mutated
on the GB1 landscape, we applied the one-hot encoding w(x) ∈ {0, 1}4×20 for each variant x,
where w(x)i,j equals 1 if x has the j-th AA in the alphabet at the i-th site to be mutated other-
wise 0. We then flattened w(x) into a 1D vector with a length of 80. We trained the Random
Forest Regressor model in the sklearn package as the supervised ML model to learn the sequence-
to-function relationships under the default parameters. To have a fair comparison between the
libraries, we constructed a withheld test set containing all of the variants that were not included in
any of the designed libraries. Then, we screened the test set using the trained ML model and prior-
itized variants with top predicted fitness values for evaluation. Since all methods use the same ML
model, a better prioritization performance suggests that the library used as training data is more
informative for MLDE. We repeated the in silico MLDE experiment 25 times for each method
(using 5 random seeds for library generation and 5 random seeds for ML model training for each
designed library).

A.6 High-quality starting library design for CreiLOV

After we validated MODIFY on the landscape of GB1 for designing high-quality starting
libraries, we further assessed MODIFY on the fitness landscape of CreiLOV5 (Supplementary
Note A.1) as an ablation study. Unlike the GB1 landscape that includes all possible variants for the
four mutated positions (i.e., 204 = 160, 000 variants), the CreiLOV landscape is a combination of
only 20 beneficial or neutral single mutations at 15 sites, which were identified in single-residue,
site-saturation mutagenesis5 (Supplementary Figs. 5a-b).

While the NNK approach is incapable of designing combinatorial libraries on this partial search
space, MODIFY can be flexibly applied to design starting libraries on this landscape by excluding
the undesired AAs at every site and only calculating diversity over the allowed AAs. Besides the
default setting of MODIFY, we further included two libraries on the Pareto frontier: L1, which has
an average predicted zero-shot fitness of 95% of the maximum predicted zero-shot fitness, and L2,
which has an average entropy of 95% of the maximum average entropy (Supplementary Fig. 5c).
We also compared MODIFY to the random method, which uniformly samples variants from the
combinatorial search space of CreiLOV, the FoldX approach, and the Exploitation approach. For
each approach, we designed a library of 500 non-repeating variants and repeated 5 times using
different seeds.

We observed that the MODIFY’s designed library strikes an optimal balance between the li-
brary’s site-wise diversity and the mean predicted fitness even on the partial, 15-site landscape of
CreiLOV (Supplementary Fig. 5c). By adjusting the parameter λ, MODIFY could slide through
the Pareto frontier and provide the tradeoff between library fitness and diversity. We then used the
ground truth fitness data of CreiLOV to evaluate MODIFY’s designed libraries, where the fitness
value of a CreiLOV variant represents its fluorescence. While the random approach achieved the
highest diversity at the price of the lowest library fitness and Exploitation achieved the highest
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library fitness at the price of the lowest library diversity, MODIFY’s designed libraries achieved a
controllable tradeoff between the high library fitness and the high library diversity (Supplementary
Fig. 5d). For MODIFY (L1), MODIFY, and MODIFY (L2), the parameter λ were set as 0.3, 0.93,
and 3, respectively, for all residue index i. As λ increased, the diversity of MODIFY’s designed
library increased while the library fitness decreased. Through this experiment, we further demon-
strated the applicability of MODIFY as MODIFY is designed to be able to adapt to the landscapes
of different proteins flexibly and to provide a controllable tradeoff for the users.

A.7 Experimental validation of MODIFY on engineering cytochrome c

Apart from the computational experiments, we applied MODIFY to designing a starting library
for cytochrome c, and we evaluated the MODIFY’s designed library against an NNK library in
the wet lab for catalyzing new-to-biology reactions. Incorporating prior domain knowledge on
engineering cytochrome c, we first designed a MODIFY library under the informed setting on 6
residues (75, 99, 100, 101, 102, and 103). Then, we expressed the cytochrome c variants designed
by MODIFY and evaluated them for catalyzing the C–B bond formation reaction and C–Si bond
formation reaction, using activity and enantioselectivity as the metrics. The computational design
procedure and the experimental procedure are described below in detail.

A.7.1 Computational design procedure for MODIFY library

MODIFY’s informed setting (MODIFY-informed). The residue-level diversity control of
MODIFY enabled us to incorporate findings from prior efforts of directed evolution to inform our
library design, in which we increased the diversity at residue 75 that harbors several beneficial
amino acids for both reactions21 and excluded specific amino acids (e.g., methionine at residue
100) that would inhibit the enzymatic activity in both insertion reactions22. While MODIFY’s zero-
shot predictions highly prioritized variants with the mutation V75M over other single mutations
at site 75, prior directed evolution studies have identified V75T and V75R as important single
mutations at site 75. Furthermore, as we observed that M75 has a high probability of 78% under
the default setting of MODIFY (Fig. 5e; λ = 1.44, αi = 1/6,∀i ∈ {75, 99, 100, 101, 102, 103}),
we decided to increase the value of α75 so that the diversity at site 75 would be promoted. Similar
to the approach we adopted for the experiment on GB1, we used the top-1 AAs at other sites as the
reference. We tuned α75 so that the probability of M75 is as high as the second-highest top-1 AA,
Q103, which has a probability of 59%. Eventually, we set λα75 as 0.3 (i.e., α75=0.3/1.44) so that
M75 has a probability of 60% (Fig. 5f). The Pareto frontier of MODIFY’s designs for cytochrome
c is shown in Fig. 5d.

A.7.2 Experiment procedure for MODIFY library cloning and biocatalytic borylation and
silylation reactions.

Oligo pool amplification. A DNA oligo pool (141 bp) containing 1,000 sequences designed
by MODIFY was ordered from Twist Bioscience (South San Francisco, CA). The oligo pool was
amplified according to the protocol provided by Twist Bioscience without modifications using the
program detailed below.

Oligo pool amplification protocol. A stock solution of the oligo pool was resuspended in
10 mM Tris buffer, pH 8.0 to a final concentration of 20 ng/µL. The KAPA HiFi HotStart PCR
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kit from Roche was used for amplification. In this process, 5 µL 5x KAPA HiFi buffer, 0.75 µL
10 mM dNTP, 0.75 µL 10 µM forward primer, 0.75 µL 10 µM reverse primer, 0.5 µL oligo pool,
and 0.5 µL KAPA HiFi HotStart DNA polymerase (1 U/µL) were added into 25 µL reaction. The
solution was mixed by gently tapping the PCR tube.

PCR cycling program: PCR reaction components are included in Supplementary Table 7, and
PCR reaction conditions are included in Supplementary Table 8.

Forward primer: GTGGTCCAGTTTACATCATG
Reverse primer: GAATTGCACGTGCTTGTTCTT
Plasmid construction and transformation. pET–22b(+) was used as a cloning vector and

Gibson assembly23 was used to ligate DNA fragments. Following PCR amplification, the DNA
fragments were cloned into a pET–22b(+) vector. Ligated plasmids were used to transform elec-
trocompetent E. cloni BL21(DE3) cells (Lucigen) containing the cytochrome c maturation plasmid
pEC86 (GenBank: OM367995.1). The pEC86 plasmid was provided by Prof. Kara Bren (Univer-
sity of Rochester).

MODIFY library sequencing. Following the transformation, the SOC culture was plated onto
LBamp/chlor agar plates. Single colonies from LBamp/chlor agar plates were picked using sterile
toothpicks and cultured in deep-well 96-well plates containing LBamp/chlor (400 µL) at 37 ◦C, 250
rpm shaking for 14 h. Glycerol stocks were prepared by mixing 80 µL starter culture with 50% v/v
glycerol/water (80 µL) and stored in a –80 ◦C freezer. Frozen glycerol stocks were sent to Azenta
Life Sciences (Burlington, MA) for sequencing.

Hemochrome assay for the determination of haem protein concentration24,25. In a conical
tube, a solution of 0.2 M NaOH, 40% (v/v) pyridine, 0.5 mM K3Fe(CN)6 was prepared (Solu-
tion I: pyridine-NaOH-K3Fe(CN)6 solution). In another 1.5 mL centrifuge tube, a solution of
0.5 M sodium dithionite was prepared in 0.1 M NaOH. 500 µL of clarified lysate in M9-N mini-
mal medium (abbreviated as M9-N buffer; pH 7.4) which contains 47.7 µM Na2HPO4, 22.0 µM
KH2PO4, 8.6 µM NaCl, 2.0 µM MgSO4, and 0.1 µM CaCl2. and 500 µL of Solution I were trans-
ferred to a cuvette and carefully mixed. The UV-Vis spectrum of the oxidized Fe(III) state was
recorded immediately. To the cuvette was then added 10 µL of the sodium dithionite solution (100
mg/mL). The cuvette was sealed with parafilm and the UV-Vis spectrum of the reduced Fe(II) state
was recorded immediately. A cuvette containing 500 µL of M9-N and 500 µL Solution I was used
as a reference for all absorbance measurements. Concentrations of cytochrome c were determined
using a published extinction coefficient for heme c, ϵ550(reduced) = 30.27 mM−1 cm−1.

MODIFY and NNK library screening in 96-well plates for biocatalytic C–B bond forma-
tion. Single colonies were picked using sterile toothpicks from LBamp/chlor agar plates and grown
in deep-well (2 mL) 96-well plates containing LBamp/chlor (400 µL) at 37 ◦C, 250 rpm shaking.
After 16 h, aliquots of the overnight culture (60 µL) were transferred to deep-well 96-well plates
containing HBamp/chlor (1 mL) using a 12-channel Eppendorf ResearchPlus multichannel pipette.
Glycerol stocks of the libraries were prepared by mixing the starter culture (80 µL) with 50% v/v
glycerol:water (80 µL). Glycerol stocks were stored at –78 ◦C in 96-well microplates. The expres-
sion cultures were shaken at 37 ◦C, 250 rpm for 3 h. The culture was placed on ice for 30 min,
and isopropyl β-D-1-thiogalactopyranoside (IPTG) and 5-aminolevulinic acid (ALA) were added
to final concentrations of 20 µM and 200 µM, respectively (total volume per well = 1.1 mL). The
induced cultures were shaken at 20 ◦C, 220 rpm for 22 h. Cells were then pelleted (4,000 g, 5 min,
4 ◦C), resuspended in 370 µL M9-N buffer (pH = 7.4), and transferred to an anaerobic chamber.
Inside the anaerobic chamber, to deep-well plates of cell suspensions were added a stock solution
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of the NHC-BH3 substrate (15 µL per well, 133 mM in MeCN) and the diazo compound (15 µL per
well, 200 mM in MeCN). The final concentrations of the NHC-BH3 and the diazo compound were
5 mM and 7.5 mM, respectively. The plates were then sealed with aluminum foil, shaken at 680
rpm on a Corning microplate shaker for 12 h, and then taken out of the anaerobic chamber. The re-
actions were quenched with hexanes:ethyl acetate (50:50 v/v, 600 µL) containing 1 mM mesitylene
as the internal standard for HPLC analysis. The 96-well plates were sealed with silicone sealing
mats and shaken vigorously to thoroughly mix the organic and aqueous layers. The plates were
centrifuged (4,000 g, 5 min) to separate the aqueous and organic layers. 380 µL organic phase
was transferred to 2.0 mL HPLC vials equipped with 500 µL inserts for HPLC analysis (Daicel IC
column, 47% i-PrOH/Hexanes, 1.4 mL/min, tR = 5.1 min (major), 6.6 min (minor)). HPLC traces
of borane product are shown in Supplementary Figs. 7 and 8.

