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Supplementary Methods: 
1 Study design 
RNA sequencing was performed entirely by GENEWIZ, from Azenta Life Sciences in South Plainfield, New Jersey. We 
performed RNA sequencing of 779 cell lines. These cell lines represent 731 unique samples, 24 of which were sequenced 
in triplicate. Sequencing was performed in batches of 15-48 cell lines each (twelve batches of 48 cell lines, four batches of 
47 cell lines, and one batch of 15 cell lines). For samples with replicates, replicates were divided between batches such 
that one replicate of the three was sequenced in one batch, and the other two replicates were sequenced in a separate batch 
to allow for analysis of inter- and intra-batch variation for each of these samples. 

2 Ancestry analysis 
Ancestry composition of our study sample was assessed and compared to related studies using ADMIXTURE (version 
1.3.0)58, which uses a likelihood model to estimate allele frequencies in k postulated ancestral populations, as well as 
ancestry proportions for each individual that trace to each of those k populations. Genotype data for 1000 Genomes 
Project6 (1KGP) samples were obtained from published data based on high coverage (~30×) sequencing by the New York 
Genome Center (NYGC)24, subsetting to samples used in our study, by the Geuvadis consortium4, and or the African 
Functional Genomics Resource17 (AFGR). We note that 10 samples from Geuvadis and 2 AFGR samples were not 
included in the NYGC 1KGP VCF and these samples were excluded from our analysis. Data were downsampled to SNPs 
in approximate linkage equilibrium (using the --indep-pairwise 200 20 0.2 flag in PLINK62) and restricted to 
common variants with MAF > 0.05 within the sample. This set of variants was then extracted from genotype data from v9 
of the GTEx Project26 as well as genotype data for samples from the Maasai (MKK) population from AFGR (which are 
not part of 1KGP), requiring that the SNPs be polymorphic and biallelic (with the same two alleles) in all data sets. One 
sample from GTEx was not included in the GTEx v9 VCF and this sample was excluded from our analysis. Genotype data 
from this subset of variants was then merged across the relevant data sets and used as input to ADMIXTURE with default 
stopping criteria. For the purpose of visualization, k was set to 7, which exhibited the minimum 5-fold cross-validation 
error for the tested range of k = [2 .. 10] (Fig. S1). ADMIXTURE plots for the MAGE samples for each of k = [3 .. 9] are 
shown in Fig. S2. Principal components analysis was performed on the same merged data set using PLINK (version 
v1.90b6.21)62 (Fig. S3). 

 

Figure S1. ADMIXTURE cross validation error. Five-fold cross-validation error with varying numbers of specified ancestry components (k) in 
ADMIXTURE. We selected k=7 for use in Fig. 1D as this value minimizes the cross-validation error. 
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Figure S2. ADMIXTURE results across a range of k. ADMIXTURE results for samples in MAGE displaying proportions of individual genomes 
(columns) attributed to varying numbers of specified ancestry components (k).  
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Figure S3. Principal components analysis of genotype data corresponding to various human RNA-sequencing genomic data sets. (A) 
Genotype principal components 1 and 3 with samples from all studies depicted with gray points and samples from the specified study (i.e., MAGE 
[pink], Geuvadis [green], GTEx [blue], and AFGR [orange]) depicted with colored points in each respective panel. Note that principal components 1 
and 2 are visualized in Fig. 1B. The percent of genetic variance explained by principal component 3 is visualized in Fig. 1C. 

3 RNA sequencing data production 

3.1 Cell line processing and shipping 

EBV transformed lymphoblastoid cells lines (LCLs) were purchased from the Coriell Institute for Medical Research 
(NIGMS and NHGRI Repositories) in Camden, New Jersey. All cell lines are free of bacterial, fungal, or mycoplasma 
contamination. Frozen cell pellets (≥ 5 million cells per cell line) were recovered by Coriell and cultured for 4 days (see 
Coriell LCL culture FAQ for information about growth media: 
www.coriell.org/0/sections/support/global/Lymphoblastoid.aspx). After growth, cells were transferred to a growth-
limiting shipping media and were shipped directly to GENEWIZ (same-day delivery) for RNA isolation, library prep, and 
sequencing. 

3.2 RNA extraction and sequencing 

At Coriell, cells were spun down, then total RNA was extracted from cell pellets using Qiagen RNeasy Plus Universal 
mini kit following manufacturer’s instructions. RNA was quantified using Qubit 2.0 Fluorometer and RNA integrity was 
checked using the Agilent TapeStation. Sequencing libraries were prepared using the unstranded NEBNext Ultra II RNA 
Library Prep Kit for Illumina using manufacturer’s instructions with the polyA enrichment workflow. Sequencing 
libraries were validated on the Agilent TapeStation and quantified by using Qubit 2.0 Fluorometer as well as by 
quantitative PCR. Sequencing was done on the Illumina NovaSeq 6000 instrument with 150 bp paired-end sequencing, 
with a desired minimum depth of 25M reads per sample. Sequencing libraries were multiplexed in batches of 15-48 
samples (the same batches they were shipped in) and loaded onto the flow cell according to manufacturer’s instructions. 



 6 

4 Preliminary gene expression level quantification 

4.1 Gene-level counts 

To quantify gene expression level in our data set, we use the GENCODE v38 transcript annotations63 and Salmon (version 
1.5.2)64 for expression quantification. Salmon is a kmer-based method that uses raw RNA-seq data to estimate the number 
of reads aligning to a defined set of transcripts and their relative abundance. We first generated a Salmon index using 
salmon index with the GENCODE v38 transcript FASTA file as input and with the --gencode flag. For each of the 
779 cell lines, we quantify transcript-level expression using salmon quant with the raw RNA-seq reads as input. We set 
--libType=IU because our sequencing pipeline is expected to produce read-pairs that are inwardly-oriented and 
unstranded. All other arguments use their default values. This produces, for each library, transcript-level estimates of read 
counts and TPM. Finally, these transcript-level estimates were summed to gene-level estimates using tximport (version 
1.18.0)65 in R. These gene-level quantifications are used as a starting point in down-stream analyses. Unless otherwise 
stated, for the 24 samples that were sequenced in triplicate, downstream analyses are limited to the replicate with the most 
reads for each of these samples. 

4.2 Lowly-expressed gene filter 

For most analyses of gene expression level differences, it is useful to filter out genes with low expression across samples. 
Expression quantifications for lowly-expressed genes may be indistinguishable from sequencing noise and can introduce 
false-positive results across analyses. As such, we limit most analyses to genes with ≥6 counts and ≥0.1 TPM in at least 
20% (147/731) of samples. After filtering, we were left with 20,154 expressed genes (19,539 autosomal genes, 615 genes 
on chrX) used for analyses of gene expression level. 

5 Preliminary alternative splicing quantification 

5.1 Quantification of intron excision ratios 

To quantify alternative splicing in our data set, we followed the splicing quantification pipeline developed by the GTEx 
consortium and described in their paper26 and on their GitHub repository (https://github.com/broadinstitute/gtex-
pipeline/tree/master/qtl/leafcutter). Briefly, reads were first aligned to the reference with STAR (version 2.7.10a)66, using 
WASP correction to mitigate allelic mapping bias. For WASP correction, we used phased variant calls from the NYGC’s 
high-coverage sequencing of the 1KGP24 (20201028 accession, located on the International Genome Sample Resource67 
ftp server here: 
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phase
d/). All other options were as described by GTEx. 

Previous studies (e.g., 68,69) have explored different strategies for mitigating reference bias, finding that "ancestry-
matched" reference genomes yield only modest benefits. This finding is intuitive given the distribution of common genetic 
variation, which is largely shared across human populations. Meanwhile, rare variation will be poorly captured in an 
ancestry-matched reference, as by definition it is unlikely to be shared by another individual, regardless of their 
membership in any broad ancestry group. Consistent with these conclusions, we observe no systematic difference in the 
percentage of unmapped reads among samples from different populations, despite the fact that the reference genome used 
in this study (GRCh38) is primarily derived from a single donor individual (RP-11) of African American ancestry (Fig. 
S4). 

Alignments were then supplied to Leafcutter (version 0.2.9)18 to generate intron excision ratios. Notably, Leafcutter is 
annotation agnostic; it defines its own splicing “clusters” (groups of related intron excision events) using split reads rather 
than quantifying splicing using prior exon or transcript annotations. In a data set such as ours, where many individuals are 

https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl/leafcutter
https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl/leafcutter
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/
https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/20201028_3202_phased/
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from historically understudied populations, this eliminates bias from annotations generated from sample sets with limited 
diversity and may allow us to elucidate novel intron excision events. 

Intron usage was estimated for each library using regtools junctions extract (regtools version 0.5.2) using a 
minimum anchor length of 8 bp (-a 8), strand specificity set to unstranded (-s 0) based on our library prep, minimum 
intron size set to 50 bp (-m 50), and the maximum intron size set to 500kb (-M 500000). Junction files were then used to 
cluster introns across all samples using the Leafcutter leafcutter_cluster_regtools.py companion script, where 
50 split reads were required to support each cluster (-m 50) and the maximum intron size was set to 500kb (-l 500000). 

While STAR and Leafcutter were run using all 779 sequencing libraries, unless otherwise stated, for the 24 samples that 
were sequenced in triplicate, downstream analyses used results from the replicate with the most reads for each of these 
samples. 

 

Figure S4. Percentage of unmapped reads per sample, stratified by population. Unmapped reads are separated into reads that were unmapped 
due to too many mismatches (top row) or unmapped simply because no sufficiently identical reference sequence was identified (bottom row). 

5.2 Filtering lowly-expressed and low-complexity clusters 

Introns with low counts and clusters with low complexity can lead to statistical issues when discovering sQTLs and 
quantifying splicing variance. To avoid these issues, we applied a filtering procedure to the intron excision ratios 
produced by Leafcutter, largely based on the leafcutter filtering applied by GTEx and described in their paper26 and on 
their GitHub repository (https://github.com/broadinstitute/gtex-
pipeline/blob/master/qtl/leafcutter/src/cluster_prepare_fastqtl.py). 

