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Referees' comments: 

Referee #1 (Remarks to the Author): 

Taylor et al. generate and analyze bulk short-read RNA-Seq data and from 731 LCLs in 5 continental 
groups and 26 populations from 1000 Genomes together with previously generated high-coverage 
short-read whole genome sequencing data. This work has the potential to be an important resource 
for both human genetics/genomics and evolution researchers. Strengths of the study include their 
analysis showing frequency differentiated QTLs (fg-QTLs) are more frequent than heterogeneous 
effect QTLs (he-QTLs) when comparing populations, which could have implications for future PRS 
development and implementation. The authors perform standard eQTL/sQTL mapping, fine-
mapping, and enrichment analyses. The paper is well written and the methodology is technically 
sound. Because there are limited functional genomics data in several included populations, these 
molecular QTL data will be of great use to human geneticists interested in pinpointing causal 
variants underlying disease and understanding genome function across populations. While a 
valuable resource, it is somewhat limited by the one cell line type and limited African diversity. I 
have several questions about the methodological approach and suggestions for improvement: 

1. In your methods, you describe using 60 PEER factors for eQTL mapping and 15 PEER factors for
sQTL mapping. Why the difference? Did you evaluate whether these PFs associate with known
confounders or assess a range of PFs to maximize QTL discovery? How might your populations/tissue
differ from GTEx in this regard?

2. The ages of the LCLs are known to vary, i.e., the CEU lines are decades older than some of the
1000 Genomes lines, e.g., https://www.nature.com/articles/srep07960. Did you see any evidence of
confounding by age of cell lines in your differential expression analyses?

3. The ADMIXTURE plot in Fig 1B is misleading since most of the “African” samples across all studies
presented are “West African” and makes it look like there is less diversity in Africa than other
continents. While I don’t think you can or should cater your presentation to how racists may
interpret your results, see some examples in https://www.nature.com/articles/d41586-022-03252-z,
the negative effects of presenting ancestry in such a discrete manner is something to consider. An
alternative could be a figure like Fig S2 with proportion variance explained by each PC included,
which would better reflect the continuum of genetic diversity.

4. Since MAGE is meant to be a resource, you should include X chromosome QTLs in your analyses.



 

5. Adding a colocalization analysis of your fine-mapped QTLs with common disease/biomedical trait 
GWAS would be helpful to quantify the benefits of MAGE to pinpointing causal effects, especially in 
comparison to EUR-only QTLs. 
 
6. I agree with the authors that a strength of LCLs is that environmental variation is reduced 
compared to other tissues, which could be one reason he-QTLs are rare in LCLs, which the authors 
discuss in the context of future dynamic QTL studies, starting at line 327. I also wonder how 
generalizable your results are to other complex traits, given that the local/cis genetic architecture of 
gene expression is sparse (usually 1-2 credible sets), whereas most common diseases are much more 
polygenic (more, but smaller effect sizes). Can you comment on the feasibility of focusing on causal 
signals that do not make assumptions about the number of causal variants at a locus for much more 
polygenic traits? What are the implications for PRS implementation and population portability in the 
context of your study and Mostafavi et al. (ref. 42)? 
 
7. The authors did a great job organizing their github repo, which makes summary results publicly 
available. Consider adding the summary data to zenodo, with its persistent doi, rather than just 
keeping in Dropbox. 
 
Minor 
1. A Figure like Fig 5A showing variant counts rather than cumulative fraction could be useful to 
emphasize greater genetic diversity in the African populations. 
 
2. Delete the “a” in “a untyped causal variants”, line 293. 
 
3. I’d delete “previously” in the abstract’s “private to previously underrepresented populations.” 
These populations are still underrepresented. 
 
I commend the authors for their comprehensive effort in undertaking this project in understudied 
populations and pushing human genetics forward. Thank you for presenting your results in a well-
organized fashion. 
 
 
 
 
 

  



 

Referee #2 (Remarks to the Author): 
 
In the manuscript entitled “Sources of gene expression variation in a globally diverse human cohort”, 
Taylor et al. perform an expression and splicing QTL study on LCLs of 731 individuals of diverse 
ancestries whose genomes have been sequenced by the 1KG study. They discover a large number of 
eQTLs and sQTLs. They perform fine-mapping with Susie allowing for multiple credible sets per gene. 
They find that a small proportion of eQTLs have a significant interaction with ancestry, and of these 
most involve eGenes with more than one credible set. These ancestry-specific effects disappear 
when controlling for the other independent eQTLs in the gene. Together these results suggest that 
effect sizes for cis eQTLs vary little among ancestral groups in LCLs. 
 
The manuscript is clear and well written. In addition, the authors did a fantastic job in making this 
resource accessible, with many tables with their intermediate results available in dropbox and the 
raw RNA-seq data available in SRA. I believe this will be a useful resource for the human genetics 
community. 
 
Main concerns: 
 
- Even though controlling for the top 5 genetic PCs makes sense for identifying eQTLs in general, I 
wonder whether this could be biasing the analysis of SNP by ancestry interactions? If I were looking 
for an eQTL interaction with a certain variable, I wouldn’t control for that variable when first 
identifying a set of eQTLs in which to test the interaction. Work from Andrew Clark’s lab, 
Marderstein et al. AJHG 2021, shows that if you want to find GxE eQTL interactions, you can first 
identify variance QTLs (which are enriched for GxE interactions) and then test the interaction of 
interest in those vQTLs. I wonder if the authors can adopt a similar strategy to try to look more 
purposely for those possibly existing ancestry-eQTL interactions? 
- Also, I believe that in the section 17 of the Methods, Model 1 should have the Xcg variable 
included, and Model 2 should have the Xcg variable alone too, apart from the Xcg*Gji that is already 
included. That way when you compare the two models you are specifically testing for the interaction 
term. 
- The authors did a great job at characterizing eQTLs, but splicing QTLs remain not that well 
characterized in the manuscript, including enrichment analysis for functional/regulatory 
annotations, and the ancestry interaction analyses. 
- The authors depict in Figure 1 how diverse their cohort is compared to other eQTL studies such as 
GTEx, Geuvadis and AFGR. However, the authors failed to cite the study by Stranger et al. Plos 
Genetics 2012, in which they had a similar sample size and used LCLs from eight global populations 
of the HapMap3 project that included populations not present in GTex, Geuvadis and AFGR. This 
new MAGE study uses RNA-seq and WGS instead of microarray expression and microarray 
genotypes, and more sophisticated analyses are made with new tools available, but the main results 
remain very similar to the Stranger et al study. 
 
Minor: In Figure 5A, there is no legend for: C, R, U. 
 
 
 



 

Referee #3 (Remarks to the Author): 
 
In this manuscript, Taylor et al. present a new resource comprising RNA-seq data from 731 globally 
distributed individuals of the Thousand Genomes Project. They additionally evaluate the geographic 
distribution of variation in gene expression and splicing, map signals to putatively causal loci, assess 
the magnitude of effect sizes across populations for causal variants, and comment on the 
evolutionary implications of their findings. I believe this resource will be highly valuable to the field, 
complementing GTEx in its current use cases, and ultimately will allow for improved ancestral 
generalizability of future work evaluating gene expression. The researchers indeed highlight here the 
value of including more diverse representation in expression and splicing analyses, finding a healthy 
number of both eQTLs and sQTLs that are restricted to an understudied population. I believe the 
analyses presented here are sufficient to tell the story, but have a few questions for the authors 
regarding potential analytic concerns, and think that the text could use some expansion to aid the 
reader in appreciating the value of this work. 
 