Analytical scale biocatalytic C–B bond forming reaction. 29 mL HBamp/chlor in a 125
mL flask was inoculated with an overnight culture (1 mL, LBamp/chlor) of recombinant E. cloni
BL21(DE3) cells containing a pET–22b(+) plasmid encoding the cytochrome c variant, and the
pEC86 plasmid. The culture was shaken at 37 ◦C and 230 rpm until the OD600 was 0.7 (approxi-
mately 3 h). The culture was placed on ice for 30 min, and isopropyl β-D-1-thiogalactopyranoside
(IPTG) and 5-aminolevulinic acid (ALA) were added to final concentrations of 20 µM and 200
µM, respectively, using a stock solution of 620 µM IPTG and 6.2 mM ALA in HBamp/chlor (1
mL of this stock solution was added to each expression culture). The incubator temperature was
reduced to 20 ◦C, and the culture was shaken for 20 h at 150 rpm. Cells were collected by cen-
trifugation (4,000 g, 5 min, 4 ◦C) and resuspended in M9-N buffer (pH = 7.4) to a target OD600 of
30. Following resuspension, 1 mL of the suspension was lysed using a QSonica Q500 ultrasonic
homogenizer equipped with a stepped microtip (6 min total, 1 sec on, 1 sec off, 40% amplitude).
The resulting lysed solution was centrifuged (21,000 g, 10 min, 4 ◦C) using an Eppendorf micro-
centrifuge 5425R to remove the cell debris. The supernatant (clarified lysate) was separated from
the pellet and kept on ice for hemochrome assay to determine the haem protein concentration (the
hemochrome assay protocol is described above).

In an anaerobic chamber, stock solutions of the NHC-BH3 substrate (15 µL, 133 mM in
MeCN), diazo compound (15 µL, 200 mM in MeCN), and sodium dithionite (40 µL, 0.1 M in
degassed water) were added to a suspension of E. coli cells in M9-N buffer harbouring Rma cyt c
variant (370 µL, adjusted to OD600 = 15) in a 2 mL vial. The vial was sealed and shaken at 680 rpm
on a Corning microplate shaker at room temperature for 12 h. The vial was then taken out of the
anaerobic chamber, and the reaction mixture was quenched with hexanes:ethyl acetate (1:1 v/v, 0.6
mL) containing 1 mM mesitylene as the internal standard. The reaction mixture was transferred to
a microcentrifuge tube, vortexed (20 s), then centrifuged (21,000 g, 5 min) to completely separate
the organic and aqueous layers. The organic layer (400 µL) was transferred to a 2.0 mL HPLC vial
equipped with a 500 µL insert for HPLC analysis (Daicel IC column, 47% i-PrOH/Hexanes, 1.4
mL/min, 8 min).

Calibration curve development C–B bond formation. To a 1.5 mL microcentrifuge tube
were added 400 µL of M9-N buffer solution. A stock solution of the authentic product in ethyl
acetate and 600 µL extraction solvent hexanes:ethyl acetate (1:1 v/v) containing 1 mM mesitylene
were added to the buffer. Final concentrations of the analyte were 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, and
6.0 mM of, respectively. The mixture was vortexed (20 s for 3 times) and centrifuged (21000 g, 5
min) to separate the organic and aqueous layers. The organic layer was transferred to a vial with
an insert for normal phase HPLC analysis (Daicel IC column, 47% i-PrOH/Hexanes, 1.4 mL/min,
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8 min). The calibration curves detailed in Supplementary Fig. 9 product yield (y-axis) against the
ratio of the peak area of product to the peak area of internal standard (x-axis). In the development
of our calibration curves, care was taken such that our calibration curve samples were prepared in
a way similar to enzymatic samples. The substrate calibration curve is made with the same method
(Supplementary Fig. 10).

MODIFY and NNK library screening in 96-well plates for biocatalytic C–Si bond forma-
tion. Single colonies were picked using sterile toothpicks from LBamp/chlor agar plates and grown
in deep-well (2 mL) 96-well plates containing LBamp/chlor (400 µL) at 37 ◦C, 250 rpm shaking.
After 16 h, aliquots of the overnight culture (60 µL) were transferred to deep-well 96-well plates
containing HBamp/chlor (1 mL) using a 12-channel Eppendorf ResearchPlus multichannel pipette.
Glycerol stocks of the libraries were prepared by mixing the starter culture (80 µL) with 50% v/v
glycerol:water (80 µL). Glycerol stocks were stored at –78 ◦C in 96-well microplates. The expres-
sion cultures were shaken at 37 ◦C, 250 rpm for 3 h. The culture was placed on ice for 30 min,
and isopropyl β-D-1-thiogalactopyranoside (IPTG) and 5-aminolevulinic acid (ALA) were added
to final concentrations of 20 µM and 200 µM, respectively (total volume per well = 1.1 mL). The
induced cultures were shaken at 20 ◦C, 220 rpm for 22 h. Cells were then pelleted (4,000 g, 5 min,
4 ◦C), resuspended in 370 µL M9-N buffer (pH = 7.4), and transferred to an anaerobic chamber.
Inside the anaerobic chamber, to deep-well plates of cell suspensions were added a stock solution
of the PhMe2SiH substrate (15 µL per well, 133 mM in MeCN) and the diazo compound (15 µL per
well, 200 mM in MeCN). The final concentrations of the PhMe2SiH and the diazo compound were
5 mM and 7.5 mM, respectively. The plates were then sealed with aluminum foil, shaken at 680
rpm on a Corning microplate shaker for 12 h, and then taken out of the anaerobic chamber. The re-
actions were quenched with hexanes:isopropanol (80:20 v/v, 600 µL) containing 1 mM mesitylene
as the internal standard for HPLC analysis. The 96-well plates were sealed with silicone sealing
mats and shaken vigorously to thoroughly mix the organic and aqueous layers. The plates were
centrifuged (4,000 g, 5 min) to separate the aqueous and organic layers. 380 µL organic phase was
transferred to 2.0 mL HPLC vials equipped with 500 µL inserts for HPLC analysis (CHIRALPAK
IB N-5 column, 0.3% i-PrOH/Hexanes, 1.0 mL/min, 8 min, tR = 5.7 (major), 6.4 (minor) min).
HPLC traces of silane product are shown in Supplementary Figs. 11 and 12.

Analytical scale biocatalytic C–Si bond forming reaction. 29 mL HBamp/chlor in a 125
mL flask was inoculated with an overnight culture (1 mL, LBamp/chlor) of recombinant E. cloni
BL21(DE3) cells containing a pET–22b(+) plasmid encoding the cytochrome c variant, and the
pEC86 plasmid. The culture was shaken at 37 ◦C and 230 rpm until the OD600 was 0.7 (approxi-
mately 3 h). The culture was placed on ice for 30 min, and isopropyl β-D-1-thiogalactopyranoside
(IPTG) and 5-aminolevulinic acid (ALA) were added to final concentrations of 20 µM and 200
µM, respectively, using a stock solution of 620 µM IPTG and 6.2 mM ALA in HBamp/chlor (1
mL of this stock solution was added to each expression culture). The incubator temperature was
reduced to 20 ◦C, and the culture was shaken for 20 h at 150 rpm. Cells were collected by cen-
trifugation (4,000 g, 5 min, 4 ◦C) and resuspended in M9-N buffer (pH = 7.4) to a target OD600 of
15. Then the suspension was lysed using a QSonica Q500 ultrasonic homogenizer equipped with
a stepped microtip (6 min total, 1 sec on, 1 sec off, 40% amplitude). The resulting lysed solution
was centrifuged (21,000 g, 10 min, 4 ◦C) using an Eppendorf microcentrifuge 5425R to remove
the cell debris. The supernatant (clarified lysate) was separated from the pellet and kept on ice for
hemochrome assay to determine the haem protein concentration (the hemochrome assay protocol
is described above).
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In an anaerobic chamber, stock solutions of the PhMe2SiH substrate (10 µL, 800 mM in
MeCN), diazo compound (10 µL, 400 mM in MeCN), and sodium dithionite (40 µL, 100 M in
degassed water) were added to 370 µL lysate in a 2 mL vial. The vial was sealed and shaken at 680
rpm on a Corning microplate shaker at room temperature for 12 h. The vial was then taken out of
the anaerobic chamber, and the reaction mixture was quenched with hexanes: i-Pr2O (1:1 v/v, 0.6
mL) containing 1 mM mesitylene as the internal standard. The reaction mixture was transferred
to a microcentrifuge tube, vortexed (20 s), and then centrifuged (21,000 g, 5 min) to completely
separate the organic and aqueous layers. The organic layer (400 µL) was transferred to a 2.0 mL
HPLC vial equipped with a 500 µL insert for HPLC analysis (CHIRALPAK IB N-5 column, 0.3%
i-PrOH/Hexanes, 1.0 mL/min, 8 min).

Calibration curve development C–Si bond formation. To a 1.5 mL microcentrifuge tube
were added 400 µL of M9-N buffer solution. A stock solution of the authentic product in ethyl
acetate and 600 µL extraction solvent hexanes: i-Pr2O (1:1 v/v) containing 1 mM mesitylene were
added to the buffer. Final concentrations of the analyte were 0.0, 1.0, 2.0, 4.0, 8.0, and 12 mM
of, respectively. The mixture was vortexed (20 s for 3 times) and centrifuged (21,000 g, 5 min)
to separate the organic and aqueous layers. The organic layer was transferred to a vial with an
insert for normal phase HPLC analysis (CHIRALPAK IB N-5 column, 0.3% i-PrOH/Hexanes,
1.0 mL/min, 8 min). The calibration curve in Supplementary Fig. 13 plots product yield (y-axis)
against the ratio of the peak area of product to the peak area of internal standard (x-axis). In the
development of our calibration curves, care was taken such that our calibration curve samples were
prepared in a way similar to enzymatic samples.

Data processing. After we collected the activity and enatioselectivity data of the MODIFY
and NNK libraries, we next processed our data to normalize the yield of all the variants between
different plates. In each 96-well plate of NNK and MODIFY libraries, we included a total of 8
MMDTDT variants as a reference in wells A1, B2, C3, D4, E5, F6, G7 and H8. We first computed
the average yield ȳ of the reference variants on all plates. For each 96-well plate i, we computed
the average yield ȳi of this reference variant as the reference. Then, for each plate, we scaled the
experimentally determined yields by ȳ/ȳi. While comparing the NNK library and the MODIFY
library (Figs. 5i-j), data from these reference variants was not included.

A.8 Classical molecular dynamics (MD) simulations.