After running Leafcutter, we had intron excision ratios for 245,487 introns (51,466 splicing clusters) on the autosomes 
and chrX. We first filtered out introns with low complexity across samples, defined as introns without any read counts in 
>90% of samples, or with fewer than max(10, 0.1n) unique values, where n = 731 is the sample size. After this step, 
154,816 introns (33,712 clusters) remained. Through use of the Leafcutter prepare_phenotype_table.py companion 
script (described in more detail in section 11.1 below) 8,430 additional introns were dropped with SD < 0.005 across 

https://github.com/broadinstitute/gtex-pipeline/blob/master/qtl/leafcutter/src/cluster_prepare_fastqtl.py
https://github.com/broadinstitute/gtex-pipeline/blob/master/qtl/leafcutter/src/cluster_prepare_fastqtl.py
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samples or whose cluster had 0 counts in > 40% of samples. After this step, 146,386 introns (33,447 clusters) remained. 
Finally, we dropped 580 clusters with only one intron.  

After filtering, 145,806 introns (32,867 splicing clusters) were retained and used for down-stream analyses of splicing 
variation. 

6 Quantifying the contribution of batch effects to expression variation 
Batch effects–along with other sources of technical variation–are a known confounder in RNA-seq data. As such, it is 
critical to ensure that the effect of batch on gene expression level does not mask actual biological variation. To assess the 
contribution of batch effects to expression level variation, we sequenced 24 samples in triplicate, as described in section 1 
above. Using the filtered gene-level counts described in section 4.2, we calculated the Spearman rank correlation between 
each pair of the 72 replicate sequencing libraries. Critically, we observe that pairs of libraries from the same individual 
have higher correlations than pairs of libraries from the same batch (Fig. S5A). 

Additionally, for each of the 19,539 autosomal expressed genes and across the 72 replicate sequencing runs (24 samples 
sequenced in triplicate), we calculated the proportion of expression level variation explained by sample versus batch. 
Using a VST normalized expression matrix (described in section 7.1 below) subset to samples sequenced in triplicate, we 
performed a type II ANOVA using the Anova function from the car package (version 3.1-2) in R with the following 
regression formula: expression ~ batch + sample. To test whether expression variance between samples was greater than 
variance measured between sequencing batches, we performed a Wilcoxon signed-rank test using the proportion of 
variance explained from the ANOVA above. We observed that, on average, the proportion of gene expression variance 
explained by sample was greater than by sequencing batch (one-tailed Wilcoxon signed-rank test: p < 1 × 10-10), 
concordant with the results from the Spearman’s rank correlation test (Fig. S5B). 

We performed a complementary set of analyses to quantify the contribution of batch effects to splicing variation. Using 
the filtered intron excision ratios described in section 5.2, we calculated the Spearman rank correlation between each pair 
of the 72 replicate sequencing libraries. As with the analysis of expression level, we observe that pairs of libraries from 
the same individual have higher correlations than pairs of libraries from the same batch (Fig. S5C). Additionally, for each 
of the 31,837 autosomal splicing clusters that passed filtering, we calculated the proportion of splicing variation explained 
by sample versus batch. Using the intron excision ratios from Leafcutter, we performed a type II ANOVA using the 
manta function from the manta package (version 1.0.0) in R to fit a model that regresses intron excision ratios onto batch 
and sample. Described in more detail in section 9, MANTA70 is a tool for evaluation of multivariate linear models (such 
as intron excision ratios) that uses the Hellinger distance between splicing ratios to estimate the variability in splicing 
across individuals. As before, we performed a Wilcoxon signed-rank test using the proportion of variance from MANTA. 
We observed that, on average, the proportion of splicing variance explained by sample was greater than by sequencing 
batch (one-tailed Wilcoxon signed-rank test: p < 1 × 10-10) - concordant with the results from the Spearman’s rank 
correlation test (Fig. S5D). 
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Figure S5. Batch effects in MAGE RNA-seq data. (A) Spearman rank correlation in expression level (TMM) across all expression-filtered genes 
between each pair of technical replicates in our data set (24 unique samples, 72 total replicates). Pairs of replicates are stratified by 1) whether they 
were sequenced in the same sequencing batch and 2) whether they were derived from the sample 1KGP sample. Higher correlations are observed for 
pairs of replicates from the same sample than for pairs of replicates from the same sequencing batch. (B) For replicate sequencing libraries and across 
autosomal expression-filtered genes, per gene estimates of the proportion of variance in gene expression level explained by sequencing batch (pink) 
or sample (blue). On average, sample explained a higher proportion of variance in expression level than batch one-tailed (Wilcoxon signed-rank test: 
p < 1 × 10-10). (C) Same as panel A, but showing Spearman rank correlation in intron excision ratio across all splicing-filtered introns. Again, higher 
correlations are observed for pairs of replicates from the same sample than for pairs of replicates from the same sequencing batch. (D) Same as panel 
B, but showing the proportion of variance explained by batch or sample across autosomal splicing-filtered splicing clusters. On average, sample 
explained a higher proportion of variance in splicing than batch (one-tailed Wilcoxon signed-rank test: p < 1 × 10-10). 
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7 Differential gene expression between populations 

7.1 Data preparation 

Differential gene expression (DGE) analysis was performed using DESeq2 (version 1.36.071) in R. Using the salmon-
generated pseudocount expression data per sequence library (detailed in section 4.1), transcript-level abundances were 
first converted into gene-level abundances using the tximport (version 1.24.0)65 in R under default parameters. Gene-level 
expression estimates were imported into the DESeq2 ecosystem with the design formula specified as ~ population + batch 
+ sex, where batch and sex were included as categorical covariates to control for technical variation between sequencing 
batches (see section 6) and sex-dependent effects. For this analysis, technical replicates for each of the 24 samples that 
were sequenced in triplicate were collapsed into single samples using the collapseReplicates function included in 
DESeq2.  

7.2 Factor contrasts 

Differential expression contrasts were constructed one of two ways: 1) each population’s expression was contrasted 
against the average expression across all other populations within their parent continental group (e.g., JPT samples vs. all 
other samples within the East Asian continental group), or 2) each continental group’s expression was contrasted against 
the average expression across all other continental groups (e.g., AFR samples vs. all other samples).  

Using the design formula specified in section 7.1, Wald test contrast coefficient matrices were extracted for each 
population by computing the mean coefficients for each dummy variable using all samples within the focal population 
label (e.g., JPT). For each continental group and background population (e.g., all non-focal subpopulations per continental 
group), coefficient matrices were additively combined and normalized to the number of populations contained within their 
respective continental group (yielding a contrast coefficient matrix where the intercept weight = 1). Multiple testing 
correction, independent filtering, and outlier detection for each contrast were all performed using default functions 
included in the DESeq2 package. 

8 Expression level variation within and between populations 

8.1 Normalized expression matrix 

The relationship between populations and expression variance was measured using the blind variance stabilizing 
transformation (VST) function included in DESeq2 (version 1.36.0)71 on the gene-level count matrix produced after 
collapsing technical replicates (see section 7.1). VST produces an expression matrix which directly captures the effects of 
library- and experiment-wide normalization factors, estimated gene-wise dispersion, and reduces the dependence of 
expression variance on the mean expression per-gene (see Fig. S6). This transformed count matrix was reduced to only 
represent the filtered subset of genes described in section 4.2. 
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Figure S6. Count-data transformations for examining global trends in gene expression. Experiment-wide expression mean, μ, and standard 
deviation, σ, computed across all samples following three methods of expression normalization: mean expression computed by DESeq2 after 
correcting for dispersion and normalization factors (left), Log2-transformed counts (middle), and variance-stabilized transformation (VST; right). 

8.2 Estimation of biological variation 

We applied a two-stage ANOVA strategy to quantify gene expression variance at global, continental group, and 
population scales. First, an ANOVA was performed for each gene using the anova and lm functions in the stats package 
(version 4.3.0) in R with formula [1] below, where batch and sex were included as categorical covariates to remove 
technical variance from the response variable. Here u is the residuals of the regression and represents the VST normalized 
expression values corrected for the effects of batch and sex. Because continental group and population together form a 
multicollinear system, two independent ANOVAs were then performed to estimate the proportion of gene expression 
variance due to continental group (formula [2]) and population label (formula [3]), where the batch- and sex-corrected 
expression values, u, were used as the response variable. The proportion of variance explained (PVE) was estimated as the 
regression sum of squares divided by the total sum of squares for each regression. In this manner, the PVE by continental 
group or by population represent the proportion of variance in the batch- and sex-corrected expression values explained by 
the label. 

(1) 𝑉𝑆𝑇	𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛	~	𝑠𝑒𝑥 + 𝑏𝑎𝑡𝑐ℎ	 + 𝑢  

(2)  𝑢	~	𝑐𝑜𝑛𝑡𝑖𝑛𝑒𝑛𝑡𝑎𝑙	𝑔𝑟𝑜𝑢𝑝	 +	𝑣! 

(3)  𝑢	~	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	 + 	𝑣2 

To test whether the variance explained by continental group/population was greater than that expected by chance, we 
performed a permutation test where continental group and population labels were shuffled (with replacement) and the 
ANOVA procedure described above was recalculated for each gene (n = 1000 permutation replicates). A permutation test 
p-value was computed as the proportion of permutations where the mean proportion of variance explained by continental 
group/population was more extreme (i.e., greater) than those respectively measured in our empirical data set. For both 
continental group and population, none of the permutations had a mean PVE greater than calculated with the empirical 
data set. 

