

Figure S1: **Overview of data profile.** This study uses the TG-GATEs database for TRACE pretraining (TG-28k, TG-18k), weakly supervised and few-shot classification (TG-4k), TRACE fine-tuning with patch annotations, and conducting the reader study (TG-100).



Figure S2: Weakly supervised slide classification. a. Overview of the proposed multiple instance learning (MIL) architecture, AttnPatchMIL, for joint patch and slide classification using slide-level supervision. b,c,d. Evaluation of AttnPatchMIL on 5-class lesion classification comparing TRACE against ResNet50-IN and CTransPath vision encoders. Evaluation based on multi-label ROC and macro-AUC in b.; class-wise AUC in c. and; overall balanced accuracy, macro-AUC, and F1 in d.. e. Patch-wise attribution of fatty change and hypertrophy using AttnPatchMIL. f.,g.,h. Analogous evaluation using Attention-based MIL (ABMIL). i.,j.,k. Analogous evaluation using MeanMIL based on the mean patch embedding. All models are trained on TG-18k and tested on TG-4k. Error bars in b,c,d,f,g,h,i,j,k. represent 95% confidence intervals and were computed using non-parametric bootstrapping (100 iterations). ROC: receiver operating characteristic; AUC: area under the ROC curve; FFNN: feed-forward neural network.



Figure S3: Few-shot classification. a. Comparison of TRACE, CTransPath and ResNet50-IN vision encoders for few-shot learning ( $k \in 1, 5, 10, 25$ ) in TG-4k evaluated AUC averaged across six binary classification tasks. b. Comparison of TRACE, CTransPath and ResNet50-IN vision encoders for k = 10 in TG-4k evaluated using macro-AUC, balanced accuracy and F1 score. c. Per-class (n=6 lesions) few-shot performance evaluated using macro AUC. d. Per-class (n=6 lesions) few-shot performance evaluated using non-parametric bootstrapping (100 iterations). Error bars in b,d. represent standard deviation and were computed using classification performance repeated over 10 runs, where each run samples a different random set of k training samples per class. AUC: area under the ROC curve; Bal. acc.: balanced accuracy.



Figure S4: **Patch and slide-level prototyping. a.** A slide-level prototype is defined by taking the average TRACE patch embeddings of a slide that contains a distinct morphology of interest. **b.** A patch-level prototype is defined as a single TRACE patch embedding that contains morphology of interest. **c.** A similarity score is defined by computing the average cosine distance between the prototype (patch or slide) and all patch embeddings from a test slide, with the binary prediction (positive if the slide contains morphology of interest, and negative otherwise) threshold determined by Otsu method. **d.** Similarity assessment using single-slide prompting for detecting eosinophilic cellular alteration in thioacetamide and basophilic cellular alteration in puromycin aminonucleoside. Visualization of the patch-level similarity with the prototype yields a pseudo-segmentation map indicating the presence of the morphology of interest. In a high-dose thioacetamide slide, annotations of eosinophilic regions align almost perfectly with the patch-level similarity. **e.** Similarity assessment using single-patch prompting classification of basophilic cellular alteration. High similarity is identified between the positive basophilic prompt and the positive test slide (center), and low similarity with the negative (normal) slide (right).



Figure S6: **Patch classification evaluation.** Class-wise macro-AUC, balanced accuracy and F1 score of TRACE (FT). Error bars represent 95% confidence intervals and were computed using non-parametric bootstrapping (100 iterations). EMH: extramedullary hematopoiesis; Eosinophilic: eosinophilic cellular alteration.



Figure S7: Visualization of TRACE (FT) embedding space. Uniform Manifold Approximation and Projection (UMAP) of TRACE (FT) patch embedded colored by their annotation. All shown patches are from TG-4k. Zoom on specific regions of the latent space with patch examples. Each patch is  $256 \times 256$  pixels at  $20 \times$ . EMH: extramedullary hematopoiesis. Eosinophilic: eosinophilic cellular alteration.



Figure S8: **Visualization of TRACE fine-tuned with patch annotations. a.** Example of lesion detection and segmentation using TRACE (FT) in a high dose sample administered with methylene dianiline. Regions highlight bile duct proliferation. **b.** Example of lesion detection and segmentation using TRACE (FT) in a middle dose sample administered with cycloheximide. Regions highlight hepatocellular fatty change. All results were obtained using 80% patch overlap.