Classical MD simulations were performed to investigate the flexible loop dynamics of new
enzyme mutants. The starting structure of the Fe carbene intermediates of the TDE variant was
obtained from Protein Data Bank (PDB ID: 6CUN). Missing residues were added using the Mod-
Loop server26. To generate cytochrome c variants, residues 75 and 99-103 were mutated using
the Mutagenesis tool in PyMOL27. The geometries of substrates were optimized using the B3LYP
functional28,29 and 6-31G(d,p) basis set in Gaussian 1630. Substrates were then docked into cy-
tochrome c variants using AutoDock31 with the Lamarckian genetic algorithm. A grid box with
dimensions of 40 Å, 40 Å, and 40 Å was used, whose center was set to be close to the carbene
center. Docking parameters were set as follows: genetic algorithm run of 30, population size of
150, and 25 million energy evaluations. The best-scored pose from the docking calculation for
each substrate was then used to construct the initial input geometry for classical MD simulations.

Classical MD simulations were carried out using the pmemd module32 of the GPU-accelera-ted
Amber 20 software33. The Amber ff14SB force field34 was used in all classical MD simulations.
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Parameters for substrates were generated using the general Amber force field (gaff2)35. Force field
parameters for the Fe porphyrin carbene (IPC) species were generated using the MCPB.py mod-
ule36. Using the Merz-Singh-Kollman scheme37,38, RESP charge fitting39 on electrostatic potential
generated at the B3LYP/6-31G(d) level of theory was performed to generate partial charges at the
open-shell singlet state, which was calculated to be the ground state of IPC intermediate40. Proto-
nation states of enzyme residues were determined using the H++ server41. The enzyme was then
put into a solvated cuboid box with periodic boundary condition using the TIP3P water model42.
The minimum distance between the enzyme surface and the edge of the water box was set to 10
Å. Water molecules were treated with the SHAKE algorithm43. The system was neutralized by
adding Na+ counterions. Long-range electrostatic was calculated using the particle-mesh-Ewald
method44. Lennard-Jones and electrostatic interaction cut-offs were set to 12 Å.

We first performed a 30,000-step energy minimization with positional restraints for the protein
and the substrate by applying a force constant of 500 kcal·mol−1·Å−2. Next, the system was
gradually heated from 0 K to 300 K in 200 ps, which was followed by an equilibration using the
isothermal–isobaric ensemble (NPT) in the next 25 ns. Finally, production MD simulations were
run in 1000 ns using the same conditions as the equilibration with a time step of 2 fs. In our MD
simulations, to simulate the substrate near attack conformation45 in the carbene insertion process
and to prevent undesired substrate dissociation events, the carbene carbon and hydrogen atom
distances were restrained in a range of 2.4–2.8 Å with a harmonic potential of 500 kcal·mol−1·Å−2.
After the MD simulations, clustering analysis was carried out using the cpptraj module46 to identify
the most populated structure in 1000 ns of classical MD simulation. The RMSD value was used as
the distance metric for clustering analysis.

To quantify the flexibility of each variant, B-factor values47 (Bi, Å2) were calculated for Cα
atoms using root-mean-square fluctuation (ρrmsf

i ) calculations implemented in cpptraj software:

Bi =
8π2

3
(ρrmsf

i )2. (11)
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Supplementary Figure 1. MODIFY achieves accurate and robust zero-shot protein fitness prediction.
The ensemble ML model of MODIFY was compared with five state-of-the-art unsupervised protein fitness
predictors (ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer) for zero-shot protein fitness pre-
dictions. Comparison on the ProteinGym v1.0 benchmark, which contains 217 Deep Mutational Scanning
(DMS) assays across diverse protein families, was reported using Spearman correlation as the evaluation
metric.
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Supplementary Figure 2. MODIFY achieves accurate and robust zero-shot protein fitness prediction.
The ensemble ML model of MODIFY was compared with five state-of-the-art unsupervised protein fitness
predictors (ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer) for zero-shot protein fitness pre-
dictions on the ProteinGym v1.0 benchmark, which contains 217 Deep Mutational Scanning (DMS) assays
across diverse protein families. a, The average performances of all methods on proteins with low, medium,
and high MSA depths. b, The average performances of all methods on DMS assays with different function
types (catalytic and biochemical activity, binding, expression, organismal fitness, and stability).
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Supplementary Figure 3. MODIFY achieves accurate and robust zero-shot protein fitness prediction
for high-order mutants. MODIFY was compared with five state-of-the-art unsupervised protein fitness
predictors: ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer. a–b, Comparisons on predicting
the fitness of the mutants from the landscapes of GB1, ParD3, and CreiLOV (covering 4, 3, and 15 residues,
respectively), using the absolute improvement of Spearman correlation (a) and nDCG (b) of MODIFY
over the mean performances of baseline methods as the evaluation metric. nDCG (Normalized Discounted
Cumulative Gain) is a metric for assessing the ranking quality of a model: a high nDCG score would indicate
that the model prioritizes variants with high fitness over variants with low fitness. The bar plots represented
the mean ± SD of the data.
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Supplementary Figure 4. MODIFY outperforms DeCOIL and HotSpot Wizard in combinatorial
starting library design for GB1. MODIFY, DeCOIL, and HotSpot Wizard v3.1 were evaluated for de-
signing a starting library for GB1 of size 500, using mean experimental fitness and average entropy as the
metrics. For a fair comparison, Triad ∆∆G was used as the zero-shot prediction scores for both MODIFY
and DeCOIL. Following Yang et al.20, 10 unique DeCOIL templates with top-weighted diffuse coverages
were selected from the 240 templates provided by each DeCOIL implementation as parameterized by p. For
HotSpot Wizard, Standard design mode was employed, and five random seeds were used for sampling. As
DeCOIL and HotSpot Wizard employed degenerate-codon libraries, duplicated variants were dropped for
them. In contrast, MODIFY directly designed 500 unique variants.
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Supplementary Figure 5. MODIFY designs high-quality combinatorial starting libraries for
CreiLOV. a, AlphaFold2 predicted 3D structure of CreiLOV. The residues mutated to create combinato-
rial libraries are colored in blue. b, The combinatorial search space of CreiLOV, unlike the GB1 landscape,
only includes 20 single mutations that were previously determined beneficial or neutral (Supplementary In-
formation A.1). c, The Pareto frontier of the CreiLOV library designs, with each point representing a library
corresponding to a diversity strength λ. d–e, The mean experimental fitness and diversity (average entropy)
of the designed libraries, each with 500 CreiLOV variants. In addition to MODIFY (default setting), MOD-
IFY (L1), which has an average predicted zero-shot fitness of 95% of the maximum predicted zero-shot
fitness, and MODIFY (L2), which has an average entropy of 95% of the maximum average entropy, were
included. Random sampling, FoldX, and Exploitation were included as the baseline methods. The bar plots
represented the mean ± SD over 5 independent repetitions.
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Supplementary Figure 6. MODIFY achieves accurate and robust zero-shot protein fitness predic-
tion. MODIFY’s ensemble-based zero-shot fitness prediction model was compared with different subset
combinations of its constituent models (ESM-1v, ESM-2, EVmutation, EVE, and MSA Transformer). a–b,
Comparison on the ProteinGym benchmark, which contains 87 Deep Mutational Scanning (DMS) assays
across diverse protein families, using Spearman correlation averaged over all proteins (a) and over proteins
with low MSA depths (b) as the evaluation metrics. For each combination, constituent models colored in
black were included using the same βi weight (Eq. 7). The bar plot represented the mean ± SD of the data.
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Supplementary Figure 7. Borane product: racemic authentic sample (HPLC analysis).

Supplementary Figure 8. Borane product: enantioenriched product obtained using MELQNQ vari-
ant: 96:4 e.r. (HPLC analysis).
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Supplementary Figure 9. The product calibration curve for C–B bond formation.
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Supplementary Figure 10. The substrate calibration curve for C–B bond formation.

Supplementary Figure 11. Silane product: racemic authentic sample (HPLC analysis).
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Supplementary Figure 12. Silane product: enantioenriched product obtained using TDE variant:
99:1 e.r. (HPLC analysis).
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Supplementary Figure 13. The product calibration curve for C–Si bond formation.
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C Supplementary Tables

Abbreviation ProteinGym DMS dataset name Abbreviation ProteinGym DMS dataset name
A0A140D2T1 A0A140D2T1 ZIKV Sourisseau growth 2019 MTH3 MTH3 HAEAE Rockah-Shmuel 2015
A0A192B1T2 A0A192B1T2 9HIV1 Haddox 2018 NCAP NCAP I34A1 Doud 2015
A0A1I9GEU1 A0A1I9GEU1 NEIME Kennouche 2019 NRAM NRAM I33A0 Jiang standard 2016

A0A2Z5U3Z0-1 A0A2Z5U3Z0 9INFA Doud 2016 NUD15 NUD15 HUMAN Suiter 2020
A0A2Z5U3Z0-2 A0A2Z5U3Z0 9INFA Wu 2014 P53-1 P53 HUMAN Giacomelli NULL Etoposide 2018

A4D664 A4D664 9INFA Soh CCL141 2019 P53-2 P53 HUMAN Giacomelli NULL Nutlin 2018
A4GRB6 A4GRB6 PSEAI Chen 2020 P53-3 P53 HUMAN Giacomelli WT Nutlin 2018

A4 A4 HUMAN Seuma 2021 P53-4 P53 HUMAN Kotler 2018
AACC1 AACC1 PSEAI Dandage 2018 P84126 P84126 THETH Chan 2017
ADRB2 ADRB2 HUMAN Jones 2020 PABP PABP YEAST Melamed 2013
AMIE AMIE PSEAE Wrenbeck 2017 PA PA I34A1 Wu 2015

B3VI55 B3VI55 LIPST Klesmith 2015 POLG-1 POLG CXB3N Mattenberger 2021
BLAT-1 BLAT ECOLX Deng 2012 POLG-2 POLG HCVJF Qi 2014
BLAT-2 BLAT ECOLX Firnberg 2014 PTEN-1 PTEN HUMAN Matreyek 2021
BLAT-3 BLAT ECOLX Jacquier 2013 PTEN-2 PTEN HUMAN Mighell 2018
BLAT-4 BLAT ECOLX Stiffler 2015 Q2N0S5 Q2N0S5 9HIV1 Haddox 2018
BRCA1 BRCA1 HUMAN Findlay 2018 Q59976 Q59976 STRSQ Romero 2015

C6KNH7 C6KNH7 9INFA Lee 2018 R1AB R1AB SARS2 Flynn growth 2022
CALM1 CALM1 HUMAN Weile 2017 RASH RASH HUMAN Bandaru 2017
CAPSD CAPSD AAV2S Sinai substitutions 2021 REV REV HV1H2 Fernandes 2016
CCDB-1 CCDB ECOLI Adkar 2012 RL401-1 RL401 YEAST Mavor 2016
CCDB-2 CCDB ECOLI Tripathi 2016 RL401-2 RL401 YEAST Roscoe 2013
CP2C9-1 CP2C9 HUMAN Amorosi abundance 2021 RL401-3 RL401 YEAST Roscoe 2014
CP2C9-2 CP2C9 HUMAN Amorosi activity 2021 SC6A4 SC6A4 HUMAN Young 2021
DLG4-1 DLG4 HUMAN Faure 2021 SCN5A SCN5A HUMAN Glazer 2019
DLG4-2 DLG4 RAT McLaughlin 2012 SPG1 SPG1 STRSG Olson 2014