To quantify variance in gene expression within each continental group, we first applied the same regression strategy to 
remove variance due to sex and batch from the VST gene expression array using formula [1]. For each continental group, 
and for each gene, residuals were partitioned to include only samples within the focal group, and sample variance was 
calculated using the var function in R. 
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Using the gene-wise variance estimates per continental group, we tested whether gene expression variance differs 
significantly across continental populations (Fig. S7A). To achieve this objective, we fit a linear mixed model (lme,lme4 
package version 1.1-34 in R) to the expression data, where the response variable (log10-transformed variance) was 
regressed against a continental group fixed-effect and gene included as a random-effect. The performance of this model 
was compared with a reduced model (without the continental group fixed effect) using the anova function in the stats 
package. This statistical procedure was also applied to test whether splicing differs significantly across continental groups 
(Fig. S7B). 

 

Figure S7. Global trends in gene expression and splicing variance. (A) Variance in gene expression variance decreases with Eastward expansion 
from Africa. (B) In contrast, splicing variance shows little change with Eastward expansion, but decreases significantly in the admixed American 
continental group relative to the African continental group (two-tailed t-test: p-value = 3.17e-3, n=32,867 splicing clusters). Each point represents the 
mean variance computed across all genes/splicing clusters within the focal population label, and whiskers represent ± 1 std. Err. 

9 Splicing variation within and between populations 
The approach to quantify splicing variation between and within continental groups and populations largely mirrors the 
approach used for gene expression level (detailed in section 8.2). 

As with gene expression level, we applied a two-stage ANOVA strategy to quantify the proportion of splicing variance 
explained by continental group or population. Because splicing proportions are inherently multivariate, a standard 
ANOVA is not appropriate. Instead, we used MANTA70, a tool for evaluation of multivariate linear models including 
proportion data such as intron excision ratios. MANTA uses the Hellinger distance between splicing ratios to estimate the 
variability in splicing across individuals. 

For each splicing cluster that passed filtering (see section 5.2), we applied the following procedures. First, we used the 
manta function from the manta package (version 1.0.0) in R to regress filtered intron excision ratios onto sample-batch 
and sex to remove technical variation from the response variable. We set transform="sqrt" to use the Hellinger 
distance between splicing ratios, and fit=TRUE to return the regression residuals. Using the residuals from this first step, 
we then ran two independent ANOVAs to estimate the proportion of splicing variance attributable to continental group 
and population label. As before, we used the manta function to regress the residuals from the first step onto either 
continental group or population. We did not use the square root transform for these two models, because the residuals 
from the first step should reflect the initial square root transform. The proportion of variance explained by either 
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continental group or population was estimated as the regression sum of squares divided by the total sum of squares (after 
regressing out batch and sex) for each model.  

As with gene expression level, we tested whether the variance explained by continental group/population was greater than 
that expected by chance using a permutation test. Continental group and population labels were shuffled and the above 
procedure was repeated. 1000 total permutations were performed. We computed a permutation test p-value for both 
continental group and population as the proportion of permutations where the mean PVE (across splicing clusters) was 
greater than that calculated from the empirical data set. For both continental group and population, none of the 
permutations had a mean PVE greater than calculated with the empirical data set.  

To quantify variance in splicing within each continental group, we first applied the same regression strategy described 
above to remove variance from batch and sex from intron excision ratios. For each continental group, and for each 
splicing cluster, residuals from this regression were partitioned to include only samples within the focal continental group, 
and sample variance was calculated as: 

 

where N is the total number of samples within the focal continental group, and  is the squared Euclidean distance 
between the residual intron excision ratios (after removing the effects of batch and sex) of the focal splicing cluster for 
individuals j and k in the focal continental group. 

10 cis-eQTL mapping 

10.1 Expression normalization 

Preliminary gene expression counts (described in section 4.1) were prepared for eQTL mapping using the following 
procedure: 1) gene-level counts were normalized between samples using TMM72 as implemented in the EdgeR package 
(version 3.32.1)73 in R; 2) lowly expressed genes were filtered out (as described in section 4.3); 3) for each gene that 
passed filtering, TMM values were inverse normal transformed. 

10.2 Calculation of genotype PCs 

To control for the effects of global ancestry on gene expression, we first calculated the top 20 genotype principal 
components (PCs) from the samples included in MAGE. Genotype PCs were computed from the NYGC high-coverage 
autosomal variant calls (see section 2) across the 731 samples using PLINK62 with the --pca option and restricting to 
variants with in-sample MAF > 0.01 using --maf 0.01. We observed that the variance explained by consecutive PCs 
decreased considerably following the first five genotype PCs (Fig. S8A). Additionally, the top four genotype PCs 
correlated strongly with continental group label (Fig. S8B), and the top five genotype PCs correlated strongly with 
population label (Fig. S8C). Interestingly, we do observe some weaker correlations with population label; for example, 
PC10 appears to be correlated with population label, but explains only 0.26% of genotype variance.  

Based on these results, the top five genotype PCs were included as covariates in QTL mapping to control for confounding 
by global ancestry. 
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Figure S8. Selection of genotype PCs for QTL mapping. (A) Percent of genotype variance explained by each of the top 20 genotype PCs for the 
samples in MAGE. Variance explained drops off after 5 PCs. (B) Correlation between continental group and each of the top 20 genotype PCs. The 
first 4 PCs are significantly correlated with sample continental group label. (C) Correlation between population label and each of the top 20 genotype 
PCs. The first 5 PCs are significantly correlated with population label. Interestingly, PC10 also appears to be correlated with population label, but 
explains only 0.26% of genotype variance. Two-tailed p-values in (B) and (C) are obtained by regressing PCs onto population or continental group. 

10.3 Calculation of PEER covariates 

Batch effects and other technical sources of variation are known to affect RNA-seq studies and quantification of gene 
expression and can reduce the power of eQTL mapping if not properly controlled. Because these factors are not 
necessarily directly measured, we used Probabilistic Estimation of Expression Residuals (PEER)74 to identify hidden 
factors driving expression variation in our data set. We chose the number of PEER factors to use as covariates in eQTL 
mapping based on the optimizations performed previously by GTEx26,74 Briefly, for each of four sample size bins, GTEx 
assessed the number of PEER factors that maximized the number of significant e/sGenes discovered. Based on these 
optimizations, GTEx used 60 PEER factors for eQTL mapping with sample sizes ≥350. To ensure that this was an 
appropriate selection, we investigated how the number of eGenes varies according to the number of PEER factors within 
MAGE. We used peertool (v1.0) to calculate either 0, 1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, or 100 PEER factors 
from the normalized TMM values (see section 10.1), limiting the algorithm to 100 iterations using --n_iter 100. For 
each number of PEER factors, we used the FastQTL adaptive permutation mode to discover significant eGenes (see 
section 10.4 below for details), restricting the analysis to Chromosome 1 for computational efficiency (Fig. S9). 
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We observed a plateau starting at roughly 50 PEER factors whereafter adding additional PEER factors does not 
substantially increase the number of eGenes discovered. We emphasize that there is no “ground truth” for optimization, 
and choosing the number of PEER factors to maximize eGene discovery within our data may risk overfitting. Because it 
falls within the plateau of eGene discovery, and for consistency with GTEx, we chose to use 60 PEER factors as 
covariates for eQTL mapping. 

 

Figure S9. Selection of PEER factors for QTL mapping. Number of eGenes and sGenes on Chromosome 1 discovered with FastQTL using 
different numbers of PEER factors as covariates. e/sGenes were discovered at a 5% FDR. For eQTL mapping, PEER factors were computed from 
normalized TMM values from the autosomes and chrX (the same values used as input for eQTL mapping). For sQTL mapping, PEER factors were 
computed from normalized intron excision ratios from the autosomes and chrX (the same values used as input for sQTL mapping). 

We next investigated whether these PEER factors correlated with known confounders in RNA-seq experiments. 
Specifically, for each PEER factor, we tested its correlation with each of eight confounders: sequencing batch, the study in 
which the cell lines were first generated (i.e. the International HapMap Project75, HapMap 375,76, or the 1000 Genomes 
Project6), continental group, population, sex, RNA integrity number (RIN), the total number of reads, and the total amount 
of RNA in the library (Fig. S10A,B). 

Across PEER factors, we observed the strongest (Fig. 10A) and most significant (Fig. S10B) correlations with sequencing 
batch. Batch effects are known confounders in RNA-seq studies, and this observation is not unexpected. For a subset of 
PEER factors, we also observe weaker, yet significant correlations with sample continental group and population, 
suggesting that these factors may be picking up some biological variation. We therefore elected not to include these 
factors as covariates for analyses of differential expression between continental groups/populations (section 8.2; Fig. 
2A,B). For the most part however, these factors appear to reflect technical variation between batches. 
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Figure S10. Correlation between PEER factors and known confounders. For each of the 60 expression-derived PEER factors and 15 splicing-
derived PEER factors, we tested their correlation with each of eight possible confounders. (A) Correlation between the 60 expression-derived PEER 
factors and the tested confounders. (B) The significance of each of the correlations shown in A. Non-significant correlations (based on a Bonferroni 
threshold of 8.33 × 10-5) are shown in grey. (C) As in A, but for the 15 splicing-derived PEER factors. (D) As in B, but for the 15 splicing-derived 
PEER factors. In (B) and (D), for each covariate, two-tailed p-values in (B) and (D) are obtained by regressing PEER factors onto the covariate. 

10.4 Discovery of nominal cis-eQTLs with FastQTL 

We discovered eQTLs using FastQTL (version v2.184_gtex)77 as implemented by GTEx (https://github.com/francois-
a/fastqtl). For each of the 19,539 autosomal genes that passed filtering thresholds (see section 4.2), we regressed inverse 
normal transformed TMM values onto variant genotypes for all variants within 1 Mbp up- and down-stream of the gene’s 
transcription start site (TSS), and with MAF > 0.01. The top 5 genotype PCs (section 10.2), 60 PEER factors (section 
10.3), and sex were included as covariates. 