 
 
Comments: 
1. How concerned should we be about potential reference bias? That is, mapping to existing 
traditional reference genomes will work better for populations that are better represented in the 
construction of those genome builds. How big of an impact would this be on your results, as it could 
lead to poorer evaluation of expression in the underrepresented populations included here? 
2. The introduction is quite brief. More background on prior studies on expression across 
populations, eQTLs, sQTLs would be helpful to set the scene for this work and clarify the current 
state of the field. 
3. Similarly, the discussion is again pretty succinct. In particular, expanding on the utility of the novel 
loci discovered here in understudied populations, how inclusion of more representative samples will 
improve ancestral generalizability of findings, the potential downstream impacts of this resource on 
improving personalized medicine, etc. would highlight the value of this resource. 
4. It was unclear to me how the presence of duplicated samples presented in the ADMIXTURE plot 
was handled. The methods seem to imply that one mega ADMIXTURE run of all samples was 
conducted, which would slightly bias ancestry estimation if some samples are included multiple 
times (e.g. the same YRI are showing up in MAGE, Geruvadis, and AFGR?). This shouldn’t 
qualitatively change the results drastically, but would affect the global proportion estimates. 
5. The authors point out the lack of population labels in GTEx. Given their analyses here, they are 
able to infer ancestry for each participant, though. It would be very useful if the authors could 
provide population assignments for GTEx samples based on their work for use in future studies. I 
cannot speak to any administrative challenges in terms of interfacing with GTEx, but is this 
logistically possible? 
6. The authors cite their findings as indicative of negative and stabilizing selection at different points 
in the manuscript. This is not wrong per se, but a bit of explanation for readers not embedded in 
evolutionary genomics might help unpack the interpretation of how both modes of selection can be 
invoked. E.g., evidence for maintenance of expression levels = stabilizing selection, but the 
constraint on DNA sequence underlying the eQTL used to support this argument is actually from 
negative selection removing sequence variation. 



7. Also regarding evolution, could the authors utilize more localized selection statistics to assess the
impact of negative selection on expression related loci? Currently they are just using the gene-level
metric pLI, but this would miss any nuance of the particular area of a gene that might be under
strongest evolutionary constraint. Zooming in to narrower areas around the causal variant to show
signals of elevated negative selection would be even more convincing than a gene-wide score.

Minor comments: 
1. Figure 1 legend – ADMIXTURE plots are described as presenting ‘hypothetical’ ancestry
components. I think a better word choice could be used – inferred would be more technically
correct.
2. The dashed lines in figure 3 are not the most intuitive (the line looks like a threshold definition on
first glance), though I appreciate what the authors are trying to accomplish by including them. A
different way to visualize this might be better… perhaps a bracket?
3. There are some font/formatting issues to be fixed.



Response to Referee Comments

We thank the editor and referees for their positive reception of our study, as well as their 
constructive comments and suggestions that we believe have substantially improved our 
manuscript. These critiques helped us bolster and better contextualize our findings, while also 
improving the utility of MAGE as a resource for studying human gene expression diversity. We 
highlight several major additions:

● An expanded introduction summarizing several previous studies that are directly relevant
to and provide context for this work

● The addition of chrX cis-e/sQTLs to the published data resource
● A more thorough investigation of the functional impacts of sQTLs
● A colocalization analysis characterizing shared signals between biomedical/disease trait

GWAS in non-European cohorts and MAGE cis-e/sQTLs
● An auxiliary analysis of eQTL effect size heterogeneity between continental groups (i.e.,

he-eQTLs) that addresses some of the potential biases of the primary he-eQTL analysis
● An expanded discussion section that considers the implications of our finding that

molecular trait effect sizes are consistent across groups for more polygenic complex traits
and highlights the added benefit of a diverse gene expression dataset like MAGE in better
understanding the molecular mechanisms of human traits, particularly in historically
underrepresented populations, as well as opportunities for future research

The comments from the referees are copied below in black text and are organized by major and
minor comments from each referee. Our responses are indicated with interspersed blue text.
Where appropriate, we also copied text/figures from the manuscript that were added/changed in
response to the referee’s comments. We have also submitted a version of the manuscript with
"track changes" that annotates all revisions.

Referee #1: Genetic Regulation

Taylor et al. generate and analyze bulk short-read RNA-Seq data and from 731 LCLs in 5
continental groups and 26 populations from 1000 Genomes together with previously generated
high-coverage short-read whole genome sequencing data. This work has the potential to be an
important resource for both human genetics/genomics and evolution researchers. Strengths of the
study include their analysis showing frequency differentiated QTLs (fg-QTLs) are more frequent
than heterogeneous effect QTLs (he-QTLs) when comparing populations, which could have
implications for future PRS development and implementation. The authors perform standard
eQTL/sQTL mapping, fine-mapping, and enrichment analyses. The paper is well written and the
methodology is technically sound. Because there are limited functional genomics data in several
included populations, these molecular QTL data will be of great use to human geneticists
interested in pinpointing causal variants underlying disease and understanding genome function
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across populations. While a valuable resource, it is somewhat limited by the one cell line type
and limited African diversity. I have several questions about the methodological approach and
suggestions for improvement:

Thank you for your positive response to our manuscript and for the pertinent questions and
valuable suggestions for improving the utility of the MAGE resource.

Major Comments:

Major Comment #1

In your methods, you describe using 60 PEER factors for eQTL mapping and 15 PEER factors
for sQTL mapping. Why the difference? Did you evaluate whether these PFs associate with
known confounders or assess a range of PFs to maximize QTL discovery? How might your
populations/tissue differ from GTEx in this regard?

These are all very good questions. The number of PEER factors chosen for e/sQTL mapping
were based on optimizations previously performed by the GTEx consortium (GTEx Consortium,
Nature. 2017; GTEx Consortium, Science. 2020). Briefly, for each of four sample size bins,
GTEx assessed the number of PEER factors that maximized the number of significant e/sGenes
discovered. As a result of these optimizations, GTEx used 60 PEER factors for eQTL mapping
with sample sizes ≥ 350 and 15 PEER factors for sQTL mapping regardless of sample size.
Based on the optimizations by GTEx and the sample size of MAGE, we chose to use 60 PEER
factors for eQTL mapping and 15 PEER factors for sQTL mapping.

We recognize that the PEER factors identified in GTEx may differ from those in MAGE. As the
reviewer noted, 1) GTEx tissues may include multiple cell types while MAGE comprises only a
single cell type, and 2) GTEx largely comprises individuals of European ancestries, while
MAGE spans a broad range of human populations. Additionally, the RNA library preparation
and sequencing procedures are not identical between the two studies.

To address the reviewer's comment, we therefore investigated how the number of e/sGenes varies
according to the number of PEER factors within MAGE, restricting analysis to Chromosome 1
for computational efficiency. For eQTL mapping, we discovered eGenes using the FastQTL
adaptive permutation mode (the same procedure used in the main text) with either 0, 1, 2, 5, 10,
15, 20, 25, 30, 40, 50, 60, 70, 80, or 100 PEER factors. Similarly, for sQTL mapping
optimization, we discovered sGenes with either 0, 1, 2, 5, 10, 15, 20, 25, 30, 40, or 50 PEER
factors. The results are shown below:
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Figure S9. Selection of PEER factors for QTL mapping. Number of eGenes and sGenes on Chromosome 1 discovered with
FastQTL using different numbers of PEER factors as covariates. e/sGenes were discovered at a 5% FDR. For eQTL mapping,
PEER factors were computed from normalized TMM values from the autosomes and chrX (the same values used as input for
eQTL mapping). For sQTL mapping, PEER factors were computed from normalized intron excision ratios from the autosomes
and chrX (the same values used as input for sQTL mapping).

For eQTL mapping, we observe a plateau starting at roughly 50 PEER factors whereafter adding
PEER factors does not substantially increase the number of eGenes discovered. For sQTL
mapping, the number of sGenes discovered is relatively robust to the number of PEER factors
used as covariates. We emphasize that there is no “ground truth” for optimization, and choosing
the number of PEER factors to maximize e/sGene discovery within our data may risk overfitting.
That said, our choices of 60 and 15 PEER factors respectively for e/sQTL mapping are consistent
with GTEx and fall near the plateaus/peaks of e/sGene discovery, and we therefore elected to
maintain these selections for our analyses.

We have integrated this figure in the Supplementary Material (Fig. S9) and have clarified our
reasoning for choosing these numbers of PEER factors in Supplemental Methods section 10.3.