DYR DYR ECOLI Thompson plusLon 2019 SPIKE-1 SPIKE SARS2 Starr bind 2020
ENV-1 ENV HV1B9 DuenasDecamp 2016 SPIKE-2 SPIKE SARS2 Starr expr 2020
ENV-2 ENV HV1BR Haddox 2016 SRC SRC HUMAN Ahler CD 2019
ESTA ESTA BACSU Nutschel 2020 SUMO1 SUMO1 HUMAN Weile 2017

F7YBW8 F7YBW8 MESOW Aakre 2015 SYUA SYUA HUMAN Newberry 2020
GAL4 GAL4 YEAST Kitzman 2015 TADBP TADBP HUMAN Bolognesi 2019
GCN4 GCN4 YEAST Staller induction 2018 TAT TAT HV1BR Fernandes 2016
GFP GFP AEQVI Sarkisyan 2016 TPK1 TPK1 HUMAN Weile 2017

GRB2 GRB2 HUMAN Faure 2021 TPMT TPMT HUMAN Matreyek 2018
HIS7 HIS7 YEAST Pokusaeva 2019 TPOR TPOR HUMAN Bridgford S505N 2020

HSP82-1 HSP82 YEAST Flynn 2019 TRPC-1 TRPC SACS2 Chan 2017
HSP82-2 HSP82 YEAST Mishra 2016 TRPC-2 TRPC THEMA Chan 2017
I6TAH8 I6TAH8 I68A0 Doud 2015 UBC9 UBC9 HUMAN Weile 2017

IF1 IF1 ECOLI Kelsic 2016 UBE4B UBE4B MOUSE Starita 2013
KCNH2 KCNH2 HUMAN Kozek 2020 VKOR1-1 VKOR1 HUMAN Chiasson abundance 2020
KKA2 KKA2 KLEPN Melnikov 2014 VKOR1-2 VKOR1 HUMAN Chiasson activity 2020
MK01 MK01 HUMAN Brenan 2016 YAP1 YAP1 HUMAN Araya 2012
MSH2 MSH2 HUMAN Jia 2020

Supplementary Table 1. The abbreviations for DMS dataset names in the ProteinGym substitution
benchmark dataset. For formatting purposes, the DMS dataset names used in the ProteinGym dataset
were abbreviated in Fig. 2. Digit suffixes were used to further distinguish between different DMS studies
targeting the same protein.
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Abbreviation ProteinGym DMS dataset name Abbreviation ProteinGym DMS dataset name Abbreviation ProteinGym DMS dataset name
A0A140D2T1 A0A140D2T1 ZIKV Sourisseau 2019 HIS7 HIS7 YEAST Pokusaeva 2019 Q837P5 Q837P5 ENTFA Meier 2023
A0A192B1T2 A0A192B1T2 9HIV1 Haddox 2018 HMDH HMDH HUMAN Jiang 2019 Q8WTC7 Q8WTC7 9CNID Somermeyer 2022
A0A1I9GEU1 A0A1I9GEU1 NEIME Kennouche 2019 HSP82-1 HSP82 YEAST Cote-Hammarlof 2020 growth-H2O2 R1AB R1AB SARS2 Flynn 2022
A0A247D711 A0A247D711 LISMN Stadelmann 2021 HSP82-2 HSP82 YEAST Flynn 2019 RAD RAD ANTMA Tsuboyama 2023 2CJJ

A0A2Z5U3Z0-1 A0A2Z5U3Z0 9INFA Doud 2016 HSP82-3 HSP82 YEAST Mishra 2016 RAF1 RAF1 HUMAN Zinkus-Boltz 2019
A0A2Z5U3Z0-2 A0A2Z5U3Z0 9INFA Wu 2014 HXK4-1 HXK4 HUMAN Gersing 2022 activity RASH RASH HUMAN Bandaru 2017

A4D664 A4D664 9INFA Soh 2019 HXK4-2 HXK4 HUMAN Gersing 2023 abundance RASK-1 RASK HUMAN Weng 2022 abundance
A4GRB6 A4GRB6 PSEAI Chen 2020 I6TAH8 I6TAH8 I68A0 Doud 2015 RASK-2 RASK HUMAN Weng 2022 binding-DARPin K55

A4 A4 HUMAN Seuma 2022 IF1 IF1 ECOLI Kelsic 2016 RBP1 RBP1 HUMAN Tsuboyama 2023 2KWH
AACC1 AACC1 PSEAI Dandage 2018 ILF3 ILF3 HUMAN Tsuboyama 2023 2L33 RCD1 RCD1 ARATH Tsuboyama 2023 5OAO
ACE2 ACE2 HUMAN Chan 2020 ISDH ISDH STAAW Tsuboyama 2023 2LHR RCRO RCRO LAMBD Tsuboyama 2023 1ORC

ADRB2 ADRB2 HUMAN Jones 2020 KCNE1-1 KCNE1 HUMAN Muhammad 2023 expression RD23A RD23A HUMAN Tsuboyama 2023 1IFY
AICDA AICDA HUMAN Gajula 2014 3cycles KCNE1-2 KCNE1 HUMAN Muhammad 2023 function RDRP RDRP I33A0 Li 2023
AMFR AMFR HUMAN Tsuboyama 2023 4G3O KCNH2 KCNH2 HUMAN Kozek 2020 REV REV HV1H2 Fernandes 2016
AMIE AMIE PSEAE Wrenbeck 2017 KCNJ2-1 KCNJ2 MOUSE Coyote-Maestas 2022 function RFAH RFAH ECOLI Tsuboyama 2023 2LCL

ANCSZ ANCSZ Hobbs 2022 KCNJ2-2 KCNJ2 MOUSE Coyote-Maestas 2022 surface RL20 RL20 AQUAE Tsuboyama 2023 1GYZ
ARGR ARGR ECOLI Tsuboyama 2023 1AOY KKA2 KKA2 KLEPN Melnikov 2014 RL40A-1 RL40A YEAST Mavor 2016
B2L11 B2L11 HUMAN Dutta 2010 binding-Mcl-1 LGK LGK LIPST Klesmith 2015 RL40A-2 RL40A YEAST Roscoe 2013
BBC1 BBC1 YEAST Tsuboyama 2023 1TG0 LYAM1 LYAM1 HUMAN Elazar 2016 RL40A-3 RL40A YEAST Roscoe 2014
BCHB BCHB CHLTE Tsuboyama 2023 2KRU MAFG MAFG MOUSE Tsuboyama 2023 1K1V RNC RNC ECOLI Weeks 2023

BLAT-1 BLAT ECOLX Deng 2012 MBD11 MBD11 ARATH Tsuboyama 2023 6ACV RPC1-1 RPC1 BP434 Tsuboyama 2023 1R69
BLAT-2 BLAT ECOLX Firnberg 2014 MET MET HUMAN Estevam 2023 RPC1-2 RPC1 LAMBD Li 2019 high-expression
BLAT-3 BLAT ECOLX Jacquier 2013 MK01 MK01 HUMAN Brenan 2016 RPC1-3 RPC1 LAMBD Li 2019 low-expression
BLAT-4 BLAT ECOLX Stiffler 2015 MLAC MLAC ECOLI MacRae 2023 RS15 RS15 GEOSE Tsuboyama 2023 1A32
BRCA1 BRCA1 HUMAN Findlay 2018 MSH2 MSH2 HUMAN Jia 2020 S22A1-1 S22A1 HUMAN Yee 2023 abundance
BRCA2 BRCA2 HUMAN Erwood 2022 HEK293T MTH3 MTH3 HAEAE RockahShmuel 2015 S22A1-2 S22A1 HUMAN Yee 2023 activity

C6KNH7 C6KNH7 9INFA Lee 2018 MTHR MTHR HUMAN Weile 2021 SAV1 SAV1 MOUSE Tsuboyama 2023 2YSB
CALM1 CALM1 HUMAN Weile 2017 MYO3 MYO3 YEAST Tsuboyama 2023 2BTT SBI SBI STAAM Tsuboyama 2023 2JVG
CAPSD CAPSD AAV2S Sinai 2021 NCAP NCAP I34A1 Doud 2015 SC6A4 SC6A4 HUMAN Young 2021

CAR11-1 CAR11 HUMAN Meitlis 2020 gof NKX31 NKX31 HUMAN Tsuboyama 2023 2L9R SCIN SCIN STAAR Tsuboyama 2023 2QFF
CAR11-2 CAR11 HUMAN Meitlis 2020 lof NPC1-1 NPC1 HUMAN Erwood 2022 HEK293T SCN5A SCN5A HUMAN Glazer 2019

CAS9 CAS9 STRP1 Spencer 2017 positive NPC1-2 NPC1 HUMAN Erwood 2022 RPE1 SDA SDA BACSU Tsuboyama 2023 1PV0
CASP3 CASP3 HUMAN Roychowdhury 2020 NRAM NRAM I33A0 Jiang 2016 SERC SERC HUMAN Xie 2023
CASP7 CASP7 HUMAN Roychowdhury 2020 NUD15 NUD15 HUMAN Suiter 2020 SHOC2 SHOC2 HUMAN Kwon 2022
CATR CATR CHLRE Tsuboyama 2023 2AMI NUSA NUSA ECOLI Tsuboyama 2023 1WCL SOX30 SOX30 HUMAN Tsuboyama 2023 7JJK
CBPA2 CBPA2 HUMAN Tsuboyama 2023 1O6X NUSG NUSG MYCTU Tsuboyama 2023 2MI6 SPA SPA STAAU Tsuboyama 2023 1LP1

CBS CBS HUMAN Sun 2020 OBSCN OBSCN HUMAN Tsuboyama 2023 1V1C SPG1-1 SPG1 STRSG Olson 2014
CBX4 CBX4 HUMAN Tsuboyama 2023 2K28 ODP2 ODP2 GEOSE Tsuboyama 2023 1W4G SPG1-2 SPG1 STRSG Wu 2016

CCDB-1 CCDB ECOLI Adkar 2012 OPSD OPSD HUMAN Wan 2019 SPG2 SPG2 STRSG Tsuboyama 2023 5UBS
CCDB-2 CCDB ECOLI Tripathi 2016 OTC OTC HUMAN Lo 2023 SPIKE-1 SPIKE SARS2 Starr 2020 binding

CCR5 CCR5 HUMAN Gill 2023 OTU7A OTU7A HUMAN Tsuboyama 2023 2L2D SPIKE-2 SPIKE SARS2 Starr 2020 expression
CD19 CD19 HUMAN Klesmith 2019 FMC singles OXDA-1 OXDA RHOTO Vanella 2023 activity SPTN1 SPTN1 CHICK Tsuboyama 2023 1TUD

CP2C9-1 CP2C9 HUMAN Amorosi 2021 abundance OXDA-2 OXDA RHOTO Vanella 2023 expression SQSTM SQSTM MOUSE Tsuboyama 2023 2RRU
CP2C9-2 CP2C9 HUMAN Amorosi 2021 activity P53-1 P53 HUMAN Giacomelli 2018 Null Etoposide SR43C SR43C ARATH Tsuboyama 2023 2N88

CSN4 CSN4 MOUSE Tsuboyama 2023 1UFM P53-2 P53 HUMAN Giacomelli 2018 Null Nutlin SRBS1 SRBS1 HUMAN Tsuboyama 2023 2O2W
CUE1 CUE1 YEAST Tsuboyama 2023 2MYX P53-3 P53 HUMAN Giacomelli 2018 WT Nutlin SRC-1 SRC HUMAN Ahler 2019

