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Dear Professor Malmberg, 

As you know your Resource, "Pan-cancer profiling of tumor-infiltrating natural killer cells through 

transcriptional reference mapping" has now been seen by 2 referees. In light of their comments, and 

your recent email describing how you would address them we would be very interested in considering 

a revised version that addresses these concerns. 

If you choose to revise your manuscript taking into account all reviewer and editor comments, please 

highlight all changes in the manuscript text file [OPTIONAL: in Microsoft Word format]. 

We are committed to providing a fair and constructive peer-review process. Do not hesitate to contact 

us if there are specific requests from the reviewers that you believe are technically impossible or 

unlikely to yield a meaningful outcome. 

If revising your manuscript: 

* Include a “Response to referees” document detailing, point-by-point, how you addressed each

referee comment. If no action was taken to address a point, you must provide a compelling argument.

This response will be sent back to the referees along with the revised manuscript.

* If you have not done so already please begin to revise your manuscript so that it conforms to our

Resource format instructions at http://www.nature.com/ni/authors/index.html. Refer also to any

guidelines provided in this letter.

* Include a revised version of any required reporting checklist. It will be available to referees (and,

potentially, statisticians) to aid in their evaluation if the manuscript goes back for peer review. A

revised checklist is essential for re-review of the paper.
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The Reporting Summary can be found here: 

https://www.nature.com/documents/nr-reporting-summary.pdf 

 

When submitting the revised version of your manuscript, please pay close attention to our 

href="https://www.nature.com/nature-portfolio/editorial-policies/image-integrity">Digital Image 

Integrity Guidelines. and to the following points below: 

 

-- that unprocessed scans are clearly labelled and match the gels and western blots presented in 

figures. 

-- that control panels for gels and western blots are appropriately described as loading on sample 

processing controls 

-- all images in the paper are checked for duplication of panels and for splicing of gel lanes. 

 

Finally, please ensure that you retain unprocessed data and metadata files after publication, ideally 

archiving data in perpetuity, as these may be requested during the peer review and production 

process or after publication if any issues arise. 

 

 

You may use the link below to submit your revised manuscript and related files: 

 

[REDACTED] 

 

If you wish to submit a suitably revised manuscript we would hope to receive it within 6 months. If 

you cannot send it within this time, please let us know. We will be happy to consider your revision so 

long as nothing similar has been accepted for publication at Nature Immunology or published 

elsewhere. 

 

Nature Immunology is committed to improving transparency in authorship. As part of our efforts in 

this direction, we are now requesting that all authors identified as ‘corresponding author’ on published 

papers create and link their Open Researcher and Contributor Identifier (ORCID) with their account on 

the Manuscript Tracking System (MTS), prior to acceptance. ORCID helps the scientific community 

achieve unambiguous attribution of all scholarly contributions. You can create and link your ORCID 

from the home page of the MTS by clicking on ‘Modify my Springer Nature account’. For more 

information please visit please visit www.springernature.com/orcid. 

 

Please do not hesitate to contact me if you have any questions or would like to discuss the required 

revisions further. 

 

Thank you for the opportunity to review your work. 

 

Sincerely, 

 

Jamie D.K. Wilson, D.Phil 

Chief Editor 

Nature Immunology 

212 726 9207 

j.wilson@us.nature.com 

http://www.springernature.com/orcid
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In the resource “Pan-cancer profiling of tumor-infiltrating natural killer cells through 1 transcriptional 

reference mapping” the group of Malmberg have generated some highly useful reference maps of NK 

cell transcriptional state from both public and in-house datasets. 

 

The paper is well written, logical and offers up a rich dataset for the field. My only general comment 

worth addressing with further work is that there could be more effort to highlight some biologically 

meaningful outputs or validation from the dataset. Even if speculative, it would be a nice value-add if 

some emerging questions of NK cell biology in the context of cancer immunotherapy were investigated 

further (as highlighted below) 

 

Specific comments: 

 

The authors found that TrNK and TiNK cells have a clear tissue residency signature but still share the 

dominant regulons of blood CD56bright and CD56dim NK cells, when defining “residency” are there 

any incoming signals that are discussed in Figure 8 that add to this definition? There is a dialogue 

around how “residency” is achieved and whether “residency signatures” are really “activation 

signatures” rather than defined by location. 