Figure S9: Automatic dose-response toxicity assessment. a. Morphological lesion log2 fold change of increased mitosis and hypertrophy in methyltestosterone in single and daily dose sample groups with respect to the control group. b. Log2 fold change of cellular infiltration and fatty change in hydroxyzine in single and daily doses with respect to the control group. Plots without bars indicate that no lesion was detected.

|                         | Trair | n/Validation | Test |           |  |
|-------------------------|-------|--------------|------|-----------|--|
| Lesions                 | WSIs  | Compounds    | WSIs | Compounds |  |
| Necrosis                | 748   | 101          | 264  | 17        |  |
| Hypertrophy             | 1649  | 109          | 331  | 18        |  |
| Fatty change            | 308   | 33           | 73   | 7         |  |
| Bile duct proliferation | 111   | 10           | 41   | 2         |  |
| Increased mitosis       | 331   | 43           | 94   | 9         |  |

Table S1: **Distribution of lesions used in weakly supervised slide classification.** TG-GATEs includes 23,136 liver WSIs from 157 different pre-clinical studies. Necrosis refers to single-cell, focal/multifocal, or zonal hepatocellular necrosis; hypertrophy refers to enlarged hepatocytes, primarily due to an increase in the cytosolic protein or number of organelles; fatty change includes macro and microvesicular hepatocellular vacuolation; bile duct proliferation refers to bile duct hyperplasia with an increased number of bile ducts; we additionally include oval cell proliferation. Increased mitosis refers to hepatocyte mitosis above normal levels. Complementary information describing each lesion is provided in **table S2** WSIs, whole-slide images.



Figure S5: **Similarity assessment with single-patch prompting.** Detection of necrosis and fibrosis using single-patch prompting upon daily administration (15 days) of 30 mg/kg of monocrotaline.

| Lesion                                                             | Definition                                           | Used in                  |  |
|--------------------------------------------------------------------|------------------------------------------------------|--------------------------|--|
| Hepatocellular responses, cellular degeneration, injury, and death |                                                      |                          |  |
|                                                                    | Hepatocellular vacuolation, consistent with          | WSC, FSL, PC, RS         |  |
| Fatty change                                                       | intracytoplasmic lipid accumulation.                 |                          |  |
|                                                                    | Includes macro and microvesicular.                   | DC                       |  |
| Hydropic degeneration                                              | intracytoplasmic fluid accumulation                  | PC                       |  |
|                                                                    | Cell death of henatocytes                            | WSC FSL MR PC RS         |  |
| Necrosis                                                           | Includes focal/multifocal and zonal (centrilobular.  | W 5C, I 5L, MIX, I C, K5 |  |
|                                                                    | midzonal, periportal and diffuse).                   |                          |  |
| Single-cell necrosis                                               | Necrosis (or apoptosis) of single hepatocytes.       | PC, RS                   |  |
|                                                                    | Enlargement of the hepatocyte cytoplasm,             | WSC, FSL, PC, RS         |  |
| Hypertrophy                                                        | secondary to increase in the cytosolic protein       |                          |  |
|                                                                    | or number of organelles.                             |                          |  |
| Glycogen deposit                                                   | Hepatocellular cytoplasmic alteration,               | PC, RS                   |  |
|                                                                    | consistent with glycogen accumulation.               |                          |  |
| Inflammatory cell infiltre                                         | ates, inflammatory cell infiltrates and hepatic      |                          |  |
| Cellular infiltration                                              | Infiltrations of inflammatory cells in the liver.    | FSL, PC, RS              |  |
|                                                                    | Includes neutrophil, mononuclear and peribiliary.    |                          |  |
| <b>F</b> 'h'.                                                      | The presence of fibrous connective tissue in the     | MR                       |  |
| F1Dr0S1S                                                           | nver above normal levels. Includes pericellular,     |                          |  |
|                                                                    | perioritary, and postilecrotic norosis.              |                          |  |
| Non-neoplastic prolifera                                           | utive lesions                                        |                          |  |
| Basophilic                                                         | Hepatocellular cytoplasmic basophilia, due to        | MR                       |  |
| Cellular alteration                                                | tree fibosomes of fough endoplasic reticulum.        | DC                       |  |
| cellular alteration                                                | due to an increase in cytoplasmic organelles         | rc                       |  |
| Ground glass                                                       | Henatocytes with glassy and hypereosinophilic        | PC                       |  |
| appearance                                                         | appearing cytoplasm                                  |                          |  |
| D'1. 1                                                             | Increased number of small bile ducts arising in      | WSC, FSL, PC, RS         |  |
| Bile duct                                                          | portal region. Biliary epithelium appears normal     |                          |  |
| promeration                                                        | or may show degenerative or atrophic changes.        |                          |  |
| Increased mitosis                                                  | Increased hepatocyte mitoses above normal background | WSC, FSL, PC, RS         |  |
| meredsed mitosis                                                   | levels (>1-2 mitotic figures per 10 (400x) HPF).     |                          |  |
| Other lesions                                                      |                                                      |                          |  |
| Extramedullary                                                     | Hematopoietic cell proliferation in the liver.       | PC, RS                   |  |
| hematopoiesis                                                      | Aggregates of hematopoietic cells are distributed    |                          |  |
|                                                                    | in the hepatic sinusoids as well as around           |                          |  |
|                                                                    | central veins and portal areas.                      |                          |  |