D7PM05 D7PM05 CLYGR Somermeyer 2022 P53-4 P53 HUMAN Kotler 2018 SRC-2 SRC HUMAN Chakraborty 2023 binding-DAS 25uM
DLG4-1 DLG4 HUMAN Faure 2021 P84126 P84126 THETH Chan 2017 SRC-3 SRC HUMAN Nguyen 2022
DLG4-2 DLG4 RAT McLaughlin 2012 PABP PABP YEAST Melamed 2013 SUMO1 SUMO1 HUMAN Weile 2017
DN7A DN7A SACS2 Tsuboyama 2023 1JIC PAI1 PAI1 HUMAN Huttinger 2021 SYUA SYUA HUMAN Newberry 2020
DNJA1 DNJA1 HUMAN Tsuboyama 2023 2LO1 PA PA I34A1 Wu 2015 TADBP TADBP HUMAN Bolognesi 2019
DOCK1 DOCK1 MOUSE Tsuboyama 2023 2M0Y PHOT PHOT CHLRE Chen 2023 TAT TAT HV1BR Fernandes 2016
DYR-1 DYR ECOLI Nguyen 2023 PIN1 PIN1 HUMAN Tsuboyama 2023 1I6C TCRG1 TCRG1 MOUSE Tsuboyama 2023 1E0L
DYR-2 DYR ECOLI Thompson 2019 PITX2 PITX2 HUMAN Tsuboyama 2023 2L7M THO1 THO1 YEAST Tsuboyama 2023 2WQG
ENVZ ENVZ ECOLI Ghose 2023 PKN1 PKN1 HUMAN Tsuboyama 2023 1URF TNKS2 TNKS2 HUMAN Tsuboyama 2023 5JRT
ENV-1 ENV HV1B9 DuenasDecamp 2016 POLG-1 POLG CXB3N Mattenberger 2021 TPK1 TPK1 HUMAN Weile 2017
ENV-2 ENV HV1BR Haddox 2016 POLG-2 POLG DEN26 Suphatrakul 2023 TPMT TPMT HUMAN Matreyek 2018
EPHB2 EPHB2 HUMAN Tsuboyama 2023 1F0M POLG-3 POLG HCVJF Qi 2014 TPOR TPOR HUMAN Bridgford 2020
ERBB2 ERBB2 HUMAN Elazar 2016 POLG-4 POLG PESV Tsuboyama 2023 2MXD TRPC-1 TRPC SACS2 Chan 2017
ESTA ESTA BACSU Nutschel 2020 PPARG PPARG HUMAN Majithia 2016 TRPC-2 TRPC THEMA Chan 2017

F7YBW7 F7YBW7 MESOW Ding 2023 PPM1D PPM1D HUMAN Miller 2022 UBC9 UBC9 HUMAN Weile 2017
F7YBW8 F7YBW8 MESOW Aakre 2015 PR40A PR40A HUMAN Tsuboyama 2023 1UZC UBE4B-1 UBE4B HUMAN Tsuboyama 2023 3L1X

FECA FECA ECOLI Tsuboyama 2023 2D1U PRKN PRKN HUMAN Clausen 2023 UBE4B-2 UBE4B MOUSE Starita 2013
FKBP3 FKBP3 HUMAN Tsuboyama 2023 2KFV PSAE PSAE SYNP2 Tsuboyama 2023 1PSE UBR5 UBR5 HUMAN Tsuboyama 2023 1I2T
GAL4 GAL4 YEAST Kitzman 2015 PTEN-1 PTEN HUMAN Matreyek 2021 VG08 VG08 BPP22 Tsuboyama 2023 2GP8
GCN4 GCN4 YEAST Staller 2018 PTEN-2 PTEN HUMAN Mighell 2018 VILI VILI CHICK Tsuboyama 2023 1YU5
GDIA GDIA HUMAN Silverstein 2021 Q2N0S5 Q2N0S5 9HIV1 Haddox 2018 VKOR1-1 VKOR1 HUMAN Chiasson 2020 abundance
GFP GFP AEQVI Sarkisyan 2016 Q53Z42-1 Q53Z42 HUMAN McShan 2019 binding-TAPBPR VKOR1-2 VKOR1 HUMAN Chiasson 2020 activity

GLPA GLPA HUMAN Elazar 2016 Q53Z42-2 Q53Z42 HUMAN McShan 2019 expression VRPI VRPI BPT7 Tsuboyama 2023 2WNM
GRB2 GRB2 HUMAN Faure 2021 Q59976 Q59976 STRSQ Romero 2015 YAIA YAIA ECOLI Tsuboyama 2023 2KVT
HCP HCP LAMBD Tsuboyama 2023 2L6Q Q6WV13 Q6WV13 9MAXI Somermeyer 2022 YAP1 YAP1 HUMAN Araya 2012

HECD1 HECD1 HUMAN Tsuboyama 2023 3DKM Q837P4 Q837P4 ENTFA Meier 2023 YNZC YNZC BACSU Tsuboyama 2023 2JVD
HEM3 HEM3 HUMAN Loggerenberg 2023

Supplementary Table 2. The abbreviations for DMS dataset names in the ProteinGym v1.0 substitu-
tion benchmark dataset. For formatting purposes, the DMS dataset names used in the ProteinGym v1.0
dataset were abbreviated in Supplementary Fig. 1. Digit suffixes were used to further distinguish between
different DMS studies targeting the same protein.
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entry plate variant (75,99-103) yield (%) e.r. entry plate variant (75,99-103) yield (%) e.r.
1 1 MMLTDQ 89 95:5 81 3 MTVPNQ 81 96:4
2 1 MLYPPT 88 96:4 82 3 MPQPNQ 78 95:5
3 1 MVYGDQ 89 95:5 83 3 MQVPTQ 74 97:3
4 1 MGAANQ 88 95:5 84 3 APIANQ 81 88:12
5 1 MELQNQ 86 95:5 85 3 SNAPPT 81 83:17
6 1 MPEPNQ 86 95:5 86 3 MRFPDQ 70 95:5
7 1 MLLTAQ 87 94:6 87 3 ALLGQT 80 84:16
8 1 MVKPNP 85 96:4 88 3 SRFTDM 75 84:16
9 1 MRNPNQ 83 96:4 89 3 MRWPWQ 65 95:5

10 1 MPIPDQ 82 95:5 90 3 MLLSDA 63 95:5
11 1 MPIPDQ 81 95:5 91 3 LQIPNQ 76 78:22
12 1 MDEPPQ 81 95:5 92 3 MPAEFQ 62 95:5
13 1 MPIPGQ 81 95:5 93 3 MAIPAQ 62 96:4
14 1 MVAAPL 80 93:7 94 3 MPFPVQ 63 94:6
15 1 SFLTNQ 85 86:14 95 3 MPEPNQ 61 96:4
16 1 MALMNM 76 94:6 96 3 MHLRNN 61 94:6
17 1 MQLVDQ 74 96:4 97 3 KPWPNY 70 82:18
18 1 MPNTNV 72 94:6 98 3 MIITNQ 60 95:5
19 1 MPNPNQ 70 95:5 99 3 LAIPPQ 73 77:23
20 1 MGKPDL 73 92:8 100 3 MKIVNQ 58 95:5
21 1 MKKPNQ 69 94:6 101 3 MPVVPS 58 96:4
22 1 MTLLNH 69 93:7 102 3 MILTNQ 58 94:6
23 1 VMTPTQ 76 83:17 103 3 MPPSNQ 55 96:4
24 1 MFAPNQ 66 96:4 104 3 MCYLNQ 54 95:5
25 1 MPLPNF 67 91:9 105 3 MRLPNQ 54 95:5
26 1 MSYTNA 61 93:7 106 3 MLATNQ 52 96:4
27 1 MKRPGQ 58 94:6 107 3 MQLPDV 52 95:5
28 1 MIHSPA 53 90:10 108 3 MHIPNL 54 90:10
29 1 QTVDDQ 50 91:9 109 3 MMIVNQ 50 93:7
30 1 MIAHVQ 51 88:12 110 3 MPQTDQ 49 94:6
31 1 MPLPKR 49 92:8 111 3 MPTSEM 49 92:8
32 1 HDAPNA 45 82:18 112 3 VQFPPQ 52 82:18
33 1 NALTNF 52 68:32 113 3 MQWCAN 45 94:6
34 1 MPPPRQ 37 94:6 114 3 MVWAHA 46 93:7
35 1 KVLPNV 46 73:27 115 3 LAFPNQ 57 74:26
36 1 VPLTNL 38 87:13 116 3 MERRNR 43 95:5
37 1 FPNPNQ 42 73:27 117 3 LQLTNL 55 71:29
38 1 FRAPDP 41 72:28 118 3 MPVTSL 41 92:8
39 1 YPLPVQ 37 76:24 119 3 IPLANQ 46 80:20
40 1 FLLPDQ 38 74:26 120 3 VQFPPQ 43 83:17
41 1 FIRLNQ 38 69:31 121 3 NKLPEG 46 76:24
42 1 FIRLNQ 35 67:33 122 3 QPNPNA 40 86:14
43 2 MPLVSQ 101 95:5 123 3 NVIPNQ 41 79:21
44 2 MVQYNE 98 97:3 124 3 FMLPSQ 46 70:30
45 2 MELVYM 99 95:5 125 3 FILHNQ 35 70:30
46 2 MQIPNQ 96 96:4 126 3 YPLTNQ 26 72:28
47 2 MVALDQ 88 95:5 127 3 FIRLNQ 24 69:31
48 2 MQVANQ 86 96:4 128 4 MAFPDQ 121 96:4
49 2 MVCMNQ 84 96:4 129 4 MALPDM 110 96:4
50 2 ALLPER 116 67:33 130 4 MLLSDA 108 96:4
51 2 SPIPAM 91 85:15 131 4 MPIPNQ 106 96:4
52 2 QPVPNF 89 86:14 132 4 MEVPFQ 105 96:4
53 2 MECTDQ 77 96:4 133 4 MESANQ 105 97:3
54 2 MPTPNH 77 95:5 134 4 MPPANQ 104 96:4
55 2 MTLTNT 76 96:4 135 4 MQQAGR 103 95:5
56 2 MALPDM 74 96:4 136 4 MRLTNQ 102 96:4
57 2 MMVTNQ 71 96:4 137 4 MPNPNQ 101 96:4
58 2 MCQPYL 71 95:5 138 4 MIVTNQ 101 96:4
59 2 MALPNM 70 96:4 139 4 MAIPPQ 100 97:3
60 2 LSPYDQ 78 80:20 140 4 MSLPAQ 101 96:4
61 2 MPLVSQ 64 94:6 141 4 ILEPNL 99 97:3
62 2 MPSWNQ 64 95:5 142 4 MALPDM 98 96:4
63 2 MMLTNQ 62 96:4 143 4 MQFAAQ 98 96:4
64 2 VSPPTQ 70 84:16 144 4 MGLTQM 96 96:4
65 2 MHLDPQ 62 94:6 145 4 MQQAGR 95 95:5
66 2 MPRKDA 61 95:5 146 4 MVFHEP 89 96:4
67 2 MVLNST 58 95:5 147 4 MPFPNQ 86 96:4
68 2 MDAPKH 54 95:5 148 4 MKLTHQ 77 96:4
69 2 MLLPAC 52 91:9 149 4 MKKTNA 74 96:4
70 2 MPLPTK 47 90:10 150 4 MPLADF 76 92:8
71 2 MPLIAL 43 88:12 151 4 MFRAKQ 63 95:5
72 2 MRFAAQ 41 92:8 152 4 MLVPNQ 71 79:21
73 2 MFTKRQ 36 92:8 153 4 YWVPNQ 42 77:23
74 2 YPLPNQ 41 75:25 154 4 FNAINR 45 67:33
75 2 MACTDK 29 94:6 155 4 YGHLSQ 40 74:26
76 2 HQLPQM 34 80:20 156 4 FPCASQ 38 71:29
77 2 FPVAEL 37 67:33 157 4 MYLTNQ 41 66:34
78 2 RSLPNQ 19 81:19 158 4 DCLVNQ 29 70:30
79 2 MALPNQ 14 92:8 159 4 MNFPNQ 32 58:42
80 3 MSETMQ 85 96:4 160 4 MPLNDF 7 55:45