 

 

A dysfunctional ‘stressed’ CD56bright state susceptible to TME-associated cellular communication and 

a cytotoxic ‘effector’ CD56dim state resistant to TME-associated cellular communication were 

commonly enriched across tumor types. Are there inputs or incoming signals from conventional 

suppressive sources (PGE2, A2, TGFb, IL-10) that in pact on this TME-associated cellular 

communication? 

 

However, while adaptive donors NK cells continued their progression to intermediate CD56dim cells, 

terminating in the adaptive population, conventional donors instead branched into the intermediate or 

late CD56dim populations. What are some biological implications for this finding? 

 

 

PRDM1 (BLIMP1) in mouse is a terminal TF (decreasing in late differentiation in this resource dataset) 

and typically associated with reduction in proliferation and cytokine responsiveness. Were these last 2 

parameters inversely correlated with PRDM1 expression in these human datasets? 

 

 

Regarding the relevance of this dataset in revealing novel actionable pathways in tumor-resident NK 

cells, It would be helpful to know how the 6 subsets change with age since most cancer patients are 

50 years and above. Is there skewing of peripheral NK cells towards later subsets with age (skewing 

that follows the pseudotime predictions of differentiation in figure 2)? I would imagine that this 

impacts the quality and type of tumor infiltrating NK cell in elderly tumors versus younger patients but 
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I fear there might not be adequate data to look into this, even superficially? 427 patient scRNAseq 

data were analysed so I think some thought into this question could add to this resource utility. Even 

banking these into 25% eldest v 25% youngest of a similar tumor type? 

 

Understanding of NK cell metabolism is growing and differential metabolic programs in NK cells from 

healthy tissue versus tumors, or from tumors with high NK cell infiltration (SKCM) versus low NK cell 

infiltration may shed light on NK cell fate in these circumstances. Can the metabolome be investigated 

further, again, superficially from these datasets to glean some novel learnings and outputs of the 

resource? They mention the “stressed state” having more metabolic activation (glycolysis, cholesterol 

homeostasis, fatty acid metabolism) but it could be insightful to dig a little deeper than GSEA and look 

at specific regulators of Ox Phos/mito stress v Glycolysis v fatty acid met v nutrient sensing for 

example. 

 

There is a generalization of effector function to be cytotoxicity genes, but pre-clinical evidence 

suggests that NK cells might be an important source of chemokines that contributes to an inflamed 

TME. Is there evidence supporting this from looking at inflamed melanoma v excluded prostate cancer 

samples? There is interest in this question and some debate so a helpful biology output from this data 

could shed some light on this question. Specifically, can you segregate cytotoxic programs from 

chemokine programs in “effector” NK cells? Can this be prognostic? 

 

Similarly, how does the chemokine receptor expression and signaling differentially impact the tumor-

infiltrating NK cell subsets and states? How do they impact NK-rich/inflamed v NK-poor/desert? GCPRs 

such as CCR5, CCR2, CXCR3, CMKLR1 are putative regulators of NK cell infiltration into solid tumors 

so some analysis of these in the context of the resource would be helpful to the readers. 

 

In figure 6, can one make any inference of incoming signals from with HLA-E on tumor versus HLA-E 

on NK cells and KLRC1/KLRD1 status? In NSCLC where maybe a signal is being observed with 

Monalizumab, is there stronger evidence of this incoming signal in TRANS v CIS? 

 

 

 

Reviewer #2: 

In this manuscript, Netskar and colleagues describe a set of bioinformatics analyses conducted on 

single-cell RNA sequencing data of NK cells extracted from peripheral blood, healthy tissues, and solid 

tumours. Employing knowledge of conventional stages of NK cell development in peripheral blood, 

defined by surface markers, the authors construct transfer learning models aimed at identifying 

distinct and common gene expression profiles. Subsequently, these models are applied to tissue- and 

tumour-derived NK cells, revealing their inherent ability to maintain either CD56bright or CD56dim 

expression patterns within their respective environments. Furthermore, they show that NK cells from 

these datasets can be categorised into six groups, where unique expression profiles can be linked to 

better survival in specific solid-tumour cancer types. 