Table S2: Lesion definition. Definitions and scope are based on the INHAND guidelines<sup>40</sup>. INHAND is the International Harmonization of Nomenclature and Diagnostic Criteria, a publicly accessible resource that defines guidelines to diagnose lesions found in rodent toxicity and carcinogenicity studies. When INHAND lacked specific guidelines regarding diagnosing, such as for scoring "increased mitosis", we relied on the National Toxicology Program guidelines available online https://ntp.niehs.nih.gov/atlas/nnl/hepatobiliary-system/liver. WSC: weakly supervised classification; FSL: few-shot learning; MR: morphological retrieval; PC: patch classification, RS: reader study.

|                                  | Patch Positive | Patch Negative | WSI Positive | WSI Negative |
|----------------------------------|----------------|----------------|--------------|--------------|
| Lesion                           |                |                |              |              |
| Cellular infiltration            | 2,232          | 3,315          | 984          | 1,167        |
| Necrosis                         | 2,449          | 14,453         | 243          | 538          |
| Single cell necrosis             | 4,119          | 11,947         | 780          | 1,393        |
| Hypertrophy                      | 4,525          | 5,451          | 29           | 698          |
| Eosinophilic cellular alteration | 1,231          | 3,123          | 168          | 632          |
| Ground glass appearance          | 1,440          | 4,294          | 91           | 698          |
| Hydropic degeneration            | 418            | 868            | 46           | 145          |
| Glycogen deposit                 | 2,730          | 320            | 608          | 73           |
| Fatty change                     | 2,127          | 6,935          | 144          | 1,019        |
| Bile duct proliferation          | 1,564          | 1,630          | 94           | 96           |
| Increased mitosis                | 3,496          | 8,978          | 404          | 1,079        |
| Extramedullary hematopoiesis     | 3,111          | 9,400          | 1,177        | 2,954        |

Table S3: **Distribution of patch annotations.** As many patches include several labels, such as fatty change and hypertrophy, we report positive patches (lesion is present) and the number of hard negatives (lesion is not present). Positive patches may include more than one lesion.

| Slide ID | Compound         | Dose | Single or Repeat | Sacrifice |
|----------|------------------|------|------------------|-----------|
| 10921    | Griseofulvin     | 1000 | Single           | 3 hrs     |
| 11089    | Griseofulvin     | 1000 | Single           | 24 hrs    |
| 13326    | Metformin        | 0    | Single           | 9 hrs     |
| 14012    | Methyldopa       | 200  | Single           | 3 hrs     |
| 14430    | Methyldopa       | 0    | Repeat           | 15 days   |
| 14478    | Methyldopa       | 60   | Repeat           | 15 days   |
| 19714    | Hydroxyzine      | 30   | Repeat           | 15 days   |
| 20367    | Mefenamic acid   | 300  | Repeat           | 8 days    |
| 20422    | Mefenamic acid   | 300  | Repeat           | 15 days   |
| 27539    | Thioacetamide    | 0    | Single           | 6 hrs     |
| 30270    | Bromobenzene     | 300  | Single           | 24 hrs    |
| 30272    | Bromobenzene     | 300  | Single           | 24 hrs    |
| 30274    | Bromobenzene     | 300  | Single           | 24 hrs    |
| 31778    | Cyclophosphamide | 15   | Repeat           | 15 days   |
| 33012    | Metformin        | 300  | Repeat           | 4 days    |
| 33056    | Metformin        | 1000 | Repeat           | 4 days    |
| 33057    | Metformin        | 1000 | Repeat           | 4 days    |
| 46078    | Ethionamide      | 300  | Single           | 9 hrs     |
| 46360    | Ethionamide      | 100  | Repeat           | 4 days    |
| 48472    | Phenacetin       | 0    | Single           | 24 hrs    |
| 48744    | Phenacetin       | 2000 | Single           | 6 hrs     |
| 48936    | Phenacetin       | 100  | Repeat           | 4 days    |
| 49066    | Phenacetin       | 1000 | Repeat           | 8 days    |
| 50226    | Danazol          | 100  | Repeat           | 15 days   |
| 50987    | Cisplatin        | 0    | Single           | 6 hrs     |
| 51434    | Cisplatin        | 1    | Repeat           | 4 days    |
| 51604    | Carboplatin      | 0    | Single           | 6 hrs     |
| 53169    | Bromoethylamine  | 6    | Repeat           | 29 days   |
| 53257    | Bromoethylamine  | 20   | Repeat           | 29 days   |
| 53335    | Mexiletine       | 40   | Single           | 9 hrs     |
| 54187    | Cephalothin      | 1000 | Single           | 3 hrs     |
| 54409    | Cyclosporine a   | 0    | Repeat           | 4 days    |
| 54597    | Cyclosporine a   | 10   | Repeat           | 15 days   |
| 54816    | Cyclosporine a   | 100  | Repeat           | 8 days    |
| 54822    | Cyclosporine a   | 100  | Repeat           | 15 days   |

