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Figure S1. Correlation between actual and predicted fitness of 1-4 mutant GB1s. We used models trained by Gelman 
et al.1 on single and double mutant GB1 fitness data from Olson et al.2 and used each model to predict the fitness of all 
single, double, triple, and quadruple mutants from a 4-site GB1 combinatorial library from Wu et al.3 Correlation between 
experimental and predicted fitness decreases as distance from the training dataset increases. For each mutation distance, 
we calculated Pearson’s r to assess correlation between the experimental and predicted fitness. If number of sequences 
was > 1,000, we selected a subset of 1,000 sequences. Sample sizes for mutation distances: 1, N=76; 2, N=1,000; 3, 
N=1,000; 4, N=1,000. Source data are provided as a Source Data file. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2. Simulated annealing optimization trajectories for each design condition. Each line represents a single 
optimization trajectory. Black dots represent the score of the 41 designs chosen for the experiments. Plots show 50 
trajectories representative of the range of optimized finesses achieved after 500 simulations. Source data are provided as 
a Source Data file. 
 
 
 
 
 
 
 



 
 
Figure S3. Parallel tempering achieves comparable fitness values across design categories. We used parallel 
tempering as an alternative method for sequence design. Number of parallel tempering runs and temperatures were 
optimized for each model and mutation distance such that sequence fitness was roughly near those designed by simulated 
annealing. Both methods achieve roughly the same range of fitness values for each design categories. Simulated annealing 
fitness values are shown in navy and parallel tempering fitness values are shown in orange. N=41 designs for each fitness 
distribution. Source data are provided as a Source Data file. 
 
 
 
 
 



 
 
 
 

 
 
Figure S4. Designs produced by each model show distinct similarity patterns across mutational distances. We 
calculated the average pairwise Hamming distance between all designs from each pair of models (N=41 sequences for 
each design category) and performed hierarchical clustering to group design strategies based on their sequence similarity. 
Source data are provided as a Source Data file. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 
Figure S5. Effect of random parameter initialization on designs. We retrained multiple LR, FCN, and GCN models with 
different initializations. We designed sequences using additional LR(1-4), FCN(1-4), CNN(3 and 4), and GCN(1-4) models 
and compared the similarity of the designs within and between model architectures. For each model, we used the same 
design settings and methods that were used to design the original library sequences. We report the average pairwise 
hamming distance between all designs for each pair of models (N=41 sequences for each design category). Models used 
to design variants in GB1 library are bolded. We find variation within each model, but the sequences designed by a given 
architecture are generally more similar to other initializations of that architecture than other architectures. In other words, 
within architecture similarity is greater than between architecture similarity. The GCN model was an exception, where 
sequence variability was high between model initializations. Sequence dissimilarity between architectures increases with 
mutation distance from WT. Source data are provided as a Source Data file. 
 

 



 
Figure S6. BLOSUM62 analysis of sequence conservation in GB1 library designs. We calculated the mean 
BLOSUM62 score for mutations at each position in the GB1 sequence by model and mutation regime (N=41 for each design 
category). Only mutations were included in this calculation, unmutated residues were excluded. Most mutations tend to be 
non-conservative on average at low mutational distances. There is one exception where the EnsC at 5 mutations generally 
makes conservative mutations to GB1. At higher mutational distances, select positions favor conservative mutations. This 
trend is more pronounced for the LR and FCN. Red indicates a conservative mean BLOSUM62 score while blue indicates 
a non-conservative BLOSUM62 score. Source data are provided as a Source Data file. 
 



 
 

Figure S7. Experimental values for all single mutations in designs with 10 mutations. We show the original enrichment 
scores from Olson et al.2 for all single mutants in grey. For each panel, we color the mutations found in each model’s 10-
mutant designs (N=41 sequences), highlighting the differences in fitness of single mutations chosen by each model. Source 
data are provided as a Source Data file. 
 



 
 
Figure S8. FACS sort records for binary (qualitative) and binned (quantitative) GB1 binding assays. (a) clonal 
wildtype GB1 with binary sort gates. N=50k. (b) Full sort record for binary FACS experiment. N~2M. (c) clonal wildtype 
GB1 with binned sort gates. N=50k. (d) Full sort record for binned FACS experiment. N~4M. (e) FACS sort with EnlA-
negative yeast with binary sort gates. N=50k.  



 
Figure S9. Reproducibility of binding and display enrichment scores. (a) The ebind and edisp scores show strong 
correlation between two independent experimental replicates. All subsequent analysis in the paper was performed on the 
average ebind and edisp between these two replicates (N=1,956 sequences). (b) We included synonymous sequence pairs 
as to ensure reproducible fitness measurements independent of nucleotide sequence. The ebind and edisp scores for these 
synonymous sequence pairs (N=18) show strong correlation indicating the assay is reliably measuring the protein’s fitness. 
(c) In our experiment we also included 25 calibration sequences (including 18 synonymous sequence duplicates) from the 
original deep mutational scanning (DMS) dataset to use as a reference. Our ebind score shows a moderate correlation with 
the DMS fitness, while edisp shows no correlation (N=43 sequences). (d) We manually categorized sequences as binding/not 
binding based on the distribution of ebind scores and manually setting a threshold to separate the two modes. We manually 
categorized sequences as displaying/not displaying based on the distribution of edisp scores, fitting a bi-Gaussian 
distribution, and identifying where the two Gaussians’ densities cross. The green Gaussian fits non-display designs, the red 
Gaussian fits display designs, and the yellow Gaussian is a combined bi-modal distribution of the green and red Gaussians. 
N=1,950 sequences. Source data are provided as a Source Data file. 