 

Overall, this paper provides an extensive analysis of NK cell transcriptional programs and has the 

potential to be a thoroughly useful resource for NK cell biologists. Collecting NK cell signatures from 

multiple tissues and tumours and showing that there are conserved programs is of high interest to the 

field, particularly for translational scientists looking to genetically modify NK cells for tailored 

treatments of cancers. 
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I have the following main concerns 

 

1. The NK cell differentiation model proposed is not entirely supported by the analysis 

In Figure 1c, the authors sort NK cell populations according to surface markers used in the field to 

define NK cell differentiation stages (CD56, NKG2A, self MHC specific (s)-KIR, CD57 and NKG2C). 

From this analysis it results that there is a considerable overlap of dimensional representation (and 

possibly of gene expression) between intermediate and late NK, questioning the ability of these 

markers to resolve different and subsequent stages of NK cell differentiation. 

However, the findings from this experiment do not completely align with subsequent analyses in 

Figures 1D and 1E, where these populations are annotated to form separate clusters with no apparent 

major overlap. It is unclear which genes separate these populations, as these do not separate them in 

1C. From which data this representation is generated? For example, how is the scVI representation in 

1A, where there is no obvious cluster structure different from the plots in 1E? Signatures are shown in 

1F, but this dot-plot contains several redundant and overlapping genes and can be more difficult to 

follow than a conventional dot-plot of each population and unique per-cluster genes. 

The limitations of the proposed differentiation model are further highlighted by analysis in Figures 2C 

and 2D, where PAGA trajectory shows cells from the Early CD56dim population differentiating into 

either Intermediate CD56dim or Late CD56dim, with no description as to signatures that may 

influence this directionality. This phenomenon might relate to the large similarity between 

Intermediate or Late CD56dim. The authors should clarify these points and critically discuss the 

validity of the differentiation model proposed. 

 

2. Validity of tissue cell-type annotation and tissue-specific NK cell signatures 

The authors perform an extensive and impressive re-analysis of 136 scRNA-seq datasets (Figure 3A, 

detailed in supplementary figure 3), with the goal of extracting tumour NK cells for comparison with 

those in peripheral blood. 

I have two major criticisms here: 

A-The validity of cell lineage annotation in tissues (NK cells versus “ILC”) needs to be ascertained 

In Figure 3B, the authors use a combination of the prediction algorithm CellTypist (which model is 

used, is it the same for all tissue samples?), CITE-seq (where available) and their own clustering 

methods to identify cell types. Could the authors expand on how they define NK cells, in the context of 

the entire tissue dataset? What really separates NK cells from what is loosely defined as “ILCs”? Which 

ILC lineages, ILC3, ILC2, ILC1? 

Some examples: in Figure 1F of peripheral NK cells, the authors show high expression of CST7, CMC1 

and KLRB1 across all NK subsets. This is in contrast to where the authors now propose that TRDC, a 

primarily T cell-specific gene, is specific to CD56bright NK cells, a plausible difference for tissue NK 

cells. The presence of XCL1 being a unique marker of ILCs (ILC2? ILC3? Are there overlapping tissue 

signatures with NK?), which the authors have included in the NK CD56bright score from Figure 1B. 

 

B-Tissue-specific NK cell signatures are underappreciated 

By integrating the tissue-derived NK cell data with those from peripheral blood NK, I think the authors 

miss the chance here to highlight what would be most interesting to the readers: identifying reliably 

tissue-resident NK cells as well as the heterogeneity of the tissue-specific signatures. 