We also performed cis-eQTL mapping for each of the 615 genes on the X chromosome that passed filtering thresholds 
(see section 4.2). We note that for the 1KGP variant calls from the NYGC, the pseudoautosomal regions (PARs) on the X 
chromosome represent both the X chromosome PARs and Y chromosome PARs and as such, all individuals have diploid 
genotypes in these regions. In the X chromosome non-PARs, XX individuals have diploid genotypes, while XY 
individuals have haploid genotypes. To enable joint eQTL mapping with XX and XY samples in the non-PARs, we 
artificially transform XY haploid genotypes to homozygous diploid genotypes in the input VCF file. 

Altogether, this approach to handling genotypes on the X chromosome makes two important assumptions about the 
architecture of gene expression on the X chromosome: 1) genes in the PARs “escape” X-inactivation (i.e. both the X and 
Y homologs of each gene are expected to be expressed) and 2) genes in the non-PARs are randomly inactivated on one X 
chromosome homolog in XX samples and are not inactivated in XY samples. While the first assumption is expected to be 
valid for most genes, some non-PAR genes are known to escape X-inactivation78 and so caution is advised when 
interpreting eQTL results for genes in the non-PARs. 

We first ran FastQTL in the adaptive permutation mode using --permute 1000 10000, to discover significant cis-
eGenes (genes with at least one cis-eQTL). FastQTL estimates gene-level empirical p-values, based on the theoretical 
distribution of permutation p-values. The GTEx implementation of FastQTL uses the estimated empirical p-values to 
calculate gene-level q-values and from these q-values, we discover eGenes at a 5% false discovery rate (FDR) threshold. 
FastQTL also calculates a nominal p-value threshold for significance for each gene, based on the chosen FDR. 

https://github.com/francois-a/fastqtl
https://github.com/francois-a/fastqtl
https://paperpile.com/c/vztv18/7Blm
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To identify significant cis-eQTL associations, we ran FastQTL in a nominal pass (the default), and defined significant cis-
eQTLs as those variant-gene pairs whose nominal p-value was below the nominal p-value threshold (at a 5% FDR) for the 
tested gene. 

10.5 Fine-mapping eGene credible sets with SuSiE 

To discover the causal SNP(s) driving each cis-eQTL signal, we performed fine-mapping with SuSiE25,79, using the susieR 
package (version 0.12.16) in R. For each tested gene, SuSiE discovers a set of credible causal sets, such that each has 
some minimum probability of containing a true causal SNP (termed the “coverage” probability), each credible set is made 
as small as possible, and SNPs within each credible set have some minimum correlation with each other. As such, SuSiE 
can discover multiple independent signals per gene, and at high resolution. 

For each cis-eGene identified at a 5% FDR with FastQTL (see section 10.4), we identified SuSiE credible sets using the 
following procedure. For each gene, we limit the analysis to the same set of SNPs used with FastQTL, specifically SNPs 
within 1 Mbp up- and down-stream of the gene’s TSS, and with MAF > 0.01. We then remove the effects of the eQTL-
mapping covariates (sex, top 5 genotype PCs, 60 PEER factors) from the inverse normal transformed TMM values and 
genotypes, using the procedure described in this article: https://stephenslab.github.io/susieR/articles/finemapping.html#a-
note-on-covariate-adjustment. Finally, we run the susie_rss function on the Z-scores from the FastQTL nominal pass, 
using an in-sample LD matrix calculated from the covariate adjusted genotypes and gene expression variance estimated 
from the covariate-adjusted expression values. We set the maximum number of credible sets to be 10 (L=10), the 
minimum coverage probability of each credible set to be 0.95 (coverage=0.95), and the minimum absolute correlation 
between SNPs in a credible set to 0.5 (min_abs_corr=0.5). 

SuSiE discovered credible sets for 9,807 of the 15,022 autosomal eGenes identified in the FastQTL permutation pass and 
236 of the 410 chrX eGenes. For each fine-mapped credible set, we select a single representative "lead" eQTL with the 
highest PIP within that credible set. We use these lead eQTLs in all downstream analyses to represent putative causal 
eQTL signals. 

10.6 Comparison of fine-mapping resolution in subsets of MAGE 

To investigate the relationship between fine-mapping resolution and sample diversity of the discovery set, we repeated our 
eQTL-mapping pipeline for three equally sized (n = 142) subsets of the MAGE data set: one that included only samples in 
the AFR continental group of 1KGP, a second that included only samples in the EUR continental group of 1KGP, and a 
third that included samples from all 26 populations of 1KGP. Within each subset, samples were selected from the 
populations included in the subset as evenly as possible. For each subset, we independently repeated the entire eQTL 
mapping pipeline (sections 10.1-10.5) across autosomal genes as before with two minor changes, both related to the 
smaller size of the sample: 1) the MAF cutoff for eQTL mapping was set to 0.05 rather than 0.01 and 2) only 15 PEER 
factors were calculated and included instead of 60. 

We compared the size of the resulting SuSiE credible sets 1) for genes with at least one SuSiE credible set in any of the 
subsets (Fig. S11A), and 2) for genes with at least one SuSiE credible set in all three subsets (Fig. S11B). In both cases, 
we observe the best resolution (fewest variants per credible set) on average in the African subset, the second-best 
resolution in the diverse subset, and the worst resolution in the European subset. This result is expected given the 
increased genetic diversity in African populations22,23 and highlights the advantages that inclusion of diverse samples 
affords for detection of causal signals. 

https://paperpile.com/c/vztv18/lH9d+EYAG
https://stephenslab.github.io/susieR/articles/finemapping.html#a-note-on-covariate-adjustment
https://stephenslab.github.io/susieR/articles/finemapping.html#a-note-on-covariate-adjustment
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Figure S11. Comparison of fine-mapping resolution in subsets of MAGE. We re-ran the entire eQTL mapping pipeline (including filtering of 
variants and genes) for three equally sized (n = 142) subsets of the MAGE data set, one that included only samples in the AFR continental group of 
1KGP, a second diverse subset that included samples from all 26 populations of 1KGP, and a third that included only samples in the EUR continental 
group of 1KGP. The pipeline was run separately for each subset. (A) The number of variants per SuSiE credible set within each subset for all 
autosomal genes that had at least one credible set in at least one subset. (B) Same as panel A, but only for those genes that had at least one credible 
set in all three subsets. The AFR subset yields the smallest (best resolution) credible sets, as expected given the increased genetic diversity in African 
populations22,23. Importantly, the diverse subset yields only slightly lower resolution credible sets. The worst resolution is observed in the EUR 
subset. For both panels, sample sizes describe the number of credible sets in each subset. 

10.7 Calculation of Allelic Fold Change (aFC) 

While valuable for identifying significant eQTLs, the slope of the regression from the FastQTL nominal pass (see section 
10.4) is based on rank-normalized expression quantifications and as such does not have a clear biological interpretation. 
At the same time, for eGenes with multiple independent causal signals, the measured “nominal” effect size of one causal 
eQTL can be influenced by the effects of the other causal signals. As such, for each eGene, it is useful to calculate the 
“marginal” effect size of each causal signal, conditional on the effects of the other causal signals for that gene. This better 
reflects the actual effect each causal signal has on the expression of its eGene. 

One metric for quantifying the effect of an eQTL on the expression of its eGene is allelic fold change (aFC), which 
describes the ratio between the expression of the haplotype carrying the alternative allele to the one carrying the reference 
allele28. This concept can be extended to handle multiple causal signals per gene, as implemented in the aFC-n tool80. We 
calculated effect sizes for each lead eQTL in our fine-mapping results (see section 10.5), limiting the analysis to 
autosomal genes and genes in the X chromosome PARs, because at the time of publication, aFC-n does not accommodate 
haploid genotypes in the non-PARs. We calculated the effect size of each variant as log2(aFC) using the following 
procedure: 

First, we generated corrected expression counts for each gene using DESeq2 (version 1.36.0; 71) in R. Using the salmon-
generated pseudocount expression data per sample (detailed in section 4.1), transcript-level counts were first converted 
into gene-level counts using the tximport (version 1.24.0; 65) in R under default parameters. These gene-level expression 
estimates were imported into the DESeq2 ecosystem, and we generated “corrected” expression counts, using the counts 
function with normalized=TRUE. These corrected counts are functionally equivalent to read counts but have been 
corrected for library size and average transcript length. These corrected counts were then log2-transformed (with a +1 
pseudocount). 
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Next, we removed the effects of covariates using the following procedure: for each eGene we fit a linear model that 
regresses log2(corrected counts) onto sample genotypes for each lead eQTL of that gene as well as the eQTL-mapping 
covariates described in section 10.4. Any covariates whose 95% confidence interval did not include 0 were regressed out 
from the log2(corrected counts). 

Finally, we used afcn.py with the --conf option, using these covariate-adjusted log2(corrected counts) as input, to 
calculate log2(aFC) for each lead eQTL (Extended Data Fig. 1). We used a slightly modified version of aFC-n version 
1.0.0, available here: https://github.com/dtaylo95/aFCn.  

11 cis-sQTL mapping 

11.1 Splicing normalization 

Intron-excision ratios from Leafcutter were filtered as described in section 5.2. Prior to removing splicing clusters with a 
single intron (but after removing low complexity introns), intron excision ratios were normalized using the Leafcutter 
prepare_phenotype_table.py companion script. We then filtered out splicing clusters with only a single intron. 
Splicing clusters were mapped to annotated genes in GENCODE v3863 using the Leafcutter 
map_clusters_to_genes.R companion script. Of the 32,867 splicing clusters remaining after filtering, we removed 
679 additional clusters that did not map to annotated exons in GENCODE v38.  