Supplementary Table 3. Screening results of the MODIFY library of Rma cytochrome c for C–B bond
formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.))
of the variants in the MODIFY library were reported. For each plate, the variants were ranked according to
the values of yield × major enantiomer in descending order.
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entry plate variant (75,99-103) yield (%) e.r. entry plate variant (75,99-103) yield (%) e.r.
1 1 MVKPNP 53 99:1 81 3 MRWPWQ 39 99:1
2 1 MLLTAQ 51 98:2 82 3 VQFPPQ 36 99:1
3 1 MELQNQ 44 99:1 83 3 LAFPNQ 33 98:2
4 1 MLYPPT 44 99:1 84 3 KPWPNY 33 99:1
5 1 MVYGDQ 44 98:2 85 3 LQIPNQ 33 99:1
6 1 MPEPNQ 42 >99.9:0.1 86 3 MQVPTQ 32 99:1
7 1 MGAANQ 40 99:1 87 3 MTVPNQ 32 97:3
8 1 SFLTNQ 40 96:4 88 3 MRLPNQ 30 99:1
9 1 MMLTDQ 39 98:2 89 3 MVWAHA 30 99:1
10 1 MRNPNQ 39 98:2 90 3 MPAEFQ 30 99.6:0.4
11 1 MQLVDQ 39 99:1 91 3 SNAPPT 30 98:2
12 1 MPNTNV 39 98:2 92 3 MPEPNQ 29 99:1
13 1 MGKPDL 38 97:3 93 3 MCYLNQ 29 99:1
14 1 MVAAPL 38 97:3 94 3 ALLGQT 28 99:1
15 1 MTLLNH 37 98:2 95 3 MLLSDA 27 99:1
16 1 MPIPDQ 36 98:2 96 3 MQWCAN 27 99:1
17 1 MALMNM 36 98:2 97 3 MSETMQ 27 99:1
18 1 MDEPPQ 36 98:2 98 3 SRFTDM 27 98:2
19 1 MKKPNQ 36 97:3 99 3 APIANQ 27 99:1
20 1 MFAPNQ 35 98:2 100 3 MLATNQ 27 97:3
21 1 MPLPNF 34 97:3 101 3 MPVTSL 26 99:1
22 1 MPIPGQ 33 95:5 102 3 QPNPNA 26 99:1
23 1 MPIPDQ 32 99:1 103 3 MMIVNQ 26 99:1
24 1 VMTPTQ 33 95:5 104 3 LAIPPQ 26 98:2
25 1 MPLPKR 30 99:1 105 3 MQLPDV 25 99:1
26 1 HDAPNA 31 97:3 106 3 MRFPDQ 25 99:1
27 1 MSYTNA 30 97:3 107 3 MHLRNN 25 99:1
28 1 MKRPGQ 27 97:3 108 3 MILTNQ 25 97:3
29 1 MPNPNQ 26 97:3 109 3 MAIPAQ 23 99:1
30 1 VPLTNL 26 95:5 110 3 LQLTNL 24 96:4
31 1 MPPPRQ 23 98:2 111 3 MIITNQ 23 98:2
32 1 MIAHVQ 21 97:3 112 3 MPPSNQ 22 99:1
33 1 MIHSPA 19 92:8 113 3 MPQPNQ 22 99:1
34 1 QTVDDQ 20 90:10 114 3 MPVVPS 22 99:1
35 1 KVLPNV 18 82:18 115 3 IPLANQ 19 99.8:0.2
36 1 FIRLNQ 19 68:32 116 3 NVIPNQ 19 96:4
37 1 NALTNF 16 80:20 117 3 MPQTDQ 19 99:1
38 1 FLLPDQ 16 76:24 118 3 MPTSEM 17 99:1
39 1 FIRLNQ 17 70:30 119 3 NKLPEG 17 97:3
40 1 FPNPNQ 15 75:25 120 3 MERRNR 15 98:2
41 1 YPLPVQ 12 77:23 121 3 MKIVNQ 15 98:2
42 1 FRAPDP 11 75:25 122 3 MHIPNL 16 91:9
43 2 ALLPER 34 97:3 123 3 MPFPVQ 14 97:3
44 2 MQVANQ 33 99:1 124 3 YPLTNQ 14 89:11
45 2 MTLTNT 33 96:4 125 3 FILHNQ 9 84:16
46 2 MPSWNQ 29 98:2 126 3 FMLPSQ 8 88:12
47 2 SPIPAM 29 98:2 127 3 FIRLNQ 5 84:16
48 2 MLLPAC 29 99:1 128 4 MPIPNQ 32 99:1
49 2 MVLNST 29 99:1 129 4 MPNPNQ 31 99:1
50 2 MPLIAL 29 97:3 130 4 MRLTNQ 31 99:1
51 2 MCQPYL 28 98:2 131 4 MEVPFQ 30 99:1
52 2 MPTPNH 28 96:4 132 4 MPPANQ 29 99:1
53 2 MECTDQ 27 99:1 133 4 MLLSDA 29 99:1
54 2 MALPNM 26 99:1 134 4 MPFPNQ 28 99:1
55 2 MALPDM 26 98:2 135 4 MIVTNQ 27 99:1
56 2 MELVYM 26 96:4 136 4 MALPDM 26 99:1
57 2 MPLVSQ 25 99:1 137 4 MAFPDQ 25 99:1
58 2 MALPNQ 24 99:1 138 4 MKLTHQ 25 98:2
59 2 MDAPKH 24 98:2 139 4 MAIPPQ 24 97:3
60 2 MQIPNQ 23 99:1 140 4 MALPDM 24 99:1
61 2 MMLTNQ 23 99:1 141 4 MESANQ 23 99:1
62 2 LSPYDQ 24 97:3 142 4 MQQAGR 23 99.6:0.4
63 2 MPLVSQ 23 96:4 143 4 YWVPNQ 24 94:6
64 2 MVALDQ 22 99:1 144 4 ILEPNL 22 99:1
65 2 MVQYNE 22 95:5 145 4 MQQAGR 22 99:1
66 2 MRFAAQ 22 95:5 146 4 MPLADF 21 98:2
67 2 MMVTNQ 21 99:1 147 4 MKKTNA 18 99:1
68 2 MVCMNQ 21 97:3 148 4 MGLTQM 18 99:1
69 2 VSPPTQ 19 99:1 149 4 MQFAAQ 18 95:5
70 2 MPRKDA 19 99:1 150 4 MFRAKQ 16 95:5
71 2 MHLDPQ 18 98:2 151 4 DCLVNQ 17 87:13
72 2 MACTDK 17 99:1 152 4 MLVPNQ 15 94:6
73 2 QPVPNF 16 98:2 153 4 YGHLSQ 14 89:11
74 2 MFTKRQ 15 97:3 154 4 FPCASQ 12 79:21
75 2 YPLPNQ 14 92:8 155 4 MVFHEP 11 87:13
76 2 MPLPTK 12 98:2 156 4 MSLPAQ 9 94:6
77 2 HQLPQM 10 94:6 157 4 FNAINR 8 87:13
78 2 RSLPNQ 9 95:5 158 4 MYLTNQ 6 81:19
79 2 FPVAEL 7 85:15 159 4 MNFPNQ 5 75:25
80 3 VQFPPQ 42 99:1 160 4 MPLNDF 4 91:9

Supplementary Table 4. Screening results of the MODIFY library of Rma cytochrome c for C–Si bond
formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.))
of the variants in the MODIFY library were reported. For each plate, the variants were ranked according to
the values of yield × major enantiomer in descending order.
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entry plate well yield (%) e.r. entry plate well yield (%) e.r. entry plate well yield (%) e.r. entry plate well yield (%) e.r.
1 1 A2 27 71:29 93 2 A2 32 87:13 185 3 A2 23 60:40 277 4 A2 58 74:26
2 1 A3 71 76:24 94 2 A3 15 53:47 186 3 A3 51 83:17 278 4 A3 34 72:28
3 1 A4 68 77:23 95 2 A4 24 83:17 187 3 A4 65 76:24 279 4 A4 54 78:22
4 1 A5 50 77:23 96 2 A5 57 83:17 188 3 A5 16 51:49 280 4 A5 16 53:47
5 1 A6 29 68:32 97 2 A6 24 69:31 189 3 A6 15 54:46 281 4 A6 47 78:22
6 1 A7 7 55:45 98 2 A7 18 51:49 190 3 A7 63 94:6 282 4 A7 31 67:33
7 1 A8 31 62:38 99 2 A8 38 87:13 191 3 A8 30 64:36 283 4 A8 33 91:9
8 1 A9 55 91:9 100 2 A9 42 79:21 192 3 A9 22 53:47 284 4 A9 12 57:43
9 1 A10 62 81:19 101 2 A10 18 58:42 193 3 A10 24 53:47 285 4 A10 45 73:27