The authors conclude from Figures 3E and 3F that there is a high degree of heterogeneity within 

tissues, but a conservation of either a CD56bright or CD56dim peripheral identity, shown by a 

measure of 'connectivity' but no specific gene signature overlap/divergence. The context of tissue NK 

cells within the total tissue dataset is critical, as placing any cell between the two states (here, 

CD56bright or CD56dim), will always place it somewhere between one of them. There should be more 
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detailed content on the signature behind the overlap and the divergence between tissue and PB NK 

cells, and on the signatures across different tissues. An integrative analysis combining all those 

datasets depicted in Supplementary Figure 3 could not only remove doubts from NK cell type 

annotation but also provide an extensive comparison of tissue-resident signatures that have been 

notoriously difficult to define for human NK cells versus ILC1s. 

Finally, bearing in mind that this dataset is comprised of several donors, across many batches, labs 

and tissue origins - how is the data integrated, and how was this determined to be the best method of 

integration and representation? 

 

3. Identification of stressed NK cells in tumours should be further validated 

The presence of a 'stressed' NK population (neighbourhood 1 in figure 5A) could certainly be an 

interesting finding; however, several steps are needed to validate that this is not an artefactual finding 

(for example those found in 10.1038/s41593-022-01022-8): 

i. Are count matrices corrected for ambient RNA removal with a tool like CellBender, soupX or 

decontX? 

ii. Are tissue dissociation methods for skin different from those for solid tumours? The distribution of 

SKCM (Fig 3H) suggests that these NK cells either have a highly-specific signature, which will skew the 

representation and work against the method milo attempts to use, or that during dissociation of skin 

samples, a signature is generated which is highly different from other cancer types - both entirely 

plausible possibilities 

iii. Previous single cell RNA sequencing papers describe cell populations with up-regulation of genes for 

heat shock proteins (10.4110/in.2020.20.e34) and several reports even suggest dissociation methods 

which minimise these effects, specifically for tumours (10.1186/s13059-019-1830-0) 

 

4. Relevance for tumour immunology 

The focus of NK cells in tumours and tissues is the particular strength of this paper, and even with 

other criticisms above it should not be lost how valuable this analysis is. However, the final set of 

figures in 6B-E about cell interaction analysis remains the weakest part of this paper, particularly as it 

is a very straightforward piece of analysis within one R package and could be expanded. 

The clarity of each of these plots' accuracy is questionable, as each ligand/receptor is measured by an 

arbitrary 'strength', and no validation is given of any of these interactions. If one of these pathways 

were validated in vitro, it would lend significant strength to the study. 

 

Specific points: 

The utility of the representation in Figure 3C is unclear. There have been 6 representations of 

peripheral blood NK cells by this point in the paper. Some more uniformity and clear description in 

each Figure legend of which data set is used for which representation would be very useful. 

 

In Figure 5A, the authors utilise their final model to understand and interrogate inter-tissue and inter-

tumour differences by using milo to detect neighbourhoods of cells in a cluster-free fashion. This 

method works by comparing intra-neighbourhood differences, instead of against each other, and is 

highly dependent on the data's preparation, including normalisation, variable features, representation 

method and number of neighbours used. 

It is unclear how the authors determined that this is the optimal way to represent this data, which this 

method is so sensitive to. Would the results be different if they used the diffusion map, tSNE, or scVI 

representation? 

 

Figure 6A shows survival curve analysis of 7 cancer types, split by whether they are enriched for 
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signatures of NK cells of neighbourhoods 1 or 3. It is unclear which genes are used to split these 

samples, such as differential gene expression between group 1 and group 3, or group 1 and 

everything else, etc. Are these NK cell-specific, or are they found in the wide tissue/tumour dataset? 
 

 

Author Rebuttal to Initial comments   

See inserted PDF 

 

  



Dear editor and reviewers 

We are grateful for the positive evaluation and thorough review of our pan-cancer NK cell reference 
atlas. During the past months we have addressed the technical questions and validated some of the key 
findings related to stress signatures and CellChat pathways. Key changes to the manuscript are 
described below and specifically in the point-by-point response. 