 
 
Figure S10. Distribution of binding and display scores of designs for each model at each mutational distance. Each 
design is shown as a colored point, plotted by its ebind and edisp scores. The median ebind and edisp score for each model at 
each mutational distance is shown as a red star. Black lines indicate the threshold to determine design binding and display 
activity. Source data are provided as a Source Data file. 



 
 

 
 

Figure S11. Median ebind and edisp score trajectory for increasing mutational distance. We calculated the median ebind 
and edisp scores for each model-mutational distance combination and plotted the trajectory with increasing mutational 
distance for each model. We overlay the ebind and edisp thresholds for bind/no bind and display/no display to separate the 
space into quadrants. Source data are provided as a Source Data file. 
  



 
Figure S12. 20+ mutants with Kex2 sites display less than 20+ mutants without Kex2 sites. We examine edisp scores 
as they relate to presence or absence of Kex2 sites for 20+ mutants since designs with many mutations can be prone to 
unfolding. Kex2 can cleave unfolded proteins in the yeast endoplasmic reticulum if they have a Kex2 cleavage site. We 
classify sequences as having a Kex2 site if they contain the consensus sequences KR and RR4. Variants without Kex2 sites 
may still display or not display depending on other factors. Source data are provided as a Source Data file. 
 
 
 
 

 

 



 
  

 

 
Figure S13. LR and FCN produce higher proportions of designs with Kex2 sites. We broadly determine possible Kex2 sites with the 
consensus sequences KR and RR and find the proportion of designs from each category with these consensus sequences. The black 
line separates the designs that are more likely to fold/not fold, based on the number of mutations, since folding hinders Kex2 cleavage 
even if a Kex2 cleavage site is present. Source data are provided as a Source Data file. 



 
 
 
 
 

 
Figure S14. GCN-40 is predicted to fold into a new topology distinct from GB1. GCN-40, shown in purple, displays 2.3-fold higher 
than wildtype GB1, shown in grey, and is predicted by Alphafold to fold into a triple helix. Source data are provided as a Source Data 
file. 

 
Figure S15. Comparison between the Addition model and linear regression. The Addition model simply considers the 
mutant’s observed fitness difference from wildtype, while LR estimates an amino acid’s contribution, marginalized over all 
observed sequence contexts. N=1,045 single mutants, N=367 single mutants better than WT GB1. Source data are provided 
as a Source Data file. 



 
 
Figure S16. Categorical binding characterization correlation with binding enrichment from RNA display. To confirm 
that designs are placed in the correct category, we examine the enrichments of our 25 calibration sequences for each sorted 
population and for Olson et al.’s RNA display binding assay. We categorize each design as high-bind, wt-equal, low-bind, 
or inactive if the design has high enrichment in one of the populations, beyond our manually set threshold. N=43 sequences 
(including 18 synonymous sequences). Source data are provided as a Source Data file.



Table S1. Selected designs characterized with low-throughput yeast display binding and display assay. We selected 
twenty designs to validate high throughput measurements with additional binding assays. Designs 1-10 were selected for 
high display scores, designs 11-15 were selected for high binding scores in the qualitative experiments (noted in Bin 
column), and designs 16-20 were selected to test riskier designs with higher mutations that still exhibited some binding 
activity. Binding activity was assessed in both the qualitative (Bin column) and quantitative (Bind column) experiments. 
 
 

Design seq_id Model num_mut ebind edisp Bin Bind Display 
1 seq_1353 GCN 40 -3.7279055 0.155085636 No function FALSE TRUE 
2 seq_1354 GCN 40 -4.5201031 0.415189322 No function FALSE TRUE 
3 seq_1369 GCN 40 -4.320192 0.238841472 No function FALSE TRUE 
4 seq_1370 GCN 40 -3.7390646 0.153355152 No function FALSE TRUE 
5 seq_1392 GCN 40 -4.2974153 0.315622319 No function FALSE TRUE 
6 seq_1524 CNN0 40 -5.1671984 0.116679435 No function FALSE TRUE 
7 seq_1545 CNN0 40 -4.1887537 0.260701614 No function FALSE TRUE 
8 seq_1689 GCN 50 -3.718207 0.17009947 No function FALSE TRUE 
9 seq_1708 GCN 50 -4.1993973 0.213689676 No function FALSE TRUE 
10 seq_1720 GCN 50 -3.5153361 0.193907131 No function FALSE TRUE 
11 seq_40 FCN 5 -0.1622821 0.447811911 High bind TRUE TRUE 
12 seq_184 EnsC 5 0.22656655 0.188751177 High bind TRUE TRUE 
13 seq_195 EnsC 5 0.47332886 0.206546502 High bind TRUE TRUE 
14 seq_308 CNN2 5 0.47960438 0.313436964 High bind TRUE TRUE 
15 seq_559 CNN0 10 0.61749758 0.399715506 High bind TRUE TRUE 
16 seq_769 LR 20 -0.2281441 -0.019846918 No function TRUE TRUE 
17 seq_827 EnsC 20 -0.4550737 0.118095903 No function TRUE TRUE 
18 seq_833 EnsC 20 0.68505174 0.304710547 WT Eq bind TRUE TRUE 
19 seq_851 EnsC 20 -0.3566557 -0.167700417 No function TRUE TRUE 
20 seq_853 EnsC 20 -0.2035726 0.149719922 WT Eq bind TRUE TRUE 
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