We also observed that the selected PEER factors are correlated with known technical covariates
from the RNA-seq study. Specifically, we tested for correlation between the PEER factors and
eight technical variables: sequencing batch, the study in which the cell lines were first generated
(i.e., the International HapMap Project, HapMap 3, or the 1000 Genomes Project), continental
group, population, sex, RNA integrity number (RIN), the total number of reads, and the total
amount of RNA in the library. We also requested a metric of cell line age from Coriell, where the
cell lines were purchased, but Coriell declined to provide these dates. Nevertheless, we expect
these ages to correlate with the study in which the cell lines were generated. Our complete set of
correlation results is shown in the figure below:
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Figure S10. Correlation between PEER factors and known confounders. For each of the 60 expression-derived PEER factors
and 15 splicing-derived PEER factors, we tested their correlation with each of eight possible confounders. (A) Correlation
between the 60 expression-derived PEER factors and the tested confounders. (B) The significance of each of the correlations
shown in A. Non-significant correlations (based on a Bonferroni threshold of 8.33 × 10-5) are shown in grey. (C) As in A, but for
the 15 splicing-derived PEER factors. (D) As in B, but for the 15 splicing-derived PEER factors.

For expression-derived PEER factors we observed the strongest (Panel A) and most significant
(Panel B) correlations with sequencing batch. The same pattern is observed in the
splicing-derived PEER factors (Panels C and D). We also note significant but weaker
correlations with continental group and population for both expression- and splicing-derived
PEER factors, supporting their exclusion in the analyses presented in Figure 2.

We have integrated this figure in the Supplementary Material (Fig. S10) and have briefly
summarized these patterns in Supplemental Methods section 10.3.

Major Comment #2

The ages of the LCLs are known to vary, i.e., the CEU lines are decades older than some of the
1000 Genomes lines, e.g., https://www.nature.com/articles/srep07960. Did you see any evidence
of confounding by age of cell lines in your differential expression analyses?

This is a pertinent question, and we are aware that factors such as cell line age can be
confounders in RNA-seq datasets. While we were unable to obtain ages of the cell lines from
Coriell, we did test for correlations between several other potential confounders (including
populations and study of origin, both of which we expect to correlate with cell line age) and the
PEER factors used as covariates in our analyses. The results of this analysis are discussed in
detail in response to the previous question, but briefly we do observe weak correlations between
our PEER factors and population and study of origin. That said, the strongest correlations were
with sequencing batch, which we explicitly control for in our analyses partitioning expression
variation within and between populations.
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Major Comment #3

The ADMIXTURE plot in Fig 1B is misleading since most of the “African” samples across all
studies presented are “West African” and makes it look like there is less diversity in Africa than
other continents. While I don’t think you can or should cater your presentation to how racists
may interpret your results, see some examples in
https://www.nature.com/articles/d41586-022-03252-z, the negative effects of presenting ancestry
in such a discrete manner is something to consider. An alternative could be a figure like Fig S2
with proportion variance explained by each PC included, which would better reflect the
continuum of genetic diversity.

This is an important point, and we also debated the use of ADMIXTURE versus PCA and/or
other visualizations, given their potential to over-emphasize genetic differences and obscure the
high levels of variation within Africa. Despite these limitations, the ADMIXTURE plot
demonstrates the inclusion of South Asian, Admixed American, and East Asian ancestry groups
in a way that is difficult to glean from the PCA plot. To address this comment, we have therefore
integrated the PCA and ADMIXTURE plots as separate panels in Figure 1, while also displaying
the proportion of variance explained by each PC, as suggested. We additionally expanded the
figure legend to state:

"Ancestry components are modeling constructs that do not directly correspond to true ancestral
populations, and the results of ADMIXTURE analysis strongly depend on sampling
characteristics of the input data. While k=7 minimizes the cross-validation error within this
combined data set (Fig. S1), alternative choices of k reflect structure at different scales (Fig.
S2)."

The cited supplemental figures include a new set of ADMIXTURE plots (Fig. S2) where we
vary k from 3 to 9, which highlights the dependence of these visual summaries on the selection
of k. We also added a sentence to the main text (where this figure is referenced) to emphasize the
greater genetic diversity in Africa and cite the related AFGR study that focuses on African
diversity:

"While we emphasize the greater genetic diversity within African populations—a point largely
obscured by ADMIXTURE and principal component analyses20—these visualizations
demonstrate that our study includes data from several non-African ancestry groups that were
poorly represented in previous studies (Fig. 1B, 1C, 1D, Fig. S2, S3; also see the African
Functional Genomics Resource [AFGR]16 for a related study of African populations)."

Finally, we expanded the section of the Discussion noting the limited sampling of African
populations:

"Finally, while geographically diverse, the sampling of 1KGP is not without biases—for
example, narrowly sampling the vast diversity within Africa and excluding indigenous

5

https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fd41586-022-03252-z&data=05%7C02%7Cdtaylo95%40jhu.edu%7Ca08ebb2425fe40e5568c08dbffdb9194%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638385090727296121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=lK6CbZ4%2F%2FF3nPdWObzRPPtQ9PdhCz%2Bm%2B1%2FWI4X5q%2BQI%3D&reserved=0
https://nam02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.nature.com%2Farticles%2Fd41586-022-03252-z&data=05%7C02%7Cdtaylo95%40jhu.edu%7Ca08ebb2425fe40e5568c08dbffdb9194%7C9fa4f438b1e6473b803f86f8aedf0dec%7C0%7C0%7C638385090727296121%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=lK6CbZ4%2F%2FF3nPdWObzRPPtQ9PdhCz%2Bm%2B1%2FWI4X5q%2BQI%3D&reserved=0


populations from Oceania and the Americas, as well as countless other populations. Addressing
these biases will require deeper community engagement and respect for the rights, interests, and
expectations of research participants from diverse human groups56. This expansion of diversity in
functional genomics parallels efforts for improved representation of diversity in genome
sequencing and assembly, including construction of pangenomes57,58. While the current study was
based on alignment to a linear representation of the reference genome, given the maturity of
software tools and annotations built on this paradigm, MAGE offers an ideal data resource for
testing pangenomic methods over the coming decade as they are developed by the research
community."

Major Comment #4

Since MAGE is meant to be a resource, you should include X chromosome QTLs in your
analyses.

Thank you for this suggestion. We agree that inclusion of QTLs from the X chromosome would
improve the utility of the MAGE resource. We do note, however, that there are some caveats to
performing QTL mapping on the X chromosome and interpreting results. First, we assume the
pseudoautosomal regions (PARs) on the X chromosome represent both the X chromosome PARs
and Y chromosome PARs. This allows us to discover QTLs in the X-PARs exactly the same way
we did so on the autosomes. In the X chromosome non-PARs, however, XX individuals are
diploid, while XY individuals are haploid. To enable joint eQTL mapping with XX and XY
samples in the non-PARs, we artificially transform XY haploid genotypes to homozygous diploid
genotypes in the input VCF file.

Altogether, this approach for handling the X chromosome makes two important assumptions
about the architecture of gene expression on the X chromosome: 1) genes in the PARs “escape”
X-inactivation (i.e. both the X and Y homologs of each gene are expected to be expressed) and
2) genes in the non-PARs are randomly inactivated on one X chromosome homolog in XX
samples and are not inactivated in XY samples. While the first assumption is expected to be
valid for most genes, some non-PAR genes are known to escape X-inactivation.

Using this approach, we performed e/sQTL mapping and fine-mapping for genes on the X
chromosome. We also estimated effect sizes for eQTLs in the X-PARs, but were unable to do so
for eQTLs in the X chromosome non-PARs because the aFC-n tool does not natively handle
haploid genotypes and there is not a straight-forward method to transform genotypes in a way
that provides meaningful effect size estimates for these eQTLs.

We have detailed the approach described above in the supplemental methods (largely section
10.4). However, given the caveats of interpreting QTL results on the X chromosome, we
continue to focus our QTL analyses in the main text on the autosomes. That said, we include the
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full set of X chromosome e/sQTL results in our published data along with the results from the
autosomes.

Major Comment #5

Adding a colocalization analysis of your fine-mapped QTLs with common disease/biomedical
trait GWAS would be helpful to quantify the benefits of MAGE to pinpointing causal effects,
especially in comparison to EUR-only QTLs.