10 1 A11 51 79:21 102 2 A11 35 84:16 194 3 A11 19 52:48 286 4 A11 26 65:35
11 1 A12 30 72:28 103 2 A12 44 87:13 195 3 A12 8 53:47 287 4 A12 48 80:20
12 1 B1 59 94:6 104 2 B1 21 71:29 196 3 B1 29 62:38 288 4 B1 8 62:38
13 1 B3 53 82:18 105 2 B3 51 92:8 197 3 B3 26 80:20 289 4 B3 18 58:42
14 1 B4 42 81:19 106 2 B4 53 81:19 198 3 B4 47 91:9 290 4 B4 14 52:48
15 1 B5 21 59:41 107 2 B5 35 78:22 199 3 B5 50 91:9 291 4 B5 25 66:34
16 1 B6 13 60:40 108 2 B6 47 90:10 200 3 B6 46 72:28 292 4 B6 5 54:46
17 1 B7 37 88:12 109 2 B7 46 82:18 201 3 B7 63 69:31 293 4 B7 26 71:29
18 1 B8 29 67:33 110 2 B8 51 82:18 202 3 B8 25 64:36 294 4 B8 15 64:36
19 1 B9 20 71:29 111 2 B9 18 68:32 203 3 B9 55 84:16 295 4 B9 16 52:48
20 1 B10 39 88:12 112 2 B10 28 62:38 204 3 B10 0 50:50 296 4 B10 17 52:48
21 1 B11 79 87:13 113 2 B11 16 65:35 205 3 B11 38 70:30 297 4 B11 18 61:39
22 1 B12 0 50:50 114 2 B12 29 79:21 206 3 B12 21 64:36 298 4 B12 36 77:23
23 1 C1 20 63:37 115 2 C1 30 66:34 207 3 C1 43 78:22 299 4 C1 8 54:46
24 1 C2 11 51:49 116 2 C2 20 65:35 208 3 C2 41 81:19 300 4 C2 9 51:49
25 1 C4 7 50:50 117 2 C4 26 72:28 209 3 C4 8 50:50 301 4 C4 22 53:47
26 1 C5 62 85:15 118 2 C5 44 76:24 210 3 C5 28 88:12 302 4 C5 42 83:17
27 1 C6 9 52:48 119 2 C6 16 53:47 211 3 C6 7 51:49 303 4 C6 11 58:42
28 1 C7 68 95:5 120 2 C7 43 91:9 212 3 C7 25 61:39 304 4 C7 7 52:48
29 1 C8 31 75:25 121 2 C8 17 56:44 213 3 C8 10 67:33 305 4 C8 29 69:31
30 1 C9 46 70:30 122 2 C9 16 59:41 214 3 C9 24 85:15 306 4 C9 20 61:39
31 1 C10 28 78:22 123 2 C10 13 51:49 215 3 C10 17 60:40 307 4 C10 45 93:7
32 1 C11 32 81:19 124 2 C11 11 53:47 216 3 C11 17 59:41 308 4 C11 50 89:11
33 1 C12 41 80:20 125 2 C12 19 53:47 217 3 C12 30 70:30 309 4 C12 41 70:30
34 1 D1 15 52:48 126 2 D1 20 68:32 218 3 D1 17 61:39 310 4 D1 38 74:26
35 1 D2 18 63:37 127 2 D2 68 85:15 219 3 D2 53 93:7 311 4 D2 15 65:35
36 1 D3 9 52:48 128 2 D3 14 58:42 220 3 D3 28 86:14 312 4 D3 37 91:9
37 1 D5 9 50:50 129 2 D5 45 77:23 221 3 D5 13 66:34 313 4 D5 26 86:14
38 1 D6 22 71:29 130 2 D6 21 70:30 222 3 D6 17 58:42 314 4 D6 18 68:32
39 1 D7 28 83:17 131 2 D7 53 90:10 223 3 D7 9 54:46 315 4 D7 26 61:39
40 1 D8 14 50:50 132 2 D8 31 69:31 224 3 D8 34 80:20 316 4 D8 28 59:41
41 1 D9 49 74:26 133 2 D9 46 72:28 225 3 D9 9 53:47 317 4 D9 38 70:30
42 1 D10 16 51:49 134 2 D10 42 67:33 226 3 D10 46 76:24 318 4 D10 33 87:13
43 1 D11 39 81:19 135 2 D11 46 74:26 227 3 D11 39 90:10 319 4 D11 42 70:30
44 1 D12 28 53:47 136 2 D12 22 76:24 228 3 D12 48 92:8 320 4 D12 57 95:5
45 1 E1 20 61:39 137 2 E1 23 53:47 229 3 E1 38 72:28 321 4 E1 39 70:30
46 1 E2 16 60:40 138 2 E2 27 63:37 230 3 E2 23 56:44 322 4 E2 64 94:6
47 1 E3 23 64:36 139 2 E3 8 51:49 231 3 E3 32 78:22 323 4 E3 19 59:41
48 1 E4 14 65:35 140 2 E4 21 71:29 232 3 E4 20 53:47 324 4 E4 38 56:44
49 1 E5 10 51:49 141 2 E5 29 76:24 233 3 E5 9 51:49 325 4 E5 50 76:24
50 1 E6 44 86:14 142 2 E6 39 90:10 234 3 E6 45 92:8 326 4 E6 58 93:7
51 1 E7 29 59:41 143 2 E7 32 65:35 235 3 E7 0 50:50 327 4 E7 35 76:24
52 1 E8 47 92:8 144 2 E8 63 93:7 236 3 E8 29 85:15 328 4 E8 30 66:34
53 1 E9 20 59:41 145 2 E9 32 64:36 237 3 E9 24 86:14 329 4 E9 18 62:38
54 1 E10 40 78:22 146 2 E10 0 50:50 238 3 E10 10 55:45 330 4 E10 31 63:37
55 1 E11 38 63:37 147 2 E11 30 54:46 239 3 E11 25 77:23 331 4 E11 22 64:36
56 1 E12 34 87:13 148 2 E12 20 62:38 240 3 E12 18 53:47 332 4 E12 45 71:29
57 1 F1 20 59:41 149 2 F1 50 79:21 241 3 F1 19 58:42 333 4 F1 50 71:29
58 1 F2 25 77:23 150 2 F2 30 55:45 242 3 F2 48 69:31 334 4 F2 11 51:49
59 1 F3 10 55:45 151 2 F3 50 76:24 243 3 F3 49 82:18 335 4 F3 27 68:32
60 1 F4 15 51:49 152 2 F4 0 50:50 244 3 F4 46 90:10 336 4 F4 42 72:28
61 1 F5 13 56:44 153 2 F5 54 80:20 245 3 F5 10 63:37 337 4 F5 35 67:33
62 1 F6 25 74:26 154 2 F6 54 92:8 246 3 F6 30 79:21 338 4 F6 63 75:25
63 1 F7 20 63:37 155 2 F7 37 70:30 247 3 F7 19 81:19 339 4 F7 32 69:31
64 1 F8 15 70:30 156 2 F8 43 91:9 248 3 F8 13 52:48 340 4 F8 34 63:37
65 1 F9 9 51:49 157 2 F9 64 75:25 249 3 F9 51 94:6 341 4 F9 41 60:40
66 1 F10 16 56:44 158 2 F10 55 69:31 250 3 F10 12 52:48 342 4 F10 26 54:46
67 1 F11 23 62:38 159 2 F11 12 51:49 251 3 F11 23 59:41 343 4 F11 72 84:16
68 1 F12 8 51:49 160 2 F12 35 66:34 252 3 F12 42 91:9 344 4 F12 30 62:38
69 1 G1 58 77:23 161 2 G1 37 90:10 253 3 G1 40 81:19 345 4 G1 72 84:16
70 1 G2 21 61:39 162 2 G2 34 73:27 254 3 G2 5 50:50 346 4 G2 43 78:22
71 1 G3 8 53:47 163 2 G3 8 50:50 255 3 G3 28 83:17 347 4 G3 66 76:24
72 1 G4 13 52:48 164 2 G4 34 65:35 256 3 G4 5 51:49 348 4 G4 45 63:37
73 1 G5 12 51:49 165 2 G5 18 53:47 257 3 G5 34 90:10 349 4 G5 24 57:43
74 1 G6 24 68:32 166 2 G6 23 64:36 258 3 G6 39 79:21 350 4 G6 23 57:43
75 1 G7 28 73:27 167 2 G7 36 85:15 259 3 G7 0 50:50 351 4 G7 8 54:46
76 1 G8 55 73:27 168 2 G8 38 70:30 260 3 G8 47 93:7 352 4 G8 67 82:18
77 1 G9 14 52:48 169 2 G9 38 75:25 261 3 G9 26 83:17 353 4 G9 35 78:22
78 1 G10 47 78:22 170 2 G10 40 80:20 262 3 G10 24 84:16 354 4 G10 30 66:34
79 1 G11 59 79:21 171 2 G11 43 71:29 263 3 G11 40 91:9 355 4 G11 49 91:9
80 1 G12 66 83:17 172 2 G12 34 88:12 264 3 G12 9 54:46 356 4 G12 17 61:39
81 1 H1 61 95:5 173 2 H1 29 90:10 265 3 H1 44 85:15 357 4 H1 18 53:47
82 1 H2 39 91:9 174 2 H2 45 76:24 266 3 H2 47 79:21 358 4 H2 35 73:27
83 1 H3 51 76:24 175 2 H3 26 69:31 267 3 H3 21 63:37 359 4 H3 22 59:41
84 1 H4 12 64:36 176 2 H4 26 64:36 268 3 H4 5 50:50 360 4 H4 40 78:22
85 1 H5 52 93:7 177 2 H5 31 90:10 269 3 H5 10 54:46 361 4 H5 39 84:16
86 1 H6 34 89:11 178 2 H6 23 72:28 270 3 H6 34 94:6 362 4 H6 52 81:19
87 1 H7 12 62:38 179 2 H7 37 66:34 271 3 H7 11 63:37 363 4 H7 17 61:39
88 1 H8 55 86:14 180 2 H8 20 63:37 272 3 H8 16 66:34 364 4 H8 20 64:36
89 1 H9 29 83:17 181 2 H9 34 68:32 273 3 H9 24 76:24 365 4 H9 33 90:10
90 1 H10 36 71:29 182 2 H10 42 60:40 274 3 H10 6 52:48 366 4 H10 18 58:42
91 1 H11 10 50:50 183 2 H11 15 66:34 275 3 H11 11 59:41 367 4 H11 20 61:39
92 1 H12 18 63:37 184 2 H12 7 64:36 276 3 H12 12 70:30 368 4 H12 37 60:40

Supplementary Table 5. Screening results of the NNK library of Rma cytochrome c for C–B bond
formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.))
of the variants in the NNK library were reported.
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entry plate well yield (%) e.r. entry plate well yield (%) e.r. entry plate well yield (%) e.r. entry plate well yield (%) e.r.
1 1 A2 25 96:4 93 2 A2 6 95:5 185 3 A2 7 90:10 277 4 A2 25 98:2
2 1 A3 33 98:2 94 2 A3 3 89:11 186 3 A3 33 99:1 278 4 A3 20 96:4
3 1 A4 39 98:2 95 2 A4 11 98:2 187 3 A4 24 98:2 279 4 A4 30 99:1
4 1 A5 19 98:2 96 2 A5 13 97:3 188 3 A5 5 80:20 280 4 A5 6 75:25
5 1 A6 4 95:5 97 2 A6 12 98:2 189 3 A6 6 77:23 281 4 A6 21 96:4
6 1 A7 8 67:33 98 2 A7 5 68:32 190 3 A7 30 99:1 282 4 A7 13 83:17
7 1 A8 14 87:13 99 2 A8 13 98:2 191 3 A8 10 88:12 283 4 A8 25 99:1
8 1 A9 15 98:2 100 2 A9 16 98:2 192 3 A9 7 75:25 284 4 A9 5 85:15
9 1 A10 28 98:2 101 2 A10 4 76:24 193 3 A10 7 75:25 285 4 A10 25 98:2