Technical questions 
Ambient RNA. We ran decontX, one of the tools suggested by reviewer #2, to adjust the count matrices 
for ambient RNA. decontX can run without empty droplet-data, allowing us to adjust the matrices also 
for the data where only the filtered count matrices have been made available. We adjusted the matrices 
for each sample for all the tissue and tumor types. The biggest differences between the adjusted and 
non-adjusted matrices were often seen in ribosomal and mitochondrial genes, and other genes that have 
not been important in the downstream analysis. However, since this step is upstream in the data analysis 
workflow, we had to recreate the whole atlas and redo all downstream analyses, including GRN 
networks, CellChat, Milo, Bayes prism deconvolution and survival analysis. As a consequence, many 
panels in Figure 3-6 have been slightly modified but all previous findings and interpretations could be 
corroborated. All models have been updated in the online resource. 

Dissociation stress. We scored each sample for the dissociation related stress signature identified in one 
of the papers cited by reviewer #2 (10.1186/s13059-019-1830-0). From analysis of these scores we 
found no evidence that individual samples or tissue/tumor types are particularly affected by upstream 
processing of tissues. Specifically, we did not see a particularly high expression of these signatures in 
the melanoma and skin samples as opposed to the other tumor/tissue types. These samples also don’t 
have different dissociation methods compared to the other tumor/tissue types. Perhaps more 
importantly, we could validate the cell type composition and presence of a strong Group 1 NK cell 
signature, including ROS signalling, hypoxia and stress response pathways in spatial RNA-seq data 
from melanoma and lung cancer samples, which have not undergone any tissue dissociation. New Fig. 
7. 

Data integration. Another computationally challenging effort during the revision was to integrate all 
immune cells across all tissues and tumors. We reintegrated the adjusted count matrices for each tumor 
and tissue type. As suggested, we also integrated all the immune cells across all tumors and all tissues 
and redid the cell type annotations for the integrated datasets using Celltypist v2. This led to some small 
difference in the cell type annotations. We then redid the rest of the downstream analysis using these 
new cell type labels. We also looked further into different ILC signatures and scored these on the cells 
that we had annotated as ILCs. See further details in the point-by-point response. We are grateful for 
this suggestion, that clearly has made the resource more powerful since the it will allow studies of 
common patterns and those unique to specific tumor types. Perhaps the most striking outcome of this 
exercise was the definition of a new atlas-derived tissue residence signature that outperform the 
previous literature-based score in identifying both CD56bright and CD56dim NK cells in the tumor 
(Revised Fig. 3e and Extended Data Fig. 5e-g). 

Validation 
Given the amount of data integrated in this resource it would be impossible to follow all leads and dive 
into all facets of the resource. Likewise, it is not feasible to validate all the possible angles and pathways 
across all tissues and tumor types. After rebuilding the reference atlas, we choose to validate four 
aspects related to i) the composition, ii) the stress signature, iii) incoming signals in CellChat, iv) 
outgoing signals in the CellChat analysis. 

In terms of validating the compositional analysis, we performed flow cytometry analysis on tumor 
infiltrating NK cells in 25 patients with lung cancer, with 19 healthy donors as control, and found that 
the subset distribution largely matched the one extracted from the resource, with an increased frequency 
of CD56bright TiNK cells in central areas of the tumor and a similar subset distribution as the one derived 



from scRNAseq (New Fig. 4f, g). We also analysed the deconvoluted myeloid and lymphocyte 
compartment in select spatial RNA-seq samples of GBM, NSCLC and SKCM, showing a very good 
match with the average composition in the resource (scRNAseq) (New Fig. 7a-b).  
 
In terms of validating the stress signature, in addition to measures described above to exclude 
dissociation stress, we display a set of selected genes contributing to each of the programs, including 
the metabolism genes requested by Reviewer 1 (Revised Fig. 5). As described above, these same 
programs were high in Group 1 NK cells found in spatial transcriptomics data from SKCM (Fig. 7).  
 