This is a terrific suggestion and an analysis we were excited to incorporate into the paper. While
GWAS of non-European populations are limited, one cohort that we thought would facilitate an
assessment of the utility of MAGE in interpreting complex trait GWAS in non-European
populations is that of the Population Architecture using Genomics and Epidemiology (PAGE)
study. PAGE comprises 49,839 non-European individuals, including large samples of individuals
who self-reported as Hispanic/Latin American or African American, as well as smaller samples
of individuals who self-reported as Asian, Native Hawaiian, or Native American. As such,
MAGE provides a unique resource for interpreting the molecular underpinnings of the complex
traits measured in PAGE.

We performed colocalization analysis to identify shared signals between GWAS of 25 complex
traits from PAGE (including quantitative biomedical traits and disease phenotypes) and
cis-e/sQTLs from MAGE. We discovered moderate-to-strong evidence of colocalization with
MAGE eQTLs for 39 independent GWAS signals across 14 traits in PAGE, and
moderate-to-strong evidence of colocalization with MAGE sQTLs for 30 independent GWAS
signals across 12 traits in PAGE. Critically, these include GWAS signals that are rare (MAF <
0.05) or unobserved in European groups, demonstrating the unique added benefit of using a
diverse resource like MAGE for interpreting GWAS in non-European populations.

These results have been incorporated into the relevant main text of the manuscript in more detail.
The full analysis is described in the Supplementary Methods (section 14), and the results are
summarized in Fig. S21.

Major Comment #6

I agree with the authors that a strength of LCLs is that environmental variation is reduced
compared to other tissues, which could be one reason he-QTLs are rare in LCLs, which the
authors discuss in the context of future dynamic QTL studies, starting at line 327. I also wonder
how generalizable your results are to other complex traits, given that the local/cis genetic
architecture of gene expression is sparse (usually 1-2 credible sets), whereas most common
diseases are much more polygenic (more, but smaller effect sizes). Can you comment on the
feasibility of focusing on causal signals that do not make assumptions about the number of
causal variants at a locus for much more polygenic traits? What are the implications for PRS
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implementation and population portability in the context of your study and Mostafavi et al. (ref.
42)?

These are terrific questions and we agree that these topics warrant more discussion in the
manuscript. Regarding the genetic architecture of gene expression versus common diseases, we
suspect that the seemingly small number of causal signals for gene expression is driven in part by
lower power in our analysis compared to previous complex trait GWAS. As sample size in QTL
studies increases to the sample sizes of complex trait GWAS, we would expect to reveal even
more allelic heterogeneity. Additionally, eQTL mapping studies in African populations (e.g.
DeGorter et al. 2023, doi: 10.1101/2023.11.04.564839)—which are known to have more genetic
diversity—have found as many as 6 credible sets per gene on average.

That said, we recognize that complex traits can be especially polygenic, and the question of
whether our approach is suitable for these more polygenic traits is an interesting one. A recent
paper by Hou et al. (doi: 10.1038/s41588-023-01338-6) investigated effect size heterogeneity in
admixed individuals across 38 complex traits in three different studies. The authors concluded
that GWAS nominal effect sizes are consistent across local ancestries, and that apparent
deviations can be explained by multiple causal variants within a region, consistent with our own
conclusions in this manuscript in regards to the genetic architecture of gene expression. This
result is promising and suggests that our strategy of focusing on causal signals without
assumptions about the number of such signals at a locus may work well with GWAS. We are
excited to see how future GWAS in diverse cohorts apply this methodology and assess its impact
on portability. We have added text to this effect to the discussion section of the manuscript.

"The scale and diversity of the data set enabled the discovery of numerous potentially novel
genetic associations, while offering high resolution for identifying putatively causal variants and
elucidating their mechanisms of action. Our study also demonstrates that conditional on the
correct identification of causal variants, the effects of such variants tend to be additive and
highly consistent across populations, addressing a point of recent debate within the field7,14,39,40,47.
This observation in turn suggests that for gene expression, ancestry-dependent epistatic effects
tend to be weak and/or rare in human genomes, in contrast to some observations from other
model systems48. The extent to which our approach of focusing on causal signals while allowing
for multiple causal signals at a locus is suitable for more polygenic complex traits is an open
question, but a recent study that investigated effect size heterogeneity in admixed individuals
across 38 complex traits found that nominal effect sizes are consistent across local ancestries39.
Apparent deviations could be explained by multiple causal variants within a region, consistent
with our own conclusions. This result is promising and suggests that our strategy may work well
with GWAS of more polygenic complex traits. Such consistency of genetic effects further
motivates the use of diverse samples for association studies, as a common causal variant
identified in one population may inform the effect of that variant in a population where the same
variant is rare and association testing would be underpowered. Because effects tend to be
consistent across populations, the functional effect should be similar in the population where the
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allele is rare. This has direct implications for downstream predictive applications like PRS and
for personalized medicine, as inclusion of these population-stratified causal variants in
predictive models should lead to more accurate and generalizable predictions49. Thus all
populations—not only underrepresented populations—benefit from the inclusion of greater
diversity in genetic studies."

In regard to Mostafavi et al., this approach may not significantly improve colocalization between
complex trait GWAS and molecular QTL studies. The authors of that study found that limited
colocalization stems from distinct selective pressures shaping genetic variation that can be
identified in the two analyses: GWAS hits tend to occur within genes under strong purifying
selection, whereas molecular QTLs are most easily identified for genes under relaxed constraint.
We have added text about this phenomenon to the discussion section of the manuscript.

"Intersection of e- and sQTLs with data from GWAS may facilitate understanding of the
molecular mechanisms linking genetic variation to organismal phenotypes. Using GWAS data
from the PAGE study of ancestrally diverse individuals, we identified 54 GWAS signals that
colocalize with e- and/or sQTL signals. While informative and substantial in absolute number,
these reflect a minority of all GWAS hits. Limited colocalization between molecular QTLs and
GWAS hits is well-described, largely stemming from distinct selective pressures shaping genetic
variation that can be identified (with incomplete statistical power) in the two analyses50. GWAS
hits tend to occur within genes under strong purifying selection, whereas molecular QTLs are
most easily identified for genes under relaxed constraint. This is consistent with our finding that
genes exhibiting strong signals of selection are depleted of MAGE eQTLs. While inclusion of
additional tissues and cell types modestly increases the rate of colocalization, these qualitative
observations hold even for multi-tissue studies such as GTEx50. Despite these general limitations
of colocalization analysis, our results demonstrate cases where MAGE facilitates interpretation
of GWAS results, particularly in underrepresented populations. We anticipate that this utility will
further improve as GWAS continue to expand to more diverse cohorts."

Major Comment #7

The authors did a great job organizing their github repo, which makes summary results publicly
available. Consider adding the summary data to zenodo, with its persistent doi, rather than just
keeping in Dropbox.

We agree with this important point and have deposited the processed data (e/sQTL calls,
fine-mapping results, expression and splicing matrices, etc.) on Zenodo as suggested (doi:
10.5281/zenodo.10535719). Raw data is available on SRA (accession: PRJNA851328).
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Minor Comments:

Minor Comment #1

A Figure like Fig 5A showing variant counts rather than cumulative fraction could be useful to
emphasize greater genetic diversity in the African populations.

Thank you for this suggestion. It should be noted that for this analysis we did not perform eQTL
mapping in each continental group separately, but across the entire MAGE dataset at once
(adjusting for global ancestry using top genotype principal components as covariates). Figure 5A
is therefore meant to highlight how a larger proportion of the eQTLs in MAGE are
geographically restricted relative to GTEx, especially from underrepresented populations (Fig.
S22 [previously S17] also supports this claim).

The reviewer’s comment about greater genetic diversity in Africa is nevertheless valid, and we
have therefore addressed it explicitly in relation to Figure 1 where it is also relevant: “While we
emphasize the greater genetic diversity within African populations—a point largely obscured by
ADMIXTURE and principal component analyses20—these visualizations demonstrate that our
study includes data from several non-African ancestry groups that were poorly represented in
previous studies (Fig. 1B, 1C, 1D, Fig. S2, S3; also see the African Functional Genomics
Resource [AFGR]16 for a related study of African populations).”