10 1 A11 29 98:2 102 2 A11 7 96:4 194 3 A11 7 76:24 286 4 A11 11 86:14
11 1 A12 14 95:5 103 2 A12 8 96:4 195 3 A12 7 73:27 287 4 A12 21 98:2
12 1 B1 33 100:0 104 2 B1 9 96:4 196 3 B1 5 82:18 288 4 B1 7 96:4
13 1 B3 23 98:2 105 2 B3 8 98:2 197 3 B3 12 97:3 289 4 B3 11 97:3
14 1 B4 25 98:2 106 2 B4 15 98:2 198 3 B4 18 99:1 290 4 B4 7 68:32
15 1 B5 12 84:16 107 2 B5 14 96:4 199 3 B5 16 98:2 291 4 B5 16 96:4
16 1 B6 8 86:14 108 2 B6 12 98:2 200 3 B6 28 98:2 292 4 B6 6 71:29
17 1 B7 21 98:2 109 2 B7 16 98:2 201 3 B7 26 98:2 293 4 B7 24 98:2
18 1 B8 15 85:15 110 2 B8 17 98:2 202 3 B8 14 89:11 294 4 B8 10 91:9
19 1 B9 11 95:5 111 2 B9 6 91:9 203 3 B9 26 98:2 295 4 B9 6 69:31
20 1 B10 13 97:3 112 2 B10 7 91:9 204 3 B10 6 100:0 296 4 B10 7 68:32
21 1 B11 5 100:0 113 2 B11 3 84:16 205 3 B11 18 88:12 297 4 B11 9 87:13
22 1 B12 5 99:1 114 2 B12 8 95:5 206 3 B12 8 82:18 298 4 B12 21 98:2
23 1 C1 8 87:13 115 2 C1 12 97:3 207 3 C1 21 97:3 299 4 C1 4 82:18
24 1 C2 7 68:32 116 2 C2 6 85:15 208 3 C2 16 97:3 300 4 C2 6 80:20
25 1 C4 5 83:17 117 2 C4 12 97:3 209 3 C4 7 72:28 301 4 C4 7 67:33
26 1 C5 26 98:2 118 2 C5 18 96:4 210 3 C5 25 99:1 302 4 C5 30 98:2
27 1 C6 5 75:25 119 2 C6 6 63:37 211 3 C6 8 70:30 303 4 C6 9 89:11
28 1 C7 33 100:0 120 2 C7 11 99:1 212 3 C7 16 84:16 304 4 C7 7 70:30
29 1 C8 5 100:0 121 2 C8 6 72:28 213 3 C8 21 98:2 305 4 C8 17 94:6
30 1 C9 21 98:2 122 2 C9 4 77:23 214 3 C9 37 99:1 306 4 C9 14 85:15
31 1 C10 17 97:3 123 2 C10 4 72:28 215 3 C10 13 88:12 307 4 C10 22 99:1
32 1 C11 16 98:2 124 2 C11 4 84:16 216 3 C11 7 74:26 308 4 C11 25 99:1
33 1 C12 17 96:4 125 2 C12 4 71:29 217 3 C12 10 88:12 309 4 C12 14 87:13
34 1 D1 6 73:27 126 2 D1 12 91:9 218 3 D1 8 89:11 310 4 D1 20 97:3
35 1 D2 7 79:21 127 2 D2 8 91:9 219 3 D2 23 100:0 311 4 D2 16 97:3
36 1 D3 6 72:28 128 2 D3 11 97:3 220 3 D3 17 99:1 312 4 D3 33 100:0
37 1 D5 8 69:31 129 2 D5 17 98:2 221 3 D5 8 89:11 313 4 D5 9 93:7
38 1 D6 6 95:5 130 2 D6 6 90:10 222 3 D6 8 75:25 314 4 D6 15 95:5
39 1 D7 18 98:2 131 2 D7 4 88:12 223 3 D7 9 83:17 315 4 D7 7 74:26
40 1 D8 7 66:34 132 2 D8 8 87:13 224 3 D8 21 98:2 316 4 D8 10 79:21
41 1 D9 20 97:3 133 2 D9 4 99:1 225 3 D9 5 84:16 317 4 D9 14 87:13
42 1 D10 8 67:33 134 2 D10 12 82:18 226 3 D10 36 99:1 318 4 D10 13 99:1
43 1 D11 20 97:3 135 2 D11 15 98:2 227 3 D11 21 99:1 319 4 D11 17 85:15
44 1 D12 7 68:32 136 2 D12 10 97:3 228 3 D12 10 95:5 320 4 D12 25 99:1
45 1 E1 20 97:3 137 2 E1 5 67:33 229 3 E1 9 89:11 321 4 E1 8 86:14
46 1 E2 15 89:11 138 2 E2 5 71:29 230 3 E2 8 75:25 322 4 E2 30 100:0
47 1 E3 12 86:14 139 2 E3 4 74:26 231 3 E3 9 97:3 323 4 E3 6 74:26
48 1 E4 11 90:10 140 2 E4 8 96:4 232 3 E4 8 69:31 324 4 E4 8 67:33
49 1 E5 7 68:32 141 2 E5 11 95:5 233 3 E5 5 75:25 325 4 E5 20 98:2
50 1 E6 21 98:2 142 2 E6 13 99:1 234 3 E6 14 97:3 326 4 E6 32 100:0
51 1 E7 14 84:16 143 2 E7 9 79:21 235 3 E7 6 100:0 327 4 E7 38 99:1
52 1 E8 24 99:1 144 2 E8 7 96:4 236 3 E8 6 97:3 328 4 E8 11 86:14
53 1 E9 8 84:16 145 2 E9 8 84:16 237 3 E9 12 96:4 329 4 E9 7 87:13
54 1 E10 16 97:3 146 2 E10 4 100:0 238 3 E10 8 90:10 330 4 E10 9 82:18
55 1 E11 9 84:16 147 2 E11 4 68:32 239 3 E11 13 95:5 331 4 E11 9 89:11
56 1 E12 11 98:2 148 2 E12 5 75:25 240 3 E12 8 70:30 332 4 E12 23 98:2
57 1 F1 12 67:33 149 2 F1 12 97:3 241 3 F1 5 80:20 333 4 F1 17 96:4
58 1 F2 21 99:1 150 2 F2 6 68:32 242 3 F2 24 98:2 334 4 F2 5 81:19
59 1 F3 15 84:16 151 2 F3 12 96:4 243 3 F3 26 98:2 335 4 F3 4 93:7
60 1 F4 6 70:30 152 2 F4 3 100:0 244 3 F4 17 98:2 336 4 F4 18 97:3
61 1 F5 6 76:24 153 2 F5 15 95:5 245 3 F5 7 83:17 337 4 F5 14 91:9
62 1 F6 29 98:2 154 2 F6 8 98:2 246 3 F6 21 98:2 338 4 F6 27 99:1
63 1 F7 13 88:12 155 2 F7 10 83:17 247 3 F7 22 99:1 339 4 F7 13 91:9
64 1 F8 12 97:3 156 2 F8 10 97:3 248 3 F8 7 72:28 340 4 F8 14 87:13
65 1 F9 8 66:34 157 2 F9 8 98:2 249 3 F9 28 99:1 341 4 F9 10 82:18
66 1 F10 13 79:21 158 2 F10 11 97:3 250 3 F10 8 69:31 342 4 F10 8 72:28
67 1 F11 17 94:6 159 2 F11 4 69:31 251 3 F11 13 83:17 343 4 F11 30 98:2
68 1 F12 6 67:33 160 2 F12 8 87:13 252 3 F12 17 98:2 344 4 F12 8 86:14
69 1 G1 27 97:3 161 2 G1 12 99:1 253 3 G1 27 99:1 345 4 G1 21 98:2
70 1 G2 13 85:15 162 2 G2 11 83:17 254 3 G2 6 94:6 346 4 G2 16 96:4
71 1 G3 5 74:26 163 2 G3 4 74:26 255 3 G3 15 98:2 347 4 G3 25 98:2
72 1 G4 5 71:29 164 2 G4 7 85:15 256 3 G4 4 82:18 348 4 G4 7 73:27
73 1 G5 8 75:25 165 2 G5 4 71:29 257 3 G5 6 94:6 349 4 G5 8 73:27
74 1 G6 12 86:14 166 2 G6 8 85:15 258 3 G6 26 97:3 350 4 G6 6 75:25
75 1 G7 23 96:4 167 2 G7 6 88:12 259 3 G7 6 100:0 351 4 G7 8 68:32
76 1 G8 15 96:4 168 2 G8 12 85:15 260 3 G8 16 98:2 352 4 G8 17 97:3
77 1 G9 6 71:29 169 2 G9 13 96:4 261 3 G9 8 90:10 353 4 G9 32 98:2
78 1 G10 15 97:3 170 2 G10 17 97:3 262 3 G10 14 97:3 354 4 G10 22 98:2
79 1 G11 22 97:3 171 2 G11 10 84:16 263 3 G11 14 97:3 355 4 G11 10 96:4
80 1 G12 28 99:1 172 2 G12 7 97:3 264 3 G12 36 98:2 356 4 G12 6 84:16
81 1 H1 28 99:1 173 2 H1 5 94:6 265 3 H1 19 97:3 357 4 H1 6 68:32
82 1 H2 17 98:2 174 2 H2 12 98:2 266 3 H2 20 98:2 358 4 H2 14 97:3
83 1 H3 19 98:2 175 2 H3 8 96:4 267 3 H3 11 81:19 359 4 H3 4 82:18
84 1 H4 12 84:16 176 2 H4 5 84:16 268 3 H4 4 81:19 360 4 H4 27 99:1
85 1 H5 29 100:0 177 2 H5 8 99:1 269 3 H5 5 78:22 361 4 H5 12 98:2
86 1 H6 23 100:0 178 2 H6 7 91:9 270 3 H6 9 96:4 362 4 H6 24 98:2
87 1 H7 5 87:13 179 2 H7 15 97:3 271 3 H7 10 87:13 363 4 H7 9 90:10
88 1 H8 24 99:1 180 2 H8 6 85:15 272 3 H8 7 85:15 364 4 H8 6 89:11
89 1 H9 4 100:0 181 2 H9 11 97:3 273 3 H9 29 98:2 365 4 H9 4 100:0
90 1 H10 9 86:14 182 2 H10 13 97:3 274 3 H10 5 81:19 366 4 H10 7 82:18
91 1 H11 5 75:25 183 2 H11 4 86:14 275 3 H11 4 86:14 367 4 H11 8 85:15
92 1 H12 15 96:4 184 2 H12 4 88:12 276 3 H12 9 87:13 368 4 H12 22 98:2

Supplementary Table 6. Screening results of the NNK library of Rma cytochrome c for C–Si bond
formation reaction. The catalytic activity (i.e., yield) and enantioselectivity (i.e., enantiomeric ratio (e.r.))
of the variants in the NNK library were reported.
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Component Final concentration Per 25 µL reaction
5x KAPA HiFi Fidelity Buffer 1x 5.0 µL

10 mM dNTP Mix 0.3 mM dNTP 0.75 µL
10 µM Forward Primer 0.3 µM 0.75 µL
10 µM Reverse Primer 0.3 µM 0.75 µL

Twist Oligo Pool (20 ng/µL) 0.4 ng/µL 0.5 µL
KAPA HiFi HotStart DNA Polymerase (1 U/µL) 0.5 U/reaction 0.5 µL

PCR grade water - 16.75 µL

Supplementary Table 7. PCR reaction components.

Cycling Step Temperature Duration
Initialization denaturation 3 min at 95 ◦C 1x

Denaturation 20 sec at 98 ◦C
12 cyclesAnnealing 15 sec at 52 ◦C

Extension 15 sec at 72 ◦C
Final Extension 1 min at 72 ◦C 1x

Supplementary Table 8. PCR reaction conditions.
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