For sQTL mapping, normalized intron excision ratios (across all samples) were collected into a bed file, with each cluster 
annotated with the TSS of the gene to which it mapped. If a cluster mapped to multiple genes, each mapping was included 
in the bed file separately. 

11.2 Calculation of PEER covariates 

For sQTL mapping, PEER factors were calculated from the normalized intron excision ratios described in section 11.1. 
Previous optimizations performed by GTEx found that performing sQTL mapping with 15 PEER factors as covariates 
maximized the number of sGenes discovered26. To ensure that this was an appropriate selection for MAGE, we performed 
sQTL mapping (as described in section 11.3, below) on Chromosome 1 with 0, 1, 2, 5, 10, 15, 20, 25, 30, 40, or 50 PEER 
factors included as covariates (Fig. S9). We observed that the number of sGenes discovered is relatively robust to the 
number of PEER factors included as covariates. For consistency with GTEx, we therefore chose to use 15 PEER factors as 
covariates when performing sQTL mapping. 

As with the expression-derived PEER factors, we observed that these PEER factors correlate strongly with sequencing 
batch and more weakly with sample continental group and population (Fig. S10C,D). Because of their correlation with 
continental group and population, we elected not to include these factors as covariates for analyses of differential splicing 
between continental groups/populations (section 9; Fig. 2C,D). 

11.3 Discovery of nominal cis-sQTLs with FastQTL 

The cis-sQTL mapping procedure largely matched the procedure used to map cis-eQTLs, as described in section 10.4. For 
each of the 11,912 autosomal genes and 388 X chromosome genes with splicing clusters that passed filtering thresholds 
(see section 11.1), we regressed normalized intron excision ratios onto variant genotypes for all variants within 1 Mbp up- 
and down-stream of the gene’s transcription start site (TSS), and with MAF > 0.01. The top 5 genotype PCs (section 
10.2), 15 PEER factors (section 11.2), and sample sex were included as covariates. For variants in X chromosome non-
PARs, the haploid genotypes of XY samples were transformed as described in section 10.4. 

As with cis-eQTL mapping, we first ran FastQTL in the adaptive permutation mode using --permute 1000 10000 to 
discover significant cis-sGenes (genes with at least one cis-sQTL). We used grouped permutations (using the --
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phenotype_groups option) to compute a gene-level empirical p-value over all splicing clusters of a gene. We 
discovered cis-sGenes and calculated per-gene nominal p-value thresholds at a 5% FDR (as described in section 10.4). 

To identify significant cis-sQTL associations, we ran FastQTL in a nominal pass and defined significant cis-sQTLs as 
those variant-intron pairs whose nominal p-value was below the 5% FDR nominal p-value threshold for the tested gene. 

11.4 Fine-mapping sGene credible sets with SuSiE 

For each 5% FDR cis-sGene identified, fine-mapping was performed separately for each intron mapping to that gene 
(termed sIntrons; limited to only the introns that passed filtering). Fine-mapping was done as described for cis-eGenes 
(section 10.5), mapping normalized intron excision ratios onto sample genotypes, using the same set of covariates used for 
sQTL mapping with FastQTL. All other options remained the same. 

SuSiE discovered credible sets (for at least one intron) for 6,604 of the 7,727 autosomal sGenes identified in the FastQTL 
permutation pass. Of the 25,864 fine-mapped sIntrons, 4,425 (17%) had more than one credible set (Extended Data Fig. 
2A), representing 1,777 (27%) of the 6,604 fine-mapped sGenes. Of the 32,438 intron-level credible sets, 7,720 (24%) 
contained just a single variant (median 6 variants per credible set; mean = 22.4; s.d. = 114.4; Extended Data Fig. 2B). 

On the X chromosome, SuSiE discovered credible sets (for at least one intron) for 135 of the 146 sGenes identified in the 
FastQTL permutation pass. Of the 510 fine-mapped sIntrons, 88 (17%) had more than one credible set, representing 30 
(22%) of the 135 fine-mapped sGenes. Of the 633 intron-level credible sets, 232 (37%) contained just a single variant 
(median 3 variants per credible set; mean = 15.7; s.d. = 42.4). 

To obtain a gene-level summary of the sQTL fine-mapping results, we collapsed these intron-level credible sets into gene-
level credible sets. For each sGene, we iteratively merged all intron-level credible sets that overlapped by at least one 
variant. The result is a set of gene-level merged credible sets that are independent from one another (no variants in 
common) and whose union is equivalent to the union of the input intron-level credible sets. Of the 6,604 fine-mapped 
autosomal sGenes, 3,490 (53%) had more than one credible set (Extended Data Fig. 2C). Of the 16,451 gene-level 
credible sets, 3,569 (22%) contained just a single variant (median 7 variants per credible set; mean = 23.6; s.d. = 99.1; 
Extended Data Fig. 2D). On the X chromosome, of the 284 gene-level credible sets, 80 (28%) contained just a single 
variant (median 5 variants per credible set; mean = 21.7; s.d. = 53.0). 

Analogous to selection of lead eQTLs described in section 10.5, we selected a representative “lead” sQTL for each gene-
level merged credible set by first determining the intron-level credible set with the greatest coverage among those 
comprising the gene-level merged credible set, and then selecting the variant within that intron-level credible set with the 
highest PIP. We use these lead sQTLs in all downstream analyses to represent putative causal sQTL signals. 

12 Analysis of negative selection 
Evidence of negative selection on regulatory variation affecting highly constrained genes was assessed by intersecting our 
eQTL fine-mapping results with orthogonal gene-level metrics of constraint generated in previous studies based on 
depletion of loss of function point mutations or copy number variation30,81–85 (Extended Data Fig. 3A). We additionally 
assessed evidence of negative selection within putative promoter elements, defined based on various intervals around the 
TSS ([-1000, 1000] bp, [-500, 0] bp, [-50, 0] bp; Extended Data Fig. 3B). To avoid circularity in the latter case, evidence 
of negative selection within promoters was assessed based on levels of sequence conservation across species (as opposed 
to polymorphism within human populations), based on mean PhyloP86 scores obtained from Cactus87 alignments of 447 
mammal species, including Zoonomia genomes88. In both cases, we restricted our analysis to protein-coding autosomal 
genes exceeding the minimum expression threshold used in our differential expression and eQTL mapping pipelines. 
Constraint metrics obtained from gnomAD82,85 were restricted to MANE Select89 transcripts to avoid double-counting of 
genes with multiple isoforms. Among this set of genes, we identified the top 10th percentile of highly constrained genes 
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based on each constraint metric, accounting for their differences in directionality (e.g., high pLI scores but low RVIS 
scores denote evidence of constraint). The remaining 90% of genes were considered as the background for comparison. 
We then contrasted the number of independent credible causal sets per gene between the constrained and background set 
using a quasi-Poisson generalized linear model where normalized mean expression level (i.e., baseMean, as computed 
with DESeq271) was included as a continuous numerical covariate. We also compared the distributions of effect sizes of 
the lead eQTL per credible causal set between constrained and background sets of genes using a two-tailed Mann–
Whitney U test, where the base-2 logarithm of the the absolute value of the estimated allelic fold change (|log2(aFC)|) was 
used as input to each model, as computed with aFC-n80. 

13 Functional annotation and enrichment of fine-mapped cis-QTLs 

13.1 Functional annotation of cis-eQTLs 

We performed a functional enrichment analysis in order to evaluate the association between fine-mapped cis-eQTLs and 
transcription factor (TF) as well as chromatin regulator (CR) binding sites. The data for this analysis was obtained from 
the ENCODE Project Consortium, specifically the ENCODE regulation track transcription factor binding site cluster 
ChIP-seq index file, which encompasses information for 338 DNA-binding proteins across 129 cell types33,90. We 
employed GenomicsRanges (version 1.38.0)91 and BEDTools (version 2.29.2)92 to intersect cis-eQTL variants with TF 
binding sites. Our subsequent enrichment tests were performed using the GREGOR (version 1.3.1) Perl-based pipeline93. 
At a high level, this involves summing the binomial random variables corresponding to the count of index SNPs located 
within any given TF feature, followed by the computation of enrichment p-values via saddlepoint approximation. 

We defined the criterion for positional overlap between SNPs and regulatory features as a minimum of one base pair (≥1 
bp) intersection. The fold enrichment for each transcription factor binding site was then calculated as a ratio, defined as 
the observed fraction of index SNPs overlapping the TF binding sites divided by the expected mean overlap with a 
matched control SNP set. The control SNPs were matched by the index SNPs' minor allele frequencies and their proximity 
to the nearest gene's transcription start site (TSS distance), thereby providing a robust basis for comparison ensuring that 
any observed enrichment is not due to underlying biases in SNP distribution with respect to allele frequency or genomic 
location. Statistical significance for enrichment was assessed against a background distribution of matched control SNPs, 
with Bonferroni correction for multiple hypothesis testing to control the family-wise error rate. The results of this analysis 
are shown in Fig. S12A. 
 