Minor Comment #2

Delete the “a” in “a untyped causal variants”, line 293

Thank you! This change has been made.

Minor Comment #3

I’d delete “previously” in the abstract’s “private to previously underrepresented populations.”
These populations are still underrepresented.

We agree, and this change has been made.

I commend the authors for their comprehensive effort in undertaking this project in understudied
populations and pushing human genetics forward. Thank you for presenting your results in a
well-organized fashion.

Thank you very much for these encouraging words, as well as the thorough and constructive
critiques that greatly improved our work.
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Referee #2: Human genetics, QTL mapping

In the manuscript entitled “Sources of gene expression variation in a globally diverse human
cohort”, Taylor et al. perform an expression and splicing QTL study on LCLs of 731 individuals
of diverse ancestries whose genomes have been sequenced by the 1KG study. They discover a
large number of eQTLs and sQTLs. They perform fine-mapping with Susie allowing for multiple
credible sets per gene. They find that a small proportion of eQTLs have a significant interaction
with ancestry, and of these most involve eGenes with more than one credible set. These
ancestry-specific effects disappear when controlling for the other independent eQTLs in the
gene. Together these results suggest that effect sizes for cis eQTLs vary little among ancestral
groups in LCLs.

The manuscript is clear and well written. In addition, the authors did a fantastic job in making
this resource accessible, with many tables with their intermediate results available in dropbox
and the raw RNA-seq data available in SRA. I believe this will be a useful resource for the
human genetics community.

We thank the reviewer for this positive response to our study, as well as the insightful
suggestions that follow.

Major Comments:

Major Comment #1

Even though controlling for the top 5 genetic PCs makes sense for identifying eQTLs in general,
I wonder whether this could be biasing the analysis of SNP by ancestry interactions? If I were
looking for an eQTL interaction with a certain variable, I wouldn’t control for that variable when
first identifying a set of eQTLs in which to test the interaction. Work from Andrew Clark’s lab,
Marderstein et al. AJHG 2021, shows that if you want to find GxE eQTL interactions, you can
first identify variance QTLs (which are enriched for GxE interactions) and then test the
interaction of interest in those vQTLs. I wonder if the authors can adopt a similar strategy to try
to look more purposely for those possibly existing ancestry-eQTL interactions?

We thank the reviewer for their feedback regarding our he-eQTL discovery analysis. We want to
clarify that our interaction analysis is testing for genotype-by-continental-group interactions,
rather than genotype-by-ancestry interactions, although we acknowledge that continental group
labels and various definitions of genetic ancestry may be correlated. Regarding the reviewer’s
comment about bias being introduced in the interaction test by including top 5 genetic PCs as
covariates in the initial eQTL mapping step, we note that the top 5 genetic PCs are only included
as main effect variables in the regression (effectively allowing for differential expression among
ancestry groups, independent of genotype) and do not preclude the existence of any interaction
effects (i.e., differences in the slope among continental groups).
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The reviewer’s suggestion to instead first identify vQTLs and then test for
genotype-by-continental-group interactions in this discovery set (à la Marderstein et al. 2021) is
an intriguing one, but we were concerned that this approach may lead to false positive
interactions caused by failure to account for the additive effects of multiple causal variants. To
illustrate this point, we simulated gene expression for a gene with two causal variants: “Var1”
and “Var2”, shown in the figure below. Our simulation comprises two separate populations:
“Pop1” and “Pop2”. Var1 is common in both populations, while Var2 is common in Pop1 but is
unobserved in Pop2 (Panel A below). Additionally, within Pop1, Var1 and Var2 are in strong LD
(R2 = 0.81). Critically, while Var1 and Var2 have different effect sizes, these effects are
consistent across populations (Panel B). We simulate expression Yi of individual i as Yi ~ N(X1i
β1 + X2i β2, 1), where X1i and X2i describe the genotypes (0, 1, or 2) of Var1 and Var2,
respectively, for individual i. β1 and β2 describe the effect sizes of Var1 and Var2, respectively.

Focusing solely on Var1, we observe a pattern consistent with a vQTL and that Var1 exhibits a
stronger measured effect size in Pop1 than Pop2 (Panel C). Supporting this hypothesis, the
deviation regression proposed by Marderstein et al. yields a highly significant result (Panel D).
However, we know that the simulation does not include a true SNP-by-population interaction.
Indeed, regressing out the effect of Var2 removes the apparent effect size heterogeneity (panels
E,F).

That said, we agree that our current eQTL discovery pipeline may be biased toward identifying
eQTLs whose effect size does not differ between continental groups. This bias could arise
because one of the inherent assumptions of standard eQTL mapping and fine-mapping is that
each causal variant has a single effect size that does not vary between subsets of the sample. As
we only test fine-mapped variants for effect size heterogeneity, this assumption may diminish our
sensitivity for identifying he-eQTLs.

To address these concerns, we performed eQTL mapping, fine-mapping, and effect size
estimation separately within each of the continental groups represented in MAGE. For the
resulting credible sets, we then compared effect sizes between continental groups to ask if the
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effects of causal variants remain consistent, even when estimated independently in each
continent.

For each pair of continental groups, we considered two credible sets comparable if they shared at
least one variant and corresponded to the same gene (detailed in the Supplemental Methods).
After Bonferroni correction, we found that between 97.5% (comparisons between AFR-EUR)
and 99.8% (comparisons between AMR-SAS) of credible sets did not have significantly different
effect sizes (Welch’s t-test). These results corroborate our original finding that effect size
heterogeneity is rare among eQTLs and show that this is true even when explicitly allowing
effect sizes to vary between continental groups during eQTL discovery.

Figure S28. High concordance in credible set effect sizes across continental groups. (A) Heatmap showing the fraction of
shared causal signals where log2(aFC) is not significantly different in pairs of continental groups after Bonferroni correction. n
represents the total number of shared causal signals in each pair of continental groups. (B) Scatterplots comparing log2(aFC)
within pairs of continental groups. Points are colored by whether the effect sizes are significantly different. The black line plots y
= x (i.e. theoretical identical effect sizes). The gray line plots the best fit linear trendline.

We have updated the Supplemental Methods with a description of this continental
group-stratified QTL mapping analysis, as well as the Results section of the paper, and this
figure has been added to the supplement (Fig. S28): “An alternative approach based on stratified
eQTL mapping and fine-mapping within each continental group (see Methods) likewise indicated
high consistency in effect sizes, such that 97.5-99.8% of credible sets had similar effect sizes
between pairs of continental groups (Fig. S28).”

Major Comment #2

Also, I believe that in the section 17 of the Methods, Model 1 should have the Xcg variable
included, and Model 2 should have the Xcg variable alone too, apart from the Xcg*Gji that is
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already included. That way when you compare the two models you are specifically testing for the
interaction term.

Thank you for catching this! We note that the model was run correctly (i.e., as the reviewer
specified), and section 17 (now section 18) of the supplemental methods simply had a typo. This
typo has been corrected.

Major Comment #3

The authors did a great job at characterizing eQTLs, but splicing QTLs remain not that well
characterized in the manuscript, including enrichment analysis for functional/regulatory
annotations, and the ancestry interaction analyses.