In terms of validating incoming signals, we choose to look closer at the NKG2A/HLA-E pathway in 
the context of anti-NKG2A (monalizumab biosimilar) therapy as suggested by Reviewer 1. This was 
one of the dominating incoming signals to CD56bright TiNK cells in the CellChat analysis across all 
tumor types (Revised Fig. 6). Although, the NKG2A-HLA-E checkpoint is well described, its role in 
regulating CD56bright NK cell responses and the potential reversal of this by therapeutic anti-NKG2A 
has not been formally addressed. We therefore performed functional experiments on PB-NK cells and 
show that degranulation and cytokine production by CD56bright NK cells is shut down by IFN-treatment 
of lung cancer cell lines, resulting in HLA-E upregulation, and efficiently restored by anti-NKG2A 
treatment. Revised Fig. 6j-k and Extended data Fig. 9). These data are discussed in the context of 
significant outgoing signals specifically from Group 1 CD56bright NK cells in the tumor, releasing IFN-
g (Revised Fig. 6e-g).   
 
Finally, we found that one of the major outgoing signals from cytotoxic Group 3 CD56dim NK cells was 
granzyme A. Although we cannot formally prove specific release of Granzyme A in the tumor we found 
that tumor infiltrating NK cells (primary NSCLC samples) displayed lower levels of granzyme A 
(Revised Fig. 6h-i). Notably, the granzyme A signature was also corroborated in spatial transcriptomics 
data (New Fig. 7e). 
 
 
Reviewer #1 
 
(Remarks to the Author) 
In the resource “Pan-cancer profiling of tumor-infiltrating natural killer cells through 1 
transcriptional reference mapping” the group of Malmberg have generated some highly useful 
reference maps of NK cell transcriptional state from both public and in-house datasets.  
 
The paper is well written, logical and offers up a rich dataset for the field. My only general comment 
worth addressing with further work is that there could be more effort to highlight some biologically 
meaningful outputs or validation from the dataset. Even if speculative, it would be a nice value-add if 
some emerging questions of NK cell biology in the context of cancer immunotherapy were 
investigated further (as highlighted below) 
 
Author response: We thank the reviewer for these positive remarks and for the careful review and 
helpful suggestions.  
 
Specific comments: 
 
1. The authors found that TrNK and TiNK cells have a clear tissue residency signature but still share 
the dominant regulons of blood CD56bright and CD56dim NK cells, when defining “residency” are 
there any incoming signals that are discussed in Figure 8 that add to this definition? There is a 
dialogue around how “residency” is achieved and whether “residency signatures” are really 
“activation signatures” rather than defined by location.  
 
Author response: The discussion of tissue residency signatures was also brought up by reviewer 2, point 
2b. We agree with both reviewers that the definition of tissue residency remains a bit vague and has so 



far not been robustly defined for NK cells and is an intense area of research. We originally used a set 
of genes commonly associated with tissue residency in both T cells and NK cells to score tissue 
residency of immune cells in the tissue/tumor samples analysed in this resource (now referred to as 
literature-based tissue residence score “literature-TR signature”). However, after integration of all 
immune cells across all tissues, as requested by Reviewer 2, we made a new comparison of differentially 
expressed genes (DEG) between TrNK cells and PB-NK cells. This turned out to be a very powerful 
analysis and we identified several new DEGs, not previously used to score tissue residency in NK cells, 
which were enriched in both CD56bright and CD56dim NK cells in tissues. We were able to generate a 
solely NK-derived tissue-residency signature (atlas-TR: PSMA2, SLC5A3, CCL4L2, CLN3, 
SCGB1A1, AREG), which outperformed the conventional literature-derived TR signature across tissue 
and tumor type (Revised Fig 3e and Extended Data Fig 5e-g.). Expression of CCL4L2, encoding a 
chemokine which induces chemotaxis of CCR5 and CCR1-expressing cells, such as T cells, dendritic 
cells and macrophages, has previously been described in NK cells isolated from melanoma samples (ref 
63). This represents an independent verification, as this dataset was not included in our study. These 
melanoma-infiltrating NK cells also exhibited high AREG expression, an EGF receptor ligand. Notably, 
upregulation of AREG has also been described in the setting of healthy and cirrhotic liver-resident NK 
cells (ref 64), a tissue type not included in our pan-cancer atlas. Intriguingly, SCGB1A1, a member of 
the secretoglobin family, functions as a potent inhibitor of phospholipase A2 (ref 65), a well described 
immunosuppressive molecule contributing to development of the TME. Hence, it is tempting to 
speculate that secretion of the SCGB1A1-encoded protein could be another effector mechanism through 
which TiNK cells can positively contribute to remodeling of the TME. These new results are discussed 
on page 20. 
 
