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1 Notations and the Problem Setting

Our strategy is to first use existing de novo motif finding algorithms and TF databases to compose

a list of putative binding motifs, D = {W1, . . . , WD}, where D is in the range of 50 to 100, and

then simultaneously modify these motifs and estimate the posterior probability for each of them to

be included in the CRM through a Monte Carlo method. Let S denote the set of n sequences, with

lengths L1, L2, . . . , Ln, respectively, corresponding to the upstream regions of n coregulated genes.

We assume that the CRM consists of K TFs with the corresponding PSWMs. Both the PSWMs

and K are unknown and need to be inferred from the data. The jth TFBS in the ith sequence is

denoted as Ai,j , and A is the collection of these set locations. Associated with each site is its type

indicator Ti,j , with Ti,j taking one of the K values. We model the dependence between Ti,j and

Ti,j+1 by a K ×K probability transition matrix V . The distance between neighboring TFBSs in a

CRM, dij = Ai,j+1 −Ai,j , is assumed to follow Q( ; λ), a truncated geometric distribution, and the

distribution of nucleotides in the background sequence a multinomial distribution with unknown

parameter ρ = (ρA, . . . , ρT ). (In our applications we have taken l=0 for the lth order Markov

chain, though a higher order Markov chain could be used.)

Next, we let u be a binary vector indicating which motifs are included in the module, i.e.

u = (u1, . . . uD)T , where

uj =







1, if the jth motif type is present in the module,

0, otherwise.

By construction, |u| = K. Thus, the information regarding K is completely encoded by u. In light

of these new notations, the set of PSWMs for the CRM is redefined as Θ = {Wj : uj = 1}. Since

now we restrict our inference of CRM to a subset of D, the probability model for the observed

sequence data, Eq. 1 in the main text, needs to be rewritten as:

P (S | D, V, u, λ, ρ) =
∑

A

∑

T

P (S | A, T ,D, V, u, λ, ρ)P (A | λ)P (T | A, V ), (1.1)

From the above likelihood formulation, we need to simultaneously estimate the optimal u and the

parameters D, V , λ, and ρ. To achieve this end, we adopt the Bayesian method by first giving a

prior distribution on the parameters:

P (D, V, u, λ, ρ) = f1(D | u)f2(V | u)f3(ρ)g1(u)g2(λ),

where the fi(·)’s are (product) Dirichlet distributions; g1(u) represents a product of D Bernoulli(p0)

distributions (p0 is the prior probability of including any motif in the CRM); and g2(λ) a generally

flat Beta distribution. The posterior distribution of the parameters then has the form

P (D, V, u, λ, ρ | S) ∝ P (S | D, u, V, λ, ρ)f1(D | u)f2(V | u)f3(ρ)g1(u)g2(λ). (1.2)
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One can use the general Markov chain Monte Carlo (MCMC) strategy [1] to make inference from

(1.2). But, given the flexibility of the model and the size of the parameter space, it is unlikely that

a standard MCMC approach can converge to a good solution in a reasonable amount of time. In

fact, both the Gibbs module sampler [2] and cismodule [3] used a direct MCMC method to infer

the CRM from a posterior distribution simpler than (1.2) with fixed u.

2 The emcmodule Procedure

With a starting set of putative binding motifs D, we simultaneously modify these motifs and

estimate the posterior probability for each of them to be included in the CRM through iterations

of the following Monte Carlo sampling steps: (i) Given the current collection of motif PSWMs

(or sites), sample motifs into the CRM by evolutionary Monte Carlo (EMC); (ii) Given the CRM

configuration and the PSWMs, update the motif site locations; and (iii) Given motif site locations,

update the corresponding PSWMs and other parameters. Each of these steps is described in detail

in the following subsections.

2.1 Evolutionary Monte Carlo for module selection

It has been demonstrated that the EMC is effective for sampling and optimization with functions

of binary variables [4]. Conceptually, we should be able to apply the EMC method directly to select

motifs comprising the CRM, but a complication here is that there are many continuous parameters

such as the Wj ’s, λ, and V . We cannot just fix these continuous parameters (as in the usual Gibbs

sampler) and update the CRM composition because some of them vary in dimensionality when a

putative motif in D is included or excluded from the CRM. We therefore have to integrate out the

continuous parameters Θ and V analytically and condition on variables A and T when updating

the CRM composition.

Let u be defined as in the previous section. Since each ui has a prior probability of p0 to

be 1, we can compute analytically the marginalized conditional posterior probability for a module

configuration u:

P (u | A, T , S) ∝ p
|u|
0 (1−p0)

D−|u|

∫

P (S | A, T ,Θ, ρ, V, λ)P (Θ, V | A, T , u)P (ρ)P (λ)dΘdρdV dλ,

(2.3)

where both Θ and V are dependent on u; and A and T are the sets of locations and types,

respectively, of all putative motif sites (for all the D motifs in D). Thus, only when the indicator ui

for the weight matrix Wi is 1, do its site locations and types contribute to the computation of (2.3).

When we modify the current u by excluding a motif type, its site locations and corresponding motif

type indicators are removed from the computation of (2.3).

To conduct EMC, we need to prescribe a set of temperatures, t1 > t2 > · · · > tM = 1, one for



each member in the population. Then, we define

πi(ui) ∝ exp[log P (ui | A, T , S)/ti],

and let π(U) ∝
∏M

i=1 πi(ui). The population U = (u1, . . . , uM ) is then updated iteratively using

two types of moves: mutation and crossover.