We thank the reviewer for this suggestion; we agree that a more thorough characterization of the
sQTLs we discovered is warranted and will improve the utility of the MAGE resource. To
investigate the functional implication of our discovered sQTLs, we annotated fine-mapped lead
sQTLs with the ensembl Variant Effect Predictor (VEP) tool with a total of 26 genomic
annotations. We also annotated a randomly selected set of “null” variants (matched for TSS
distance and MAF with the lead sQTLs) to serve as a comparison. We observed a strong
enrichment of lead sQTLs in key splicing-relevant annotations relative to the matched null.
These findings highlight the biological relevance of our fine mapped cis-sQTLs in splicing
regulation and their likely functional impact on the splicing processes. This analysis has been
described in detail in the Supplementary Methods (section 13.2) and the results are now
integrated into the relevant main text of the manuscript and Fig. 4D, which are also copied
below:

“We also investigated the genomic context of our fine-mapped cis-sQTLs. We observed strong
enrichment of lead sQTLs in several key splicing-relevant annotations including splice donor
sites (log2(fold enrichment) = 6.07, 95% CI [4.09, 8.04]) splice acceptor sites (log2(fold
enrichment) = 5.52, 95% CI [3.54, 7.50]), and nearby regions (log2(fold enrichment) = 4.15,
95% CI [3.70, 4.62]) at intron-exon boundaries (Fig. 4D). Despite their magnitude of
enrichment, variants in canonical splice sites and splice regions represented a minority of lead
sQTLs, with a greater abundance of sQTLs falling within 5' and 3' UTRs, as well as exons of
both coding and non-coding genes. While exhibiting weaker enrichments, these annotation
categories together cover a much larger mutational target size and may encompass splicing
enhancers and cryptic splice sites for which annotation remains an open challenge. In contrast,
intergenic regions were strongly depleted of lead sQTLs, despite matching our null background
variant sets on minor allele frequency (MAF) and distance from the TSS (log2(fold enrichment) =
-2.51, 95% CI [-2.58, -2.43]; see Methods). These findings support the biological validity of the
fine-mapped cis-sQTLs and lend insight into the mechanisms by which these variants impact
splicing.”
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Figure 4. Fine-mapped cis-QTLs are strongly enriched in regulatory regions across multiple cell/tissue types. (D)
Enrichment of lead sQTLs within functional annotation categories from Ensembl Variant Effect Predictor (left panel), along with
the proportion of all lead sQTLs falling into each annotation category (right panel). Enrichment was calculated in comparison to a
background set of variants matched on MAF and distance from the TSS. Annotation categories are not mutually exclusive and
therefore sum to a proportion greater than 1.

Regarding the analyses characterizing eQTL effect size differences between continental groups
(he-eQTLs), we argue that there is not a clear set of analogous analyses that we could perform to
characterize he-sQTLs compatible with the tools/approaches we used to discover sQTLs.
Splicing is an inherently multivariate phenotype (i.e., we measure the proportion of reads that
support one intron relative to other possible introns in a given splicing cluster). To allow us to
use standard QTL-mapping tools, we only consider one intron at a time as a univariate phenotype
when performing sQTL-mapping, rather than an entire splicing cluster as a multivariate
phenotype. After sQTL mapping and fine-mapping, we merged all intron-level credible sets into
gene-level credible sets. It is the lead variants from these gene-level credible sets that we use for
downstream analyses. Unfortunately, it is difficult to construct an appropriate model to test for
difference in sQTL effect sizes between continental groups using this set of sQTLs. Indeed, the
biological interpretation of the “effect size” of sQTLs is not straightforward (i.e. there is no
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widely accepted sQTL analog of aFC). We emphasize that we do explore allele frequency
differentiation of our fine-mapped sQTLs (fd-sQTLs; now Fig. S23), and we include sQTLs in
our newly added colocalization analysis (described in more detail above). We look forward to the
development of tools and methods to better characterize/quantify sQTL effect sizes.

Major Comment #4

The authors depict in Figure 1 how diverse their cohort is compared to other eQTL studies such
as GTEx, Geuvadis and AFGR. However, the authors failed to cite the study by Stranger et al.
Plos Genetics 2012, in which they had a similar sample size and used LCLs from eight global
populations of the HapMap3 project that included populations not present in GTex, Geuvadis and
AFGR. This new MAGE study uses RNA-seq and WGS instead of microarray expression and
microarray genotypes, and more sophisticated analyses are made with new tools available, but
the main results remain very similar to the Stranger et al study.

Thank you for alerting us to the omission of this relevant citation, which we now reference in the
introduction. In addition, we have also added a citation of Storey et al., Am J Hum Genet. 2007
(doi: 10.1086/512017), which performed variance decomposition to show that there is greater
variance between individuals than between populations, albeit with gene expression microarrays
and a much smaller sample size (n = 16). We agree that these studies provide valuable biological
context and that the Stranger et al. study achieved a similar sample size and diverse ancestry
composition. The revised introduction describes the key findings from those studies and
motivates our work in a more nuanced and accurate way. Specifically, the use of RNA-seq versus
microarray profiling of gene expression 1) enables splicing analysis and 2) affords much higher
power for QTL discovery, including characterization of widespread allelic heterogeneity. The
added text is copied below in response to Referee #3 Major comment #2. We have also revised
the legend of Figure 1 to clarify that it compares our dataset to other large RNA-seq-based
datasets with paired whole genome sequencing data.

Minor Comments:

Minor Comment #1

In Figure 5A, there is no legend for: C, R, U

We have now placed the text: “Allele frequencies are categorized as unobserved (U), rare
variants with population allele frequencies < 5% (R), and common variants (C) with allele
frequencies greater than 5%.” into the caption for Figure 5A to more clearly define our
definition for common, rare, and unobserved variation.

16

https://doi.org/10.1371/journal.pgen.1002639
https://doi.org/10.1371/journal.pgen.1002639


Referee #3: Human population genetics

In this manuscript, Taylor et al. present a new resource comprising RNA-seq data from 731
globally distributed individuals of the Thousand Genomes Project. They additionally evaluate the
geographic distribution of variation in gene expression and splicing, map signals to putatively
causal loci, assess the magnitude of effect sizes across populations for causal variants, and
comment on the evolutionary implications of their findings. I believe this resource will be highly
valuable to the field, complementing GTEx in its current use cases, and ultimately will allow for
improved ancestral generalizability of future work evaluating gene expression. The researchers
indeed highlight here the value of including more diverse representation in expression and
splicing analyses, finding a healthy number of both eQTLs and sQTLs that are restricted to an
understudied population. I believe the analyses presented here are sufficient to tell the story, but
have a few questions for the authors regarding potential analytic concerns, and think that the text
could use some expansion to aid the reader in appreciating the value of this work.

Thank you very much for appreciating the value of this work, as well as for the excellent
suggestions for improving various analyses and their contextualization.

Major Comments:

Major Comment #1

How concerned should we be about potential reference bias? That is, mapping to existing
traditional reference genomes will work better for populations that are better represented in the
construction of those genome builds. How big of an impact would this be on your results, as it
could lead to poorer evaluation of expression in the underrepresented populations included here?

This is a very interesting question, which has been the focus of some of our separate work and
that of our colleagues. Given the relatively low levels of variation in human populations, the
practical impact of reference bias tends to be small, but nevertheless important for certain
sensitive applications (e.g., analysis of allele-specific expression) or in hyper-diverse regions of
the genome.

Previous studies (e.g., Degner et al., 2009, Bioinformatics, doi: 10.1093/bioinformatics/btp579;
Chen et al., 2020, Genome Biol., doi: 10.1186/s13059-020-02229-3) have explored different
strategies for mitigating reference bias, finding that "ancestry-matched" reference genomes yield
very modest benefits. This finding is intuitive given the distribution of common genetic
variation, which is largely shared across human populations. Meanwhile, rare variation will be
poorly captured in an ancestry-matched reference, as by definition it is unlikely to be shared by
another individual, regardless of their membership in any broad ancestry group.

To demonstrate this point in our data, we quantified the proportion of unmapped reads per
sample, stratifying by population and including reads that were unmapped due to too many

17



mismatches or unmapped simply because no sufficiently identical reference sequence was
identified (i.e., "% of unmapped reads: other"). We observe no systematic difference in the
proportion of unmapped reads according to population or continental group (see figure below),
despite the fact that the reference genome used in our study (GRCh38) is primarily derived from
a single donor individual (RP-11) of African American ancestry.

Nevertheless, the reviewer's point is well taken, and over the longer term, we believe that
pangenome/pantranscriptome-based approaches will reduce reference biases relative to the use of
a single arbitrary linear reference (Sibbesen et al., 2022, Nat. Methods, doi:
10.1038/s41592-022-01731-9). We now mention applications of our data to pangenomics in the
Discussion section:

"This expansion of diversity in functional genomics parallels efforts for improved representation
of diversity in genome sequencing and assembly, including construction of pangenomes57,58.
While the current study was based on alignment to a linear representation of the reference
genome, given the maturity of software tools and annotations built on this paradigm, MAGE
offers an ideal data resource for testing pangenomic methods over the coming decade as they are
developed by the research community."