 
2. A dysfunctional ‘stressed’ CD56bright state susceptible to TME-associated cellular communication 
and a cytotoxic ‘effector’ CD56dim state resistant to TME-associated cellular communication were 
commonly enriched across tumor types. Are there inputs or incoming signals from conventional 
suppressive sources (PGE2, A2, TGFb, IL-10) that in pact on this TME-associated cellular 
communication? 
 
Author response: These suppressive pathways were not captured as dominant NK cell specific incoming 
signals in the CellChat analysis. However, TGFb signaling was increased in stressed Group 1 NK cells 
and key genes making up this score are now depicted in Revised Fig. 5k, as are genes related to 
prostaglandin signaling. In the revised manuscript we have described the stress signature in more detail 
and validated its presence in spatial transcriptomics data (New Fig. 7). Additionally, SCGB1A1 (part 
of the atlas-TR signature), encodes for a secreted protein that functions as a potent phospholipase A2 
inhibitor and expression of which is commonly upregulated on Tr- and Ti-NK cells.  
 
3. However, while adaptive donors NK cells continued their progression to intermediate CD56dim 
cells, terminating in the adaptive population, conventional donors instead branched into the 
intermediate or late CD56dim populations. What are some biological implications for this finding? 
 
Author response: This is related to the concern raised by Reviewer 2, point 1 regarding the 
transcriptional similarity of intermediate and late NK cells in conventional donors where the repertoire 
has not undergone adaptive reprogramming following CMV infection. We do not have evidence to 
suggest a branching differentiation. These two differentiation stages within the CD56dim subset are very 
similar transcriptionally. Nevertheless, unbiased clustering algorithms consistently identify three 
clusters within the CD56dim subset, here referred to as early, intermediate, and late.  
 
We revised the wording on Page 8-9: “However, while adaptive donor NK cells continued their 
progression to intermediate CD56dim cells, terminating in the transcriptionally distinct adaptive 
population, conventional donors instead progressed towards intermediate/late CD56dim populations 
(Fig. 2c-d).” 
 
 



The functional consequences of this gradual progression through differentiation, with loss of NKG2A, 
acquisition of killer cell immunoglobulin-like receptors (KIR) and CD57, is well established in the field 
and carefully referenced in the introduction of the manuscript. In brief, early CD56dim NK cells express 
NKG2A, are cytokine responsive, secrete high amounts of IFNg, and show prominent proliferative 
responses. Intermediate CD56dim NK cells have acquired KIR and are therefore functionally tuned 
(through education) by interactions with self HLA-class I. We have expanded the discussion of the 
biological implication of the established knowledge of the functional specialization of NK cells during 
differentiation. See page 19. 
 
4. PRDM1 (BLIMP1) in mouse is a terminal TF (decreasing in late differentiation in this resource 
dataset) and typically associated with reduction in proliferation and cytokine responsiveness. Were 
these last 2 parameters inversely correlated with PRDM1 expression in these human datasets? 
 
Author response: Trend 5 represents an average of all the genes that show a gradually increased 
expression over pseudotime. Within each trend there is a range of expression for individual TFs and 
genes. It is well established that cytokine responsiveness and proliferation is highest in CD56brights 
(beginning of pseudotime) and lowest in late CD56dim NK cells (CD57+ and/or Adaptive NK cells at 
the end of pseudotime). Hence, PRDM1 show an expression pattern indicative of being inversely 
correlated with cytokine responsiveness and proliferation. We highlight this inverse correlation in the 
description of the results (Fig. 2g, PRDM1 regulon has been added) and cite a relevant paper describing 
the role of BLIMP1/PRDM1 (Kallies, A. et al. A role for Blimp1 in the transcriptional network 
controlling natural killer cell maturation. Blood 117, 1869-1879 (2011).  
 
