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Supplementary Text 
Conceptual framework  
Crop production (P) is defined as the product of yield (Y) and harvested area (HA). HA can 
be further expressed as the product of planted area (PA) and harvestable fraction (𝐻𝐻𝐻𝐻

𝑃𝑃𝑃𝑃
). A 

proportion of PA may be abandoned (𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑃𝑃−𝐻𝐻𝐻𝐻
𝑃𝑃𝑃𝑃

 ). Final county-level production can be 
calculated as:            

                                              𝑃𝑃 =  
𝐻𝐻𝐻𝐻
𝑃𝑃𝑃𝑃

× 𝑃𝑃𝑃𝑃 × 𝑌𝑌 = (1 − 𝑓𝑓𝑎𝑎𝑎𝑎) × 𝑃𝑃𝑃𝑃 × 𝑌𝑌                          [S1] 
Given the marginal relationship between pre-season fall precipitation and planted area (fig. 
S12), we assume that weather conditions during both wheat pre-season and in-season do 
not impact planted areas. It seems evident that climate conditions have little bearing on 
farmers' planting decisions in Kansas. Instead, planting decisions are more likely guided 
by non-environmental influences (i.e., long-term agricultural strategies, socio-economic 
factors, and policy incentives). Thus, in this study, both pre-season and in-season climate 
conditions affect production variability presumably through crop abandonment and yield 
variations. To estimate the impacts of climate-induced changes in abandonment and yields 
on total production across the Dust Bowl decade (1931-1940), the latest decade (2013-
2022), and year 2023, we decomposed actual production [S1] into components: expected 
base production (Pbase), changes in production due to abandonment (ΔPfab),changes in 
production due to reductions in per-acre-harvested yield (ΔPY), and changes in production 
due to technology (ΔPtech).  
 
We firstly substituted yields (Y) with the sum of expected base yields (Ybase) and yield 
anomalies (ΔY) in equation [S1], and introduced the terms of abandonment in normal years 
(𝑓𝑓𝑎𝑎𝑎𝑎����), resulting in the following: 
                   𝑃𝑃 =  �1 − 𝑓𝑓𝑎𝑎𝑎𝑎 + 𝑓𝑓𝑎𝑎𝑎𝑎���� − 𝑓𝑓𝑎𝑎𝑎𝑎����� × 𝑃𝑃𝑃𝑃 × (𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∆𝑌𝑌 + [𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏])    [S2] 
where Ylowess is expected yields (see Methods). The difference between Ylowess and Ybase 
represents the change of yield driven by technology.  
 
We next broke down equation [S2] into four components as, 

  𝑃𝑃 = �1 − 𝑓𝑓𝑎𝑎𝑎𝑎����� × 𝑃𝑃𝑃𝑃 × 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + (𝑓𝑓𝑎𝑎𝑎𝑎���� − 𝑓𝑓𝑎𝑎𝑎𝑎) × 𝑃𝑃𝑃𝑃 × (𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∆𝑌𝑌)  
+ �1 − 𝑓𝑓𝑎𝑎𝑎𝑎����� × 𝑃𝑃𝑃𝑃 × ∆𝑌𝑌 + �1 − 𝑓𝑓𝑎𝑎𝑎𝑎� × 𝑃𝑃𝑃𝑃 × (𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)           [S3] 

where 1 − 𝑓𝑓𝑎𝑎𝑎𝑎���� represents harvested area ratio in normal years; and 𝑓𝑓𝑎𝑎𝑎𝑎���� − 𝑓𝑓𝑎𝑎𝑎𝑎 defines 
changes in abandonment for years of interest relative to the expected abandonment in 
normal years. We then extracted each of four components from [S3]:  

                                                𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �1 − 𝑓𝑓𝑎𝑎𝑎𝑎����� × 𝑃𝑃𝑃𝑃 × 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏                                     [S4] 
                                       ∆𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓 = (𝑓𝑓𝑎𝑎𝑎𝑎���� − 𝑓𝑓𝑎𝑎𝑎𝑎) × 𝑃𝑃𝑃𝑃 × (𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + ∆𝑌𝑌)                           [S5] 
                                                   ∆𝑃𝑃𝑌𝑌 = �1 − 𝑓𝑓𝑎𝑎𝑎𝑎����� × 𝑃𝑃𝑃𝑃 × ∆𝑌𝑌                                         [S6] 
                                     ∆𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡ℎ = (1 − 𝑓𝑓𝑎𝑎𝑎𝑎) × 𝑃𝑃𝑃𝑃 × (𝑌𝑌𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏)                    [S7] 

We here focused on climate-driven production change for the years of interest; thus, the fab 
and ΔY were simulated in our RF models (Eqs. [1] and [2] in Main text). Note that the 
average abandonment (𝑓𝑓𝑎𝑎𝑎𝑎����) and expected base yields (Ybase) in normal years were defined 
as the 30-year averages, calculated by using climate data from the period 1981-2010. We 
defined PA as the 30-year average over 1981-2010 when we calculated production changes 