To assess chromatin association of the lead eQTLs, we quantified the enrichment of autosomal lead eQTLs within the 
core 15-predicted chromatin states from the Roadmap Epigenomics Consortium32, which was produced using 
ChromHMM v1.1094, based on a multivariate hidden Markov model. The model delineates the genome into 15 distinct 
chromatin states based on the combined presence of five key histone modifications: H3K4me3, H3K4me1, H3K36me3, 
H3K27me3, and H3K9me3. To evaluate enrichment, we examined all 127 reference epigenomes from the Roadmap 
Epigenomics Consortium encompassing diverse cell types and tissues to ensure a broad representation of epigenetic 
landscapes, for which we utilized consolidated narrowPeak files for each of 127 epigenomic mappings (Fig. S12B). To 
further parse cell type-specific patterns and consider the predicted enrichment across cell/tissue types, we quantified the 
enrichment in primary DNAse Hypersensitivity Sites (DHS) data across a diverse panel of 53 cell and tissue types 
provided by the Roadmap Epigenomics Consortium (Fig. S12C). 
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Figure S12. Lead eQTLs are enriched within regulatory elements across cell and tissue types. (A) Enrichment analysis of lead cis-eQTLs 
(n=14,963 unique eVariants) at TFBS (Transcription Factor Binding Sites) from ENCODE ChIP-seq binding profiles. Data points with p-values < 
0.001 (Bonferroni corrected) and log2(fold-enrichment) > 1 are colored in black. (B) Corresponding heatmap to Fig. 4A showing significance of the 
enrichment estimates (right tailed, binomial P-value). Differential eQTL enrichment across various chromatin states in multiple cell types, 
highlighting pronounced enrichment at active transcription start sites (TssA) and proximal flanking regions (TssAFlnk), with moderate enrichment in 
enhancer regions (Enh, EnhG), particularly in blood cell types. In contrast, regions characterized by quiescence, repression, and heterochromatin 
show a marked depletion of eQTLs. (C) A lollipop plot showing the pronounced enrichment of lead eQTLs in DNAse hypersensitivity sites (DHSs) 
across 53 cell/tissue types (colored as in A). We note a marked enrichment in DHS of blood cell types, with lymphoblastoid cell line GM12878 
appearing as one of the top hits. 

We also assessed the distribution of eQTL effect sizes across all 15 predicted chromatin states as annotated with 
ChromHMM by the Roadmap Epigenomics Consortium. The effect sizes were quantified as the base-2 logarithm of the 
the absolute value of the estimated allelic fold change (|log2(aFC)|) across 15 different chromatin states specific to LCLs. 
Next, to elucidate the regulatory potential of lead cis-eQTLs, we assessed the distribution of their effect sizes across 
promoter, enhancer, and dyadic regions in LCLs associated to multi-tissue DHS data to ensure a comprehensive 
evaluation of active chromatin domains. Median cis-eQTL effect sizes were compared across these regions to discern any 
preferential associations. We further stratified eQTLs by effect size, delineated into deciles of absolute log2 allelic fold 
change (|log2(aFC)|), and analyzed their enrichment within the chromatin states predicted for LCLs, including other 
primary blood cell types. Critically, we also examined how these patterns generalize to other primary blood cell types, 
including Primary B-cells, T-cells, Natural Killer Cells, and Hematopoietic Stem Cells (Fig. S13-S17). 

 

Figure S13. Lead eQTLs are enriched within regulatory regions of lymphoblastoid cell line GM12878 (E116). (A) Enrichment analysis of the 
decile partitioned eQTL effect sizes (|log2(aFC)|) across 15 different chromatin states predicted by chromHMM model specific to LCLs. (B) 
Corresponding heatmap to panel A, showing significance of the decile-based enrichment analysis estimates (right tailed, binomial P-value). We 
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observed consistent promoter-associated enrichment across deciles. Conversely, significant enrichment peaks in bivalent regions (TssBiv, EnhBiv, 
BivFlnk) are specifically observed among eQTLs with the largest effect sizes. (C) Distribution of effect sizes for lead eQTLs within Roadmap 
Epigenomics chromHMM predicted chromatin states32 exhibiting a trend of diminished effect sizes for transcribed regions (Tx, TxWk, and TxFlnk). 

 

Figure S14. Lead eQTLs are enriched within regulatory regions of  primary B-cells (E032). (A)  Decile-based enrichment analysis of lead eQTL 
effect sizes measured as absolute value of the estimated allelic fold change (|log2(aFC)|)  across 15 different chromatin states predicted by the 
Roadmap Epigenomics chromHMM model32 specific to Primary B-Cells. Heatmap showcases promoter associated regions maintaining a consistent 
trend across all deciles of eQTL effect sizes. In contrast, a notable enrichment is detected within bivalent regions, Bivalent Transcription Start Sites 
(TSSBiv), Bivalent Enhancers (EnhBiv) and Bivalent flanking regions (BivFlnk), which is most pronounced for eQTLs demonstrating large effects. 
(B) Corresponding heatmap to panel A, showing significance of the enrichment estimates (right tailed, binomial P-value). (C) Distribution of effect 
sizes for lead eQTLs within chromatin states exhibiting pronounced trend of diminished effect sizes for transcribed regions (Tx, TxWk, and TxFlnk) 
(D) Distribution of absolute effect sizes of lead eQTLs (measured as log2(aFC)) across chromatin states in Primary B-Cells that are associated with 
multi-tissue DNAse hypersensitivity sites32. 
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Figure S15. Lead eQTLs are enriched within regulatory regions of  primary T-cells (E034). (A)  Decile-based enrichment analysis of lead eQTL 
effect sizes measured as absolute value of the estimated allelic fold change (|log2(aFC)|) across 15 different chromatin states predicted by 
chromHMM model specific to Primary T-Cells . Heatmap showcases promoter associated regions maintaining a consistent trend across all deciles of 
eQTL effect sizes. In contrast, a notable enrichment is detected within bivalent regions, Bivalent Transcription Start Sites (TSSBiv), Bivalent 
Enhancers (EnhBiv) and Bivalent flanking regions (BivFlnk), which is most pronounced for eQTLs demonstrating large effects. (B) Corresponding 
heatmap to panel A, showing significance of the enrichment estimates (right tailed, binomial P-value). (C) Distribution of effect sizes for lead eQTLs 
within chromatin states exhibiting pronounced trend of diminished effect sizes for transcribed regions (Tx, TxWk, and TxFlnk) (D) Distribution of 
absolute effect sizes of lead eQTLs measured as log2(aFC) across chromatin states in Primary T-Cells  that are associated with multi-tissue DNAse 
Hypersensitivity Sites32.  
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Figure S16. Lead eQTLs are enriched within regulatory regions of primary natural killer cells (E046). (A)  Decile-based enrichment analysis 
of lead eQTL effect sizes measured as absolute value of the estimated allelic fold change (|log2(aFC)|) across 15 different chromatin states predicted 
by chromHMM model specific to Primary Natural Killer Cells. Heatmap showcases promoter associated regions maintaining a consistent trend 
across all deciles of eQTL effect sizes. In contrast, a notable enrichment is detected within bivalent regions, Bivalent   Enhancers (EnhBiv) and 
Bivalent flanking regions (BivFlnk), which is most pronounced for eQTLs demonstrating large effects. (B) Corresponding heatmap to panel A, 
showing significance of the enrichment estimates (right tailed, binomial P-value). (C) Distribution of effect sizes for lead eQTLs within chromatin 
states exhibiting pronounced trend of diminished effect sizes for transcribed regions (Tx, TxWk, and TxFlnk) (D) Distribution of absolute effect sizes 
of lead eQTLs measured as log2(aFC) across chromatin states in Primary Natural Killer Cells that are associated with multi-tissue DNAse 
Hypersensitivity Sites32. 



 26 

 

Figure S17. Lead eQTLs are enriched within regulatory regions of  primary hematopoietic stem cells (E051). (A)  Decile-based enrichment 
analysis of lead eQTL effect sizes measured as absolute value of the estimated allelic fold change (|log2(aFC)|) across 15 different chromatin states 
predicted by chromHMM model specific to Primary Hematopoietic Stem Cells. Heatmap showcases promoter associated regions maintaining a 
consistent trend across all deciles of eQTL effect sizes. In contrast, a notable enrichment is detected within bivalent regions, Bivalent Transcription 
Start Sites (TSSBiv) and Bivalent flanking regions (BivFlnk), which is most pronounced for eQTLs demonstrating large effects. (B) Corresponding 
heatmap to panel A, showing significance of the enrichment estimates (right tailed, binomial P-value). (C) Distribution of effect sizes for lead eQTLs 
within chromatin states exhibiting pronounced trend of diminished effect sizes for transcribed regions (Tx, TxWk, and TxFlnk) (D) Distribution of 
absolute effect sizes of lead eQTLs measured as log2(aFC) across chromatin states in Primary Hematopoietic Stem Cells that are associated with 
multi-tissue DNAse Hypersensitivity Sites32. 

The enrichment calculations for both chromatin states and DHS peaks were conducted using the same GREGOR Perl 
script pipeline93, as previously applied in the transcription factor binding site enrichment analysis. The enrichment was 
quantified using log2 fold changes (observed/expected) and p-values (-log10 transformed) to determine the magnitude and 
significance of enrichment across chromatin states and DHS sites across 127 cell/tissue samples. 
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13.2 Functional annotation of cis-sQTLs 

To assess the genomic context of fine-mapped cis-sQTLs, we measured the enrichment of lead sQTLs in genomic 
annotations from the Variant Effect Predictor (VEP) tool (version 109)95. The VEP tool annotates variants with 31 non-
mutually-exclusive genomic annotations, including splicing-related regions, intergenic regions, introns, non-coding 
transcripts, and transcription factor (TF) binding sites. We excluded any annotations from our analysis for which fewer 
than five lead sQTLs were annotated, resulting in a final set of 26 genomic annotations. Additionally, to further 
contextualize the functional impact of sQTLs in MAGE, we used the Loss-of-Function Transcript Effect Estimator 
(LOFTEE) tool (version 1.0.2)82 as a plugin for VEP, which provides loss-of-function (LoF) predictions with high 
confidence (LoF Hc) and low confidence (LoF Lc) categories. LoF annotations include stop-gained, splice site disrupting, 
and frameshift variants. 

We used VEP and LOFTEE to annotate all lead sQTLs, as well as a matched null set of variants for comparison. The null 
set of variants was chosen to match the lead sQTLs based on minor allele frequency (MAF) and distance from the 
transcription start site (TSS). Following annotation, we quantified sQTL fold enrichment in each annotation, defined as 
the ratio between the proportion of lead sQTLs in the annotation to the proportion of matched null variants in the 
annotation. A pseudocount of 1 was added to annotations with no annotated matched null variants. To evaluate the 
significance of enrichment of sQTLs within each annotation, we performed a Fisher’s exact test (One-sided test, 
alternative = “greater”). Statistical significance was determined against this random null background distribution, 
employing a Bonferroni correction to account for multiple hypothesis testing. 