In the mutation operation, a unit uk is randomly selected from the current population and

mutated to a new vector vk by changing the values of some of its bits chosen at random. The new

member vk is accepted into the population with probability min(1, rm), where

rm = πk(vk)/πk(uk). (2.4)

In the crossover step, two individuals, uj and uk, say, are chosen at random from the popula-

tion. Then, a crossover point x is chosen randomly over the positions 1 to D, and two new units

vj and vk are formed by switching between the two individuals the segments on the right side of

the crossover point. The two “children” are accepted into the population to replace their parents

uj and uk with probability min(1, rc), where

rc =
πj(vj)πk(vk)

πj(uj)πk(uk)
. (2.5)

If rejected, the two parents are kept unchanged. After convergence, the samples of uM (corre-

sponding to temperature tM = 1) follow the target distribution (2.3).

2.2 Dynamic programming method for sampling motif sites

The second part of the algorithm consists of updating the motif sites conditional on a CRM con-

figuration (i.e., with u fixed). For simplicity, we describe the method for a single sequence S =

(s1, . . . , sL)– the same procedure is repeated for all sequences in the data set. Let Ω = (Θ, ρ, V, λ)

denote the set of all parameters in the model, for a fixed u. For the simplicity of notation, we

assume that all motifs are of width w. Let g(i, j, k, u) = P (s[i,j,k] | Ω, u) denote the probability of

observing the part of the sequence S from position i to j, with a motif of type k {k ∈ D : uk = 1}

occupying positions from j − w + 1 to j (k = 0 denotes the background). Let Q( ; λ) denote the

geometric(λ) distribution truncated at w, i.e. Q(d; λ) = (1 − λ)d−wλ (d = w, w + 1, . . .). Let

K =
∑D

k=1 uk denote the number of motif types in the module. For notational simplicity, let us

assume that u represents the set of the first K motifs, indexed 1 through K. Also, since the motif

site updating step is conditional given u, here we drop the subscript u from g(i, j, k, u) in the

remaining part of the section.

In the forward summation step, we recursively calculate the probability of different motif types

ending at a position j of the sequence:

g(1, j, k) =





∑

i<j

K
∑

l=1

g(1, i, l) Vl,k Q(j − i − w; λ) + P (s[1,j−w,0]|ρ)



 g(j − w + 1, j, k). (2.6)



By convention, the initial conditions are: g(0, 0, k) = 1 for k = 0, 1, . . . , K, and g(i, j, k) = 0 for

j < i and k > 0.

In the backward sampling step, we use the Bayes theorem to calculate the probability of motif

occurrence at each position of a sequence, starting from the end of the sequence. Given that a

motif of type k ends at position i in the sequence, the probability that the next motif further ahead

in the sequence spans position (i′ − w + 1) to i′, (where i′ ≤ i − w), and is of type k′, is given by:

g(1, i′, k′) P (s[i′+1,i−w,0]|ρ) g(i − w + 1, i, k) Q(i − i′ − w; λ) Vk′,k

g(1, i, k)
. (2.7)

All the required expressions in (2.7) have already been calculated during the calculation (2.6).

2.3 Sampling parameters from posterior distributions

Given the motif type indicator u and the motif position and type vectors A and T , we now up-

date the parameters Ω = (Θ, ρ, V, λ) by a random sample from its conditional distribution. Since

conjugate priors (Dirichlet and product Dirichlet distributions) have been assumed for these pa-

rameters, their conditional posterior distributions are also of the same form and are straightforward

to simulate from.

More precisely, we assume a priori that Wi ∼
∏w

j=1 Dirichlet(βij) (for i = 1, . . . , D); ρ ∼

Dirichlet(β0); λ ∼ Beta(a, b), and let the total number of sequences be n. The posterior dis-

tributions of these parameters, conditional on u, A, and T , will be also of the same type. For

example, the posterior of Wi will be
∏w

j=1 Dirichlet(βij + nij), where nij is a vector containing

the counts of the 4 nucleotides at the jth position of all the sites corresponding to motif type i.

For those motifs that have not been selected by the module (i.e., motif types with their ui = 0),

the corresponding W ’s still follow their prior distribution. Similarly, the posterior distribution of

ρ is Dirichlet(β0 + n0), where n0 denotes the frequencies for the 4 nucleotides in the background

sequence.

Given u (with |u| = K), each row of V is assumed to follow an independent Dirichlet. Let the

ith row vi|u ∼ Dirichlet(αi), where i = 1, . . . , K. For updating V , we note that if mij {i, j ∈ D :

ui = uj = 1} denotes the number of transitions from PSWM types i to j (when i and j have both

been included in the module), then the posterior distribution of vi is Dirichlet(αi + mi). Finally,

we denote the distance between consecutive sites on sequence i (i = 1, . . . , n) as dij = Ai,j+1 −Aij ,

and assume that each d follows Q( ; λ), a geometric(λ) distribution truncated at w (as defined in

section 2.2). Let d =
∑n

i=1

∑|Ai|−1
j=1 dij be the total length of sequence covered by the CRMs, where

|Ai| is the total number of sites in sequence i, and |A′| =
∑n

i=1(|Ai| − 1). Then, the posterior

distribution of λ is Beta(a + |A′|, b + d − w|A′|).
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