 
 

due to abandonment and yield reductions. This allowed us to compare production losses 
from climate-driven changes in both abandonment and yields among years. The base 
abandonment (𝑓𝑓𝑎𝑎𝑎𝑎����) was calculated as, 

                                                               𝑓𝑓𝑎𝑎𝑎𝑎���� =
1

30
� 𝑓𝑓𝑓𝑓𝑓𝑓𝑦𝑦

2010

𝑦𝑦=1981

                                            [S8] 

The expected base yield (Ybase) was calculated from climate-driven 𝛥𝛥𝛥𝛥, simulated using the 
RF model in the main text, and average expected yield (𝑌𝑌�) (e.g., 30-yr expectation value) 
derived from the loess regression, 

                                                           𝑌𝑌𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
1

30
� �𝛥𝛥𝛥𝛥𝑦𝑦 + 𝑌𝑌��                                    [S9]
2010

𝑦𝑦=1981

 

We then examined and integrated county-level production for each component to state-
level production, 

                                                             ∆𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓,𝑦𝑦 =  �∆𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓,𝑐𝑐,𝑦𝑦

𝑛𝑛

𝑐𝑐=1

                                          [S10] 

                                                                ∆𝑃𝑃𝑌𝑌,𝑦𝑦 =  �∆𝑃𝑃𝑌𝑌,𝑐𝑐,𝑦𝑦

𝑛𝑛

𝑐𝑐=1

                                              [S11] 

                                                                𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� = �𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑐𝑐                                                 [S12]
𝑛𝑛

𝑐𝑐=1

 

where y refers to specific year of interest (e.g., 2023), c represents specific county, n equals 
to 105 (number of counties in Kansas, US). Lastly, we expressed production changes 
relative to climate-driven averaged production over 1981-2010 (𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� ) as, 
                                                          %𝑃𝑃′𝑦𝑦 =  ∆𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓,𝑦𝑦+∆𝑃𝑃𝑌𝑌,𝑦𝑦

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� × 100                                   [S13]     
where %P’ is the relative production change (%) (shown in Fig. 2 in Main text). 
 
The most critical climate driver of abandonment or yield loss 
While RF models have built-in methods for assessing the relative importance of predictor 
variables, such as feature importance, these methods typically assess variable importance 
at a global scale. No insight is given as to what is driving the prediction for a given 
observation point. Thus, in this study, we integrated a game theory (Shapley additive 
explanations, SHAP) into the RF models we created (equations [1] and [2] in Main text) to 
quantify the most critical climate drivers in wheat abandonment and yield changes. The 
SHAP values provide local model explanations and the contribution of each predictor 
variable for each data point via estimating the expected marginal contribution of a predictor 
across all possible combinations of predictors. Specifically, the magnitude of the SHAP 
value represents the strength of contribution to the prediction. A larger absolute magnitude 
implies a stronger influence, while a smaller absolute magnitude indicates a weaker 
influence. We based our selection of predictors on the magnitudes for both directions 
(positive and negative). The more positive and more negative ones were selected as 
predictors. Moreover, a positive SHAP value means that it contributes to the increase in 
predicted value, and vice versa. Thus, we focused on the climate variables with more 
positive SHAP values for fab and with more negative SHAP values for ∆𝑌𝑌.  



 
 

 
The process to identify the climate drivers for yield and abandonment extremes includes 
five steps (fig. S6): 1) we defined an extreme abandonment event as the abandonment 
above the 90th percentile, and an extreme yield losses event as the yield variation below 
the 10th percentile across all years (1926-2023) for each county in Kansas; 2) for each 
observed crop yield extreme event, we used SHAP to break down the predicted value 
derived from the RF model into the contribution of individual climate variables; 3) climate 
variables with the top three highest SHAP values and the top three lowest negative SHAP 
values were identified as the primary influencers for the abandonment and yield loss 
events, respectively; 4) based on the climate variables we used and the prevalent climate 
causes, we focused on four climate extreme events (low precipitation, high precipitation, 
cold temperatures, and warm temperatures) during four specific growth periods based on 
10th or 90th percentiles of historical probability distributions. Note, a cold event occurs 
when Tn falls below its 10th percentile, whereas a warm event occurs when Tx exceeds its 
90th percentile; 5) we determined the most critical climate driver for each abandonment or 
yield loss extreme. For example, for extreme abandonment, if the climate variable with the 
highest SHAP value (step 3) corresponded to any of four types of climate extremes above 
(step 4), it was deemed as the most pivotal climate extreme event; if no correspondence 
was found, we proceeded to look for the second highest variable, and subsequently to the 
third if necessary. Finally, all extremes in abandonment (or yield) associated with the 
identical primary climate drivers were grouped together, resulting in 16 distinct groups. 
These groups were then used to calculate the percentage of area driven by the same primary 
driver relative to the total area experiencing extreme abandonment (or yield losses).   