In addition, we have integrated text from this response, as well as the figure below to the
supplementary material (Fig. S4).

Figure S4. Percentage of unmapped reads per sample, stratified by population. Unmapped reads are separated into reads that
were unmapped due to too many mismatches (top row) or unmapped simply because no sufficiently identical reference sequence
was identified (bottom row).
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Major Comment #2

The introduction is quite brief. More background on prior studies on expression across
populations, eQTLs, sQTLs would be helpful to set the scene for this work and clarify the
current state of the field.

We agree that additional background and context is warranted. While mindful of the constraints
on length and number of references, we have expanded the introduction to describe previous
RNA-seq studies in diverse cohorts in a more thorough and nuanced way, while more carefully
describing the value of our study within this context. In particular, we emphasize the sample size,
geographic diversity, and open access nature of the data, which enhances statistical power for
understanding the distribution and sources of expression- and splice-altering variation, while also
reducing barriers for functional and evolutionary genomic studies by the human genetics
community.

"To this end, several studies have profiled gene expression in geographically diverse samples,
offering valuable insight into the manifestation of human population structure at the level of
genome function10–12. These studies observed that gene expression and splicing differences
between populations are relatively rare and that divergence in these molecular phenotypes does
not clearly reflect patterns of population divergence. Studies also revealed an abundance of
genetic variants associated with levels of gene expression (termed expression quantitative trait
loci [eQTLs]) which are highly enriched near transcription start sites. Promoter proximal
eQTLs possessed larger effects, on average, and tended to be shared across human populations11.
While foundational, these studies were generally characterized by small sample sizes and/or
assayed gene expression using microarrays, limiting statistical power and resolution for
molecular QTL mapping and hindering integration and comparison to modern sequencing-based
data sets. Meanwhile, recent work by consortia such as MESA, GALA II, and SAGE have
generated RNA-seq data from thousands of samples and include representation from African
American and Latin American populations13,14, but their controlled access nature poses barriers
to re-use, and in some cases are restricted to disease-related research that does not include the
study of genetic ancestry. "

Major Comment #3

Similarly, the discussion is again pretty succinct. In particular, expanding on the utility of the
novel loci discovered here in understudied populations, how inclusion of more representative
samples will improve ancestral generalizability of findings, the potential downstream impacts of
this resource on improving personalized medicine, etc. would highlight the value of this
resource.

We thank the reviewer for this valuable feedback; we certainly do not want to undersell the value
of the MAGE resource in improving ancestral generalizability of molecular QTL findings. We
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previously had a sentence in the discussion describing the benefit of diverse cohorts in
identifying causal variation that may be rare in subsets of the data: “Such consistency of genetic
effects further motivates the use of diverse samples for association studies, as a common causal
variant identified in one population may inform the effect of that variant in a population where
the same variant is rare and association testing would be underpowered.”

We have expanded on this observation to better convey the added value of these diverse cohorts
for downstream predictive and precision medicine applications:

“Such consistency of genetic effects further motivates the use of diverse samples for association
studies, as a common causal variant identified in one population may inform the effect of that
variant in a population where the same variant is rare and association testing would be
underpowered. Because effects tend to be consistent across populations, the functional effect
should be similar in the population where the allele is rare. This has direct implications for
downstream predictive applications like PRS and for personalized medicine, as inclusion of these
population-stratified causal variants in predictive models should lead to more accurate and
generalizable predictions49. Thus all populations—not only underrepresented
populations—benefit from the inclusion of greater diversity in genetic studies.”

In addition, we added text regarding the results of our new colocalization analyses:

"Intersection of e- and sQTLs with data from GWAS may facilitate understanding of the
molecular mechanisms linking genetic variation to organismal phenotypes. Using GWAS data
from the PAGE study of ancestrally diverse individuals, we identified 54 GWAS signals that
colocalize with e- and/or sQTL signals. While informative and substantial in absolute number,
these reflect a minority of all GWAS hits. Limited colocalization between molecular QTLs and
GWAS hits is well-described, largely stemming from distinct selective pressures shaping genetic
variation that can be identified (with incomplete statistical power) in the two analyses50. GWAS
hits tend to occur within genes under strong purifying selection, whereas molecular QTLs are
most easily identified for genes under relaxed constraint. This is consistent with our finding that
genes exhibiting strong signals of selection are depleted of MAGE eQTLs. While inclusion of
additional tissues and cell types modestly increases the rate of colocalization, these qualitative
observations hold even for multi-tissue studies such as GTEx50. Despite these general limitations
of colocalization analysis, our results demonstrate cases where MAGE facilitates interpretation
of GWAS results, particularly in underrepresented populations. We anticipate that this utility will
further improve as GWAS continue to expand to more diverse cohorts."

Finally, as noted in response to Major Comment 1 from the same reviewer, we added some text
regarding potential future uses of the data for pangenomic and pantranscriptomic studies:

"This expansion of diversity in functional genomics parallels efforts for improved representation
of diversity in genome sequencing and assembly, including construction of pangenomes57,58.
While the current study was based on alignment to a linear representation of the reference
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genome, given the maturity of software tools and annotations built on this paradigm, MAGE
offers an ideal data resource for testing pangenomic methods over the coming decade as they are
developed by the research community."

Major Comment #4

It was unclear to me how the presence of duplicated samples presented in the ADMIXTURE plot
was handled. The methods seem to imply that one mega ADMIXTURE run of all samples was
conducted, which would slightly bias ancestry estimation if some samples are included multiple
times (e.g. the same YRI are showing up in MAGE, Geuvadis, and AFGR?). This shouldn’t
qualitatively change the results drastically, but would affect the global proportion estimates.

This is a good question. To clarify, when samples were represented in multiple studies, we only
included them once in the ADMIXTURE analysis, though their results are depicted multiple
times the figure (in multiple panels). We have clarified this point in the figure legend. We also
note that the input genotype data from 1000 Genomes Project samples was obtained from a
single source—the high-coverage (30×) sequencing study by the New York Genome Center
(Byrska-Bishop et al., 2022, Cell, doi: 10.1016/j.cell.2022.08.004), whereas Geuvadis used an
earlier version of these genotype data based on lower coverage sequencing.

Major Comment #5

The authors point out the lack of population labels in GTEx. Given their analyses here, they are
able to infer ancestry for each participant, though. It would be very useful if the authors could
provide population assignments for GTEx samples based on their work for use in future studies. I
cannot speak to any administrative challenges in terms of interfacing with GTEx, but is this
logistically possible?

Thank you for this idea for facilitating future research, which is one of the primary goals of our
study. As noted in other parts of these reviews, the relationship between genetic ancestry, race,
and geographically defined population labels is complex and fraught with a long history of
scientific racism. As such, we are wary of assigning discrete population labels to a study where
such labels were not clearly defined. We note that GTEx provides self-reported race as part of its
controlled-access metadata. To address the reviewer's comment and noting the distinction
between race and ancestry, we now provide principal component scores (for the top 20 PCs) for
all samples displayed in Figure 1, which include 1000 Genomes samples from MAGE, Geuvadis,
and AFGR as well as the MKK HapMap samples from AFGR and all samples from GTEx. We
hope that these data will enhance the transparency and reproducibility of our study while also
facilitating future analyses of the distribution and evolution of gene expression across diverse
human populations.
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Major Comment #6

The authors cite their findings as indicative of negative and stabilizing selection at different
points in the manuscript. This is not wrong per se, but a bit of explanation for readers not
embedded in evolutionary genomics might help unpack the interpretation of how both modes of
selection can be invoked. E.g., evidence for maintenance of expression levels = stabilizing
selection, but the constraint on DNA sequence underlying the eQTL used to support this
argument is actually from negative selection removing sequence variation.