Table S4: **Cases used in the reader study.** A total of 100 tissue sections were randomly extracted from TG-GATEs test set (TG-4k).

| Slide ID | Compound            | Dose | Single or Repeat | Sacrifice |
|----------|---------------------|------|------------------|-----------|
| 55649    | Gentamicin          | 30   | Repeat           | 8 days    |
| 57174    | Danazol             | 1000 | Single           | 24 hrs    |
| 57236    | Danazol             | 2000 | Single           | 6 hrs     |
| 57336    | Theophylline        | 0    | Single           | 6 hrs     |
| 58909    | Cycloheximide       | 10   | Single           | 3 hrs     |
| 59123    | Tunicamycin         | 300  | Single           | 3 hrs     |
| 6009     | Diazepam            | 0    | Single           | 3 hrs     |
| 6013     | Diazepam            | 0    | Single           | 6 hrs     |
| 60435    | Isoniazid           | 2000 | Single           | 6 hrs     |
| 62014    | Hexachlorobenzene   | 0    | Single           | 3 hrs     |
| 6224     | Hexachlorobenzene   | 0    | Repeat           | 15 days   |
| 63748    | Methylene dianiline | 30   | Repeat           | 8 days    |
| 63941    | Methylene dianiline | 100  | Repeat           | 29 days   |
| 63952    | Methylene dianiline | 100  | Repeat           | 29 days   |
| 63955    | Methylene dianiline | 100  | Repeat           | 29 days   |
| 10913    | Griseofulvin        | 300  | Single           | 3 hrs     |
| 10969    | Griseofulvin        | 300  | Single           | 6 hrs     |
| 11080    | Griseofulvin        | 1000 | Single           | 24 hrs    |
| 14008    | Methyldopa          | 200  | Single           | 3 hrs     |
| 14023    | Methyldopa          | 200  | Single           | 6 hrs     |
| 14211    | Methyltestosterone  | 300  | Single           | 24 hrs    |
| 14554    | Methyldopa          | 200  | Repeat           | 29 days   |
| 19318    | Hydroxyzine         | 10   | Single           | 24 hrs    |
| 19764    | Hydroxyzine         | 100  | Repeat           | 15 days   |
| 19773    | Hydroxyzine         | 100  | Repeat           | 15 days   |
| 19777    | Hydroxyzine         | 100  | Repeat           | 29 days   |
| 19781    | Hydroxyzine         | 100  | Repeat           | 29 days   |
| 19785    | Hydroxyzine         | 100  | Repeat           | 29 days   |
| 20370    | Mefenamic acid      | 300  | Repeat           | 8 days    |
| 20414    | Mefenamic acid      | 300  | Repeat           | 15 days   |
| 20477    | Mefenamic acid      | 300  | Repeat           | 29 days   |
| 20483    | Mefenamic acid      | 300  | Repeat           | 29 days   |
| 2421     | Isoniazid           | 100  | Single           | 6 hrs     |
| 2589     | Isoniazid           | 0    | Repeat           | 4 days    |
| 30278    | Bromobenzene        | 300  | Single           | 24 hrs    |

Table S4: Continuation of table S4.