14 Colocalization of cis-QTLs with complex trait GWAS 
We performed colocalization analysis to discover shared signals between fine-mapped MAGE cis-e/sQTLs and GWAS 
results from the Population Architecture using Genomics and Epidemiology (PAGE) study8. Specifically, we evaluated 
colocalization for 25 traits with PAGE summary statistics available from the NHGRI-EBI GWAS catalog96 (Fig. S18). 
Harmonized summary statistics reported on the GRCh38 reference were downloaded from the GWAS Catalog FTP server 
for each trait. The full set of traits included in this analysis is described in Table S1. 

For each trait, we identified independent significant GWAS signals by iteratively selecting the SNP with the lowest p-
value (below a significance threshold of p < 5 × 10-8) and then removing from selection all SNPs within 1 Mbp up- or 
downstream. This process was repeated until no additional SNPs could be selected. The resulting set of “sentinel variants” 
represents independent GWAS signals for that trait. Across the 25 traits we included in this analysis, we identified 384 
such independent sentinel variants. 

For use in the colocalization analysis, we calculated a PAGE LD matrix in a +/- 500 kbp window around each sentinel 
variant. Using imputed genotypes from TOPMed97, we subset the data to only the samples for which the corresponding 
trait was measured and to the region +/- 500 kbp of the sentinel variant, then calculated an LD matrix using the --keep-
allele-order --r square arguments in PLINK62. 

For each sentinel variant, we performed colocalization with MAGE cis-eQTLs (described in section 10.4) in a +/- 500 kbp 
window around the sentinel variant. This prevented overlapping tests between sentinel variants. For each sentinel variant-
eGene pair, we performed colocalization as follows. We subset the PAGE summary statistics and MAGE nominal eQTL 
results to this region (also requiring the eGene TSS to be within the region). We used coloc34,35 with SuSiE to perform 
colocalization between the PAGE GWAS signal and each eGene in the colocalization window. We subset the analysis to 
variants with summary statistics and LD information in both datasets. We used the runsusie() function from coloc to 
run SuSiE on the GWAS summary statistics, using the LD matrix described above and with the same SuSiE arguments 
used for fine-mapping (described in section 10.5). For the eGene, we used the runsusie() function from coloc to run 
SuSiE on the eQTL nominal pass summary statistics, using covariate-adjusted in-sample LD matrix described in section 
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10.5 and with the same SuSiE arguments used for fine-mapping. We then use the coloc.susie() function from coloc to 
perform colocalization between the two sets of SuSiE results. This function tests for colocalization between each pair of 
credible sets produced by the runsusie() function between the two datasets and reports the probability that the two 
credible sets represent the same causal signal. We defined moderate colocalizations as those with posterior probabilities ≥ 
0.5 and strong colocalizations as those with posterior probabilities ≥ 0.8. We emphasize that this approach 1) allows for 
multiple causal signals at each GWAS sentinel variant and for each eGene and 2) allows for different patterns of LD in 
each of the two datasets. 

For each of the 384 PAGE sentinel variants, we repeated this analysis to discover shared signals with MAGE sQTLs. The 
procedure was identical to the one described above, but we performed colocalization between the GWAS signal and each 
MAGE sIntron (described in section 11.4) in the test window. 

For all downstream analyses of these colocalization signals, we considered the full set of fine-mapped e/sQTLs from 
MAGE when interpreting the colocalization signal, not only the subset of variants that were included in the colocalization 
analysis (variants with summary statistics and LD information in both datasets). 

Figure S18. Colocalization of complex trait GWAS hits with MAGE cis-e/sQTLs. Colocalization results across 25 complex traits in PAGE are 
summarized above. The total number of independent significant GWAS signals (sentinel variants) identified for each trait is depicted with black bars. 
The number of these GWAS signals where at least one credible set showed moderate (P[eQTL coloc] ≥ 0.5) or strong  (P[eQTL coloc] ≥ 0.8) 
evidence of colocalization with a MAGE eQTL credible set is depicted with light blue and dark blue bars, respectively. The number of GWAS 
signals where at least one credible set for that signal showed moderate (P[sQTL coloc] ≥ 0.5) or strong (P[sQTL coloc] ≥ 0.8) evidence of 
colocalization with a MAGE sQTL credible set is depicted with light red and dark red bars, respectively. Bars depicting strong colocalization are 
overlaid on bars depicting moderate colocalization (i.e., individual GWAS signals were not double-counted for strong and moderate evidence of 
colocalization).  
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15 Lead e- and sQTL AF differentiation between populations  

To visualize the joint frequency spectrum of autosomal lead eQTLs, we used the GeoVar software package (version 
1.0.2)98. For visualization, we defined the following discrete allele frequency categories for visualization based on the 
within-data set alternative allele frequency: unobserved (allele frequency = 0%), rare (0% < allele frequency < 5%), and 
common (allele frequency > 5%). All allele frequencies were calculated using bcftools (version 1.17). We used GeoVar to 
visualize the joint frequency spectrum of all lead eQTLs (Extended Data Fig. 4A), lead eQTLs that are rare or 
unobserved in at least one continental groups (Extended Data Fig. 4B), lead eQTLs that are unobserved in the EUR 
continental group (Extended Data Fig. 4C), and lead eQTLs that are unobserved in both EUR and AFR continental 
groups (Extended Data Fig. 4D). 

We also investigated the joint frequency spectrum of gene-level lead sQTLs (Extended Data Fig. 5) and observed 
qualitatively similar patterns. 

16  Replication of credible sets in GTEx 

16.1 Defining replicating vs. non-replicating eQTLs 

To appropriately compare cis-eQTL signals between MAGE and GTEx26, we first collapsed tissue-specific DAP-G 
credible sets from GTEx into cross-tissue merged credible sets (ctmCS) for each autosomal gene. To construct the ctmCS, 
for each gene, we combined the fine-mapping credible sets inferred using DAP-G across all tissues for that specific gene 
(restricting to variants with PIP > 0.95)99. To combine the per-tissue credible sets we iteratively joined any DAP-G 
credible sets sharing variants, resulting in a set of non-overlapping variants per ctmCS per gene. We considered a MAGE 
credible set to replicate in GTEx if any variant contained in the MAGE credible set was also contained in at least one 
GTEx ctmCS for that gene. To define the lead eQTL within each GTEx ctmCS, we first select the tissue-level credible set 
with the highest coverage amongst those that comprise the ctmCS, and from that tissue-level credible set, we select the 
variant with the highest PIP. We observe that the set of GTEx ctmCS’s that do not replicate in MAGE is enriched for 
ctmCS’s that comprise tissue-level CS’s from only a single tissue (hence are tissue-specific; Extended Data Fig. 6). 

16.2 Functional annotation and enrichment of non-replicating eQTLs 

Because so many of the MAGE lead eQTLs did not replicate in the GTEx fine-mapping results, we were acutely curious 
whether this subset of our results was enriched for functional variation. To address this question, we repeated the analysis 
described in section 13 for the subset of MAGE eQTLs that did not replicate in the GTEx DAP-G results. Briefly, to 
evaluate chromatin context of MAGE specific eQTLs, we performed the enrichment and functional annotation analysis 
across all the 15 predicted chromatin states in 127 epigenomic mappings and 53 primary DHS data from Roadmap 
Epigenomics as described in section 13. Our findings mirrored previous results, demonstrating similar functional 
enrichment patterns between the non-replicating subset of MAGE eQTLs and the full set of results (Fig. S19A-C). 
Additionally, to examine the relationship between fine-mapped MAGE-specific lead eQTLs and the binding sites of 
transcription factors (TFs) and chromatin regulators (CRs), we conducted a detailed enrichment analysis with 338 DNA 
associated ChIP-seq profiles obtained from the ENCODE Project Consortium as described in section 13. As with the full 
set of lead eQTLs, we observed that MAGE-specific lead eQTLs were highly enriched in TF binding site annotations 
(Fig. S19D). 
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Figure S19. Lead eQTLs that did not replicate in GTEx are functionally enriched in the regulatory regions of pertinent cell types. (A) A 
heatmap showing the enrichment of unique lead eQTLs at 15 predicted chromatin states across 127 cell/tissue types from the Roadmap Epigenomic 
Consortium. Cell type annotations are displayed by colored legend keys. Lead eQTLs exhibited strong enrichment at promoter (TssA, TssAFlnk) and 
enhancer regions (Enh, EnhG) both, with promoter regions showing more pronounced enrichment compared to enhancer regions across the cell 
types. Strong Hierarchical clustering of Blood and T cells highlighted by green colored cell type annotation bar on the left. (B) Corresponding 
heatmap to panel A, showing significance of the enrichment estimates (right-tailed, Binomial P-value, n=7,200 unique eVariants). (C) A lollipop plot 
showing the pronounced enrichment of lead eQTLs in the DHSs (DNAse Hypersensitivity Sites) across 53 cell/tissue types (colored as in A). We 
note a marked enrichment in DHS of blood cell types with lymphoblastoid cell line GM12878 as one of the top hits. (D) Volcano plot representing 
the enrichment analysis of lead eQTLs at TFBSs (Transcription factor binding sites) of 338 TF ChIP-seq binding profiles sourced from ENCODE. 
Data points reflecting a Bonferroni-corrected p-value < 0.001 and log2(fold-enrichment) > 1 stand out in red, underscoring those transcription factors 
where lead cis-eQTL enrichment is both statistically significant and of notable magnitude.  
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Functional annotation of one such eQTL signal that did not replicate in GTEx is shown in Fig. S20. The variant 
rs115070172 is associated with decreased expression of GSTP1 and is largely private to the AMR continental group, as 
shown in Fig. 5B59. 