This is a very good suggestion. We now refer to the previously reported signatures as evidence of
negative selection, removing the reference to stabilizing selection from the figure legends.
However, we have also added a sentence describing the results of our analyses upon conditioning
on the direction of eQTL effect. Because our results are consistent regardless of whether the
minor allele increases or decreases expression of the respective genes, we interpret this as
evidence of stabilizing selection, as follows:

"The shift toward smaller eQTL effect sizes in highly constrained genes holds regardless of
whether the minor allele is associated with higher (Δ mean = -0.284; two-tailed|𝑙𝑜𝑔

2
(𝑎𝐹𝐶)|

Wilcoxon rank sum test: W = 989,366, p = 5.58 × 10-50) or lower expression (Δ mean
= -0.244; two-tailed Wilcoxon rank sum test: W = 1,074,750, p = 5.39 × 10-43),|𝑙𝑜𝑔

2
(𝑎𝐹𝐶)|

consistent with a model of stabilizing selection whereby gene expression is maintained within an
optimal range."

We hope that this more explicit test and explanation helps clarify these concepts for readers from
diverse fields.

Major Comment #7

Also regarding evolution, could the authors utilize more localized selection statistics to assess the
impact of negative selection on expression related loci? Currently they are just using the
gene-level metric pLI, but this would miss any nuance of the particular area of a gene that might
be under strongest evolutionary constraint. Zooming in to narrower areas around the causal
variant to show signals of elevated negative selection would be even more convincing than a
gene-wide score.

The purpose of our original analysis was to demonstrate the association between constraint
against loss-of-function protein-coding sequence variation (i.e., pLI) and constraint against
expression-altering variation (i.e., number of credible sets and eQTL effect sizes). We have
revised the text to state this conclusion more explicitly.

Nevertheless, this is a very interesting suggestion. In seeking to address it we considered several
different analyses, but one central challenge we encountered is that metrics of negative selection
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based on levels of polymorphism in regions that may harbor eQTLs (i.e., near fine-mapped
causal variants) will be circular, as we seek to test whether eQTLs are depleted in these very
regions. To avoid this circularity, we turned to divergence/conservation data in the form of
phyloP scores (based on multiple alignment of mammal genomes) averaged within intervals
around transcription start sites that define putative promoter elements based on various intervals
around the TSS. Consistent with the gene-level pLI results, genes with strong evolutionary
conservation across species within putative promoter regions possess significantly fewer credible
sets and smaller eQTL effect sizes, on average, compared to genes with less conservation in the
same regions. These results are now integrated into the relevant main text of the manuscript and
supplementary figure (Fig. S14), which are also copied below:

"These results suggest an association between constraint against loss-of-function protein-coding
sequence variation (i.e., pLI) and constraint against expression-altering variation (i.e., number
of credible sets and eQTL effect sizes). This association holds for several other metrics of
mutational constraint that include intolerance to copy number variation (i.e., pHaplo and
pTriplo) as well as divergence-based estimates of sequence conservation in putative promoter
elements (Fig. S14). Together, our results are consistent with previous analyses demonstrating
weak, but measurable selection against expression-altering variation33."
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Figure S14. Evidence of negative selection on expression-altering variation across a range of mutational constraint
metrics. A. Top row: number of credible causal sets for genes in (pink) and outside (blue) the top decile of various gene-level
constraint metrics (pLI79, LOEUF79, pHaplo80, pTriplo80, hs81, RVIS78) obtained from the literature. Bottom row: effect sizes
(|log2(aFC)|) of lead eQTLs within (pink) and outside (blue) the same categories. B. Same as panel A, but for mean PhyloP
scores summarizing conservation among genome sequence alignments of 447 mammals within putative promoter elements,
defined based on intervals around the TSS ([-1000, 1000] bp, [-500, 0] bp, [-50, 0] bp).

Minor Comments:

Minor Comment #1

Figure 1 legend – ADMIXTURE plots are described as presenting ‘hypothetical’ ancestry
components. I think a better word choice could be used – inferred would be more technically
correct.

Thank you for this suggestion. This change has been made.
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Minor Comment #2

The dashed lines in figure 3 are not the most intuitive (the line looks like a threshold definition
on first glance), though I appreciate what the authors are trying to accomplish by including them.
A different way to visualize this might be better… perhaps a bracket?

Thank you for this suggestion. We have replaced the dashed line with a bracket in panel A and an
arrow in panel B, which we hope the reviewer agrees is more intuitive.

Minor Comment #3

There are some font/formatting issues to be fixed.

Thank you for bringing this to our attention. We have done our best to check that all fonts and
formatting are displayed as intended in the resubmitted manuscript.
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Reviewer Reports on the First Revision: 

Referees' comments: 

Referee #1 (Remarks to the Author): 

The authors have satisfactorily addressed my comments and concerns. I especially appreciate the 
addition of the PAGE coloc analyses and more detailed discussion. I have a couple minor suggestions 
that could further improve the paper’s presentation: 

1. In the Fig 2 violin plots, the medians/boxes do not look different for splicing. Is there a better way
to plot these results? At minimum, I suggest including the statistical test results in the figure legend
to show how you determined that the variance differs among populations.

2. Your GitHub repo is well organized, and I especially appreciate the READMEs describing the code
used for each major analysis. The only major analysis currently missing a README when I reviewed
your code is the ADMIXTURE directory, please add. I also suggest numbering each major analysis
directory in the order required to reproduce your work.

Thanks, 
Heather Wheeler 

Referee #1 (Remarks on code availability): 

I can confirm the data are publicly accessible as raw reads and results summaries. 

While I did not test the code, the GitHub repo is well annotated, well organized, and includes 
separate READMEs for most major analyses performed, which will make a great resource for the 
community. 

Referee #2 (Remarks to the Author): 

The authors did a fantastic job at addressing my comments. I have no further comments. 



Referee #3 (Remarks to the Author): 

In the revised version of this manuscript, Taylor et al. have taken care to expand discussion of the 
nuanced topic of ancestry in multiple sections, including in revision of Figure 1 and its legend, and in 
the main text at several points. They also have provided more context about the added value of their 
new resource given the landscape of existing resources, as well as clearly laid out its limitations. I 
thank the authors for their thorough consideration of this and the other reviewers’ suggestions and 
now find this manuscript suitable for publication in Nature. 

Referee #3 (Remarks on code availability): 

The github page is very nicely organized, and all scripts utilized across the various analyses appear to 
be in place. 

The zenodo link in the mansucript has a typo - I manually located the MAGE code at 
10.5281/zenodo.10072081. 



Referee #1 

Comment #1 

In the Fig 2 violin plots, the medians/boxes do not look different for splicing. Is there a better way to plot 

these results? At minimum, I suggest including the statistical test results in the figure legend to show how 

you determined that the variance differs among populations. 

We agree that while statistically significant, these differences are minute and thus visually imperceptible. 

However, we believe that this represents the most honest and transparent presentation, so we have opted 

to retain this version in the main text. To address the reviewer’s comment, we note that Fig. S7 depicts the 

estimated mean variance within each continental group (for both expression level and splicing) and the 

standard error of the mean, which makes the differences between the continental groups more apparent 

(though note the y-axis scale). Additionally, we have followed the referee’s suggestion and included the 

statistical test results from the main text in the legend of Fig. 2 (e.g. “Variance in expression level differs 

between continental groups; p < 1 × 10-10, one-tailed analysis of deviance.”). 

Comment #2 

Your GitHub repo is well organized, and I especially appreciate the READMEs describing the code used 

for each major analysis. The only major analysis currently missing a README when I reviewed your 

code is the ADMIXTURE directory, please add. I also suggest numbering each major analysis directory in 

the order required to reproduce your work. 

Thank you for making us aware of this omission. Code for the ADMIXTURE analysis has been added to 

the Github in the relevant directory. Additionally, the major analysis directories have been numbered, as 

suggested by the reviewer. 

Referee #3 

Comment #1 

The zenodo link in the mansucript has a typo - I manually located the MAGE code at 

10.5281/zenodo.10072081. 

We provided two Zenodo DOIs in the manuscript. The MAGE published downstream data is available 

here: 10.5281/zenodo.10535719. A copy of the MAGE Github repository with analysis and figure 

generation code is available here: 10.5281/zenodo.10072080, which is a version-agnostic link to the same 

page the reviewer linked. As far as we can tell, both links are functioning. 

Author Rebuttals to First Revision:
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