| Slide ID | Compound                  | Dose | Single or Repeat | Sacrifice |
|----------|---------------------------|------|------------------|-----------|
| 30465    | Bromobenzene              | 30   | Repeat           | 15 days   |
| 33006    | Metformin                 | 100  | Repeat           | 29 days   |
| 33077    | Metformin                 | 1000 | Repeat           | 15 days   |
| 46792    | Thioacetamide             | 45   | Repeat           | 4 days    |
| 48569    | Phenacetin                | 300  | Single           | 9 hrs     |
| 48685    | Phenacetin                | 1000 | Single           | 9 hrs     |
| 48998    | Phenacetin                | 100  | Repeat           | 15 days   |
| 49064    | Phenacetin                | 1000 | Repeat           | 8 days    |
| 51220    | Cisplatin                 | 3    | Single           | 24 hrs    |
| 52036    | Carboplatin               | 0    | Repeat           | 15 days   |
| 53036    | Bromoethylamine           | 2    | Repeat           | 29 days   |
| 53941    | Cephalothin               | 0    | Single           | 3 hrs     |
| 53997    | Cephalothin               | 0    | Single           | 9 hrs     |
| 54300    | Cephalothin               | 2000 | Single           | 3 hrs     |
| 54937    | Puromycin aminonucleoside | 0    | Single           | 9 hrs     |
| 54991    | Gentamicin                | 0    | Single           | 24 hrs    |
| 55355    | Puromycin aminonucleoside | 120  | Single           | 6 hrs     |
| 55696    | Gentamicin                | 30   | Repeat           | 15 days   |
| 55728    | Puromycin aminonucleoside | 40   | Repeat           | 8 days    |
| 56895    | Danazol                   | 0    | Single           | 6 hrs     |
| 57802    | Theophylline              | 0    | Repeat           | 8 days    |
| 58319    | Acetazolamide             | 200  | Single           | 9 hrs     |
| 58819    | Cycloheximide             | 3    | Single           | 6 hrs     |
| 59224    | Tunicamycin               | 300  | Single           | 24 hrs    |
| 60413    | Isoniazid                 | 200  | Single           | 6 hrs     |
| 60648    | Cyclophosphamide          | 50   | Single           | 9 hrs     |
| 62091    | Hexachlorobenzene         | 1000 | Single           | 6 hrs     |
| 6302     | Hexachlorobenzene         | 30   | Repeat           | 29 days   |
| 63875    | Methylene dianiline       | 100  | Repeat           | 15 days   |
| 70760    | Phenacetin                | 1000 | Repeat           | 8 days    |

| Table S4: Continuation of tab | le S4. |
|-------------------------------|--------|
|-------------------------------|--------|

| Hyper-parameter                     | Value        |
|-------------------------------------|--------------|
| Layers                              | 12           |
| Heads                               | 12           |
| Patch size                          | 16           |
| FFN layer                           | MLP          |
| Head activation                     | GELU         |
| Embedding dimension                 | 768          |
| Stochastic dropout rate             | 0.1          |
| Global crop scale                   | 0.32, 1.0    |
| Global crop number                  | 2            |
| Local crop scale                    | 0.05, 0.32   |
| Local crop number                   | 10           |
| Max masking ratio                   | 0.3          |
| Min masking ratio                   | 0.0          |
| Gradient clipping max norm          | 0.3          |
| Normalize last layer                | $\checkmark$ |
| Shared head                         | $\checkmark$ |
| head output dimension               | 8192         |
| Optimizer                           | AdamW        |
| Batch size                          | 1024         |
| Freeze last layer (it, ep)          | 44124, 3     |
| Warmup (it, ep)                     | 73540, 5     |
| Warmup teacher temperature (it, ep) | 441240, 30   |
| Max training (it, ep)               | 1176640, 80  |
| Number of images                    | 15061790     |
| Learning rate schedule              | Cosine       |
| Learning rate (start)               | 0.0          |
| Learning rate (post warmup)         | 0.0005       |
| Learning rate (final)               | 0.000002     |
| Teacher temperature (start)         | 0.04         |
| Teacher temperature (final)         | 0.07         |
| Teacher momentum                    | 0.996        |
| Weight decay (start)                | 0.04         |
| Weight decay (end)                  | 0.4          |
| Automatic mixed precision           | fp16         |

Table S5: **iBOT hyperparameters used in TRACE pretraining**. The training converged after 80 epochs for a total training time of 208 hours using  $8 \times 80$ GB NVIDIA A100 GPUs.

| Hyperparameter         | Value        |
|------------------------|--------------|
| Batch size             | 48           |
| Weight decay           | 1e-5         |
| AdamW $\beta$          | (0.9, 0.999) |
| Peak learning rate     | 1e-4         |
| Learning rate schedule | Cosine       |
| Epochs                 | 20           |
|                        |              |

Table S6: **Hyperparameters used in slide-level supervised classification**. A single 24GB NVIDIA GeForce RTX 3090 GPU was used to train the multiple instance learning models.