 

Figure S20. Functional epigenetic annotation of GSTP1 eQTL credible signals. ENCODE epigenetic signals at the GSTP1 locus, within 
lymphoblastoid cell line GM12878. From top down: 1) Red colored tracks denote binding of DNA associated factors. 2) Blue colored tracks show 
histone mark signals, including promoter and enhancer associated chromatin marks. 3) The multi-colored track shows the predicted chromatin state 
along the chromosome, legend at bottom left. 4) Asterisks represent fine-mapped eQTLs for GSTP1. The two red asterisks represent the lead eQTLs 
of the two GSTP1 credible sets and the blue asterisks represent the corresponding SNP with the next highest PIP within the same credible set. The top 
two (smaller) asterisks represent eQTLs from one credible set, the bottom two (larger) asterisks represent eQTLs from the other credible set (which 
was highlighted in Fig. 5). 5) Gene annotation at and around the GSTP1 locus. 
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17 Relationship between fixation index and differential gene expression 
Weir & Cockerham’s FST

44 was calculated for each autosomal fine-mapped lead eQTL identified in section 10.5 using the 
statistic’s implementation in vcflib (version 1.0.0_rc2)100. For each lead eQTL, FST was estimated for each of the five 
target continental groups, where foreground samples fell within the target population (e.g., AFR) and background samples 
fell within any of the remaining four continental groups (e.g., EUR, SAS, EAS, or AMR). An average FST per eGene was 
calculated for each population by computing the mean of all eQTL FST’s identified for each respective eGene (negative 
FST values were converted to zeroes).  

18 cis-eQTL effect size heterogeneity between populations 

18.1 Modeling interaction effects between genotype and continental group 

We discovered cis-eQTLs exhibiting effect size heterogeneity across continental groups (he-eQTLs) for each fine-mapped 
eGene. We first discovered he-eQTLs using a “single causal variant” model. For each eGene with at least one SuSiE 
credible set (described in section 10.5), we selected a single variant with the lowest p-value in the FastQTL nominal pass 
(described in section 10.4) to test for effect size heterogeneity. To ensure that we are detecting robust signals, we first 
filter to only those variants with MAF ≥ 0.05 in at least two continental groups. After filtering, 8,376/9,807 eGenes 
remained for analysis. From this set, we used the following approach to discover he-eQTLs. 

For each eQTL we fit two models. We first fit a model regressing normalized TMM values onto sample genotype and 
eQTL mapping covariates (sex, top 5 genotyping PCs, 60 PEER factors). This is described in model [1] below, and we 
note that this is equivalent to the model used for nominal eQTL mapping with FastQTL (described in section 10.4). Here, 
gj describes the sample genotypes at the top nominal eQTL for gene j, Ej describes the inverse normal transformed TMM 
values of gene j, and Xsex, XPCA, and XPEER describe the covariates used for mapping.  Next, we fit a model identical to 
model [1] but that now includes an additional genotype-by-continental group interaction term, as described in model [2]. 
Here, XCG describes the continental groups of the samples. We performed an F-test to determine if the more complex 
model [2] explains the data significantly better than model [1]. We define he-eQTLs as those variants with significant F-
statistics after Bonferroni correction (p < 6 × 10-6). 

(1) Ej ~ gj + XCG + Xsex + XPCA + XPEER 

(2) Ej ~ gj + (gj × XCG) + XCG + Xsex + XPCA + XPEER 

Given the stratification in the number of he-eQTLs discovered based on the number of causal signals SuSiE identified 
(Fig. 5F), we hypothesized that failing to control for multiple causal signals may lead to spurious discovery of he-eQTLs 
in the “single causal variant” model. To test this hypothesis, we employed a second approach to identify he-eQTLs. This 
approach mirrors the first with one important distinction: for each gene with multiple causal signals (i.e. multiple SuSiE 
credible sets), all lead fine-mapped eQTLs for that gene were included in the regression. This effectively controls for the 
additive effects of multiple causal SNPs. So, for each SuSiE lead eQTL, we first fit a model regressing normalized TMM 
values onto sample genotypes for the focal top hit variant and all other top hit variants for that gene (regardless of MAF), 
along with eQTL mapping covariates. This is described in model [3] below, assuming n credible sets for the focal gene. 
All variables are as described above, with gj,i being the genotypes of the focal variant (i.e. the genotype of the ith credible 
set for gene j). We next fit a model identical to model [3] but that now includes an additional genotype-by-continental 
group interaction term for the focal variant only. This is described in model [4]. As before, we performed an F-test to 
determine if model [4] explains the data significantly better than model [3], and we define he-eQTLs as those variants 
with significant F-statistics after Bonferroni correction (p < 4 × 10-6). 
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(3) Ej ~ gj,1 + … + gj,i + … + gj,n + XCG + Xsex + XPCA + XPEER 

(4) Ej ~ gj,1 + … + gj,i + … + gj,n + (gj,i × XCG) + XCG + Xsex + XPCA + XPEER 

Models 1-4 were fit using the formula.api.ols function from the statsmodels package (version 0.14.0) in Python. The 
F-test between models 1 and 2 and between models 3 and 4 was performed using the stats.anova.anova_lm function 
from the statsmodels package. 

While continental group labels correlate with global ancestry proportions, these labels are proxies and we were curious 
whether more directly testing for interaction effects with global ancestry would yield distinct results. To address this 
question, we repeated the he-eQTL analysis, testing instead for genotype-by-global genotype PC interactions for each of 
the top five PCs (i.e. the same PCs included as covariates in the regression). No MAF thresholds were implemented for 
this analysis. The results of this analysis are presented in Extended Data Fig. 7 and are qualitatively similar to the results 
of he-eQTL analysis using continental group labels presented in Fig. 5F. 

18.2 Stratified cis-eQTL mapping and effect size estimation 

One of the inherent assumptions of eQTL mapping and fine-mapping is that each causal variant has a single effect size 
that does not vary between subsets of the sample. This assumption may bias us towards discovering eQTLs without effect 
size differences between groups and may provide an alternative explanation for the lack of he-eQTLs discovered in our 
analysis of nominal and fine-mapped eQTLs in the previous section (section 18.1).  

To address this possibility, we performed cis-eQTL mapping, fine-mapping, and effect size estimation separately within 
each of the continental groups represented in MAGE. For the resulting credible sets, we then compared log2(aFC) effect 
sizes between continental groups to ask whether the effects of causal variants remain consistent, even when eQTL 
discovery and effect size estimation was performed independently within each continental group. 

For each continental group, we followed the cis-eQTL mapping and fine-mapping pipeline described in section 10. Within 
a continental group, TMM values from the full MAGE data set were extracted and inverse normal transformed and 30 
PEER factors were calculated from those values, based on GTEx optimizations for sample sizes between 150-250 (MAGE 
continental group sample sizes range from 113-196). For consistency across continental groups, we did not recalculate the 
genotype PCs within each continental group, instead subsetting the PCs from the full MAGE data set (section 10.2). We 
used these recalculated PEER factors, as well as genotype PCs and sex as covariates to perform eQTL mapping and fine-
mapping for all 15,022 autosomal eGenes discovered from data set-wide nominal eQTL mapping. 

We compared log2(aFC) effect sizes of fine-mapped credible sets between each pair of continental groups. For each such 
pair, we first identified shared causal signals between the two groups. We defined shared causal signals as a pair of 
credible sets where at least one variant was shared between the two credible sets and where each credible set only 
intersected the other credible set in the pair. Using this approach, we found that 25.4% to 52.9% of credible sets were 
comparable (i.e., uniquely shared variants) between continental groups (Fig. S21). 
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Figure S21. Number of shared causal signals between continental groups. Each bar represents all fine-mapped credible sets (CSs) identified 
within the focal continental group. CSs are colored by whether they share variants with a credible set in the comparison continental group. We 
compared log2(aFC) effect sizes only for CSs that shared variants with exactly one CS in the comparison group (light blue). 

Because the lead eQTL of the two credible sets in a shared causal signal may not be the same, negative LD between the 
two lead eQTLs (i.e., the reference allele of the first lead eQTL is tightly linked with the alternative allele of the second 
lead eQTL) may lead to inverted effect size estimates and apparent effect size heterogeneity. This does not reflect a 
biological difference in the effect size of the underlying causal signal, but instead reflects the choice of effect allele on a 
causal haplotype. To address this, for a given credible set, we calculated LD between the lead eQTL and a variant that was 
shared between the credible sets of both continental groups. When the sign of LD was opposite in the two continental 
groups, we inverted the sign of the effect size in one of the continental groups. 

For every pair of shared causal signals, we performed a two-sided Welch’s t-test using the log2(aFC) (corrected for 
negative LD, described above) and standard error estimates from aFC-n to determine whether the effect size of that signal 
was significantly different in the two continental groups. To perform the Welch’s t-test, we calculated the t-statistic t and 
degrees of freedom v as follows: 

 

, 

where X̄i describes the estimated log2(aFC) of the causal signal in the ith continental group,  is the standard error of that 
estimate from aFC-n, Ni is the continental group sample size, vi is the degrees of freedom calculated as vi = Ni - 1, and si is 

the sample standard deviation calculated as . We used these values of t and v to calculate a p-value for 
the hypothesis that the effect size of the signal is different in the two continental groups. 

We performed Bonferroni correction across all continental groups to account for multiple testing. We observed that 
between 97.5% (AFR vs. EUR) and 99.8% (AMR vs. SAS) of causal signals did not have significantly different effect 
sizes between continental groups (Extended Data Fig. 8). These results corroborate our original finding that effect size 
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heterogeneity is extremely rare among eQTLs and show that this pattern remains consistent even when explicitly allowing 
effect sizes to vary between continental groups during eQTL discovery. 
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