 
 

Fig. S1.  
Predicted vs. observed abandonment rates (fab) and yield anomaly (t ha-1). Black lines 
represent the 1:1 line. We showed the coefficient of determination (R2) and root mean 
square error (RMSE). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. S2. 
Partial response of crop abandonment to precipitation in Fall (A) and Spring (B), as well 
as to maximum temperature in Fall (C) and Spring (D) taken from our random forest (RF) 
model. 



 
 

Fig. S3.  
Robustness check of the estimation. Spatial distributions of the observed and estimated 
abandonment in typical years (1934, 1935, and 2023). The gray regions for the observed 
abandonment in 1935 and 2023 panels represent areas where county-level data on areas 
were unavailable.  



 
 

Fig. S4.  
The decomposition of wheat production and primary climate drivers of extreme 
abandonment and yield loss. Similar to Fig. 2B and Fig. 3, E and F, but the accumulated 
precipitation was replaced with the Palmer Z Index in the models.  



 
 

Fig. S5.  
The decomposition of wheat production and primary climate drivers of extreme 
abandonment and yield loss. Similar to Fig. 2B and Fig. 3, E and F, but the maximum and 
minimum temperature were replaced by the fraction of warm days and cold days in the 
models, respectively.   



 
 

Fig. S6.  
Workflow of identifying the critical climate driver of each extreme abandonment. This 
workflow was also carried out for the extreme yield loss (ΔY; equation [2] in the main 
text), but using the lowest SHAP variable. This process was repeated for each observed 
extreme abandonment or yield loss occurrence. After the workflow, all extremes in 
abandonment or yield losses associated with the same primary climate driver were used to 
calculate the area fraction. Additionally, the area fraction for extremely low wheat prices 
(<10th) for fab was also calculated. The detailed descriptions can be found in 
Supplementary Text.   
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Fig. S7.  
Effects of fall precipitation on wheat abandonment in Kansas. The state-level observed 
abandonment (%) binned over fall precipitation (Prcp) from 1926-2023. The error bars 
indicate the 25th and 75th percentiles across all years within each precipitation bin. The 
lower panel displays the state-level precipitation distribution color-coded over 1926-2023 
and precipitation percentiles are shown for defining the bins used.  



 
 

Fig. S8.  
Relationship between wheat growth index conditions and precipitation in early November 
(first week) from 1987 to 2023. The quadratic relationship between winter wheat growth 
conditions and precipitation during August-October across the five wheat states (Nebraska, 
NE; Colorado, CO; Kansas, KS; Oklahoma, OK; and Texas, TX). State-level growth 
conditions were derived from USDA-NASS.  



 
 

Fig. S9.  
Impacts of ENSO phases on linear detrended precipitation anomalies. Distributions of area-
weighted average fall precipitation anomalies during El Niño (red) and La Niña (blue) 
phases in Nebraska (NE), Colorado (CO), Kansas (KS), Oklahoma (OK), and Texas (TX) 
based on average harvested area during 1981-2010. Negative and positive values indicate 
ENSO phases with decreased and increased precipitation, respectively. Distribution of 
precipitation anomalies in both El Niño and La Niño phases were plotted based on 
bootstrapping approach (n = 10,000) (see Main Methods). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. S10. 
An example of yield trend used in this study through locally weighted smoothing regression 
with a span parameter of 0.75. 
  



 
 

Fig. S11. 
An example of crop abandonment variations (Clark County in Kansas) with a locally 
weighted smoothing regression (a span of 0.75) used for detrending process. 
 
 
 
  



 
 

Fig. S12.  
State-level planted areas of winter wheat vs. pre-season precipitation anomalies (with a 
base period of 1981-2010) across 1909-2023 in Kansas. Planted area data were derived 
from the United States Department of Agriculture-National Agricultural Statistics Service 
(USDA-NASS). 
 

  



 
 

Table S1.  
Modeling performance. 

Models Yield changes   
Abandonment 

fraction 
R2 RMSE (t ha-1)   R2 RMSE (-) 

Model 1 (Prcp, Tx, and Tn) 0.68 0.28   0.68 0.07 
Model 2 (Palmer Z-Index, Tx, and Tn) 0.70 0.27   0.65 0.08 

Model 3 (Prcp, fwd, and fcd) 0.70 0.27   0.69 0.07 
Notes: Model 1 is the model we used in Main text with predictors including the accumulated precipitation 
(Prcp), mean maximum temperature (Tx), and mean minimum temperature (Tn) during four specific growth 
periods (fall, winter, spring, and early summer). In Model 2, the Prcp was replaced with the Palmer Z-Index. 
We also substituted the Tx and Tn in Model 1 by the fraction of warm days (fwd) and cold days (fcd) for Model 
3.   



 
 

Table S2.  
Available years for planted and harvested areas data from USDA-NASS. 

  States County-level State-level 
Nebraska 1956 - 2023 1909 - 2023 
Colorado        1929 - 2023 1909 - 2023 
Kansas 1926 - 2023 1909 - 2023 

Oklahoma 1926 - 2023 1909 - 2023 
Texas 1968 - 2023 1909 - 2023 
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