5. Regarding the relevance of this dataset in revealing novel actionable pathways in tumor-resident 
NK cells, It would be helpful to know how the 6 subsets change with age since most cancer patients 
are 50 years and above. Is there skewing of peripheral NK cells towards later subsets with age 
(skewing that follows the pseudotime predictions of differentiation in figure 2)? I would imagine that 
this impacts the quality and type of tumor infiltrating NK cell in elderly tumors versus younger 
patients but I fear there might not be adequate data to look into this, even superficially? 427 patient 
scRNAseq data were analysed so I think some thought into this question could add to this resource 
utility. Even banking these into 25% eldest v 25% youngest of a similar tumor type? 
 
Author response: This is indeed an interesting question but as suspected by the reviewer, the age data 
in the compiled resource from 39 studies are too sparse to make any statements regarding how this 
impacts the quality and type of tumor infiltrating NK cell in elderly versus younger patients.  
 
6. Understanding of NK cell metabolism is growing and differential metabolic programs in NK cells 
from healthy tissue versus tumors, or from tumors with high NK cell infiltration (SKCM) versus low 
NK cell infiltration may shed light on NK cell fate in these circumstances. Can the metabolome be 
investigated further, again, superficially from these datasets to glean some novel learnings and 
outputs of the resource? They mention the “stressed state” having more metabolic activation 
(glycolysis, cholesterol homeostasis, fatty acid metabolism) but it could be insightful to dig a little 
deeper than GSEA and look at specific regulators of Ox Phos/mito stress v Glycolysis v fatty acid met 
v nutrient sensing for example. 
 
Author response: We agree with the reviewer and have performed a deeper analysis of NK cell 
metabolism in the resource and across the identified states. We find that the stressed CD56bright cell state 
exhibited increased metabolic activation (glycolysis, cholesterol homeostasis, mTORC1) (Revised Fig. 
5g, i, l).   
 
7. There is a generalization of effector function to be cytotoxicity genes, but pre-clinical evidence 
suggests that NK cells might be an important source of chemokines that contributes to an inflamed 
TME. Is there evidence supporting this from looking at inflamed melanoma v excluded prostate cancer 
samples? There is interest in this question and some debate so a helpful biology output from this data 



could shed some light on this question. Specifically, can you segregate cytotoxic programs from 
chemokine programs in “effector” NK cells? Can this be prognostic?  
 
Author response: This is another great suggestion. We have revisited the CellChat analysis in the revised 
manuscript and now include an analysis of all seven tumors in Revised Fig. 6. To understand how NK 
cells contribute to shaping the TME via an immunomodulatory role, we focused our analysis on 
outgoing signaling largely restricted to NK cells. We identified three signaling pathways (CCL, PARs, 
IFN-II) through which NK cells predominantly communicated with dendritic cells, macrophages, 
fibroblasts and endothelial cells (Revised Fig. 6e-f). CCL3 and CCL5, expressed across all states, can 
lead to the recruitment of ACKR1, CCR1 and CCR4 expressing cells (Extended Data Fig 8h, Fig. 5n). 
These results are discussed on page 21. 
 
8. Similarly, how does the chemokine receptor expression and signaling differentially impact the 
tumor-infiltrating NK cell subsets and states? How do they impact NK-rich/inflamed v NK-
poor/desert? GCPRs such as CCR5, CCR2, CXCR3, CMKLR1 are putative regulators of NK cell 
infiltration into solid tumors so some analysis of these in the context of the resource would be helpful 
to the readers. 
 
Author response: These are also very relevant questions that can be addressed in the current resource. 
However, in the present version of the resource manuscript, we have not investigated the entire 
ecosystem within the tumor to extract information on the relationships between chemokine receptor 
repertoires (on all cell types), cell type and subset distribution, NK cell states, and the hot/cold status of 
the tumor. This is a very exciting problem but it has not been feasible to perform this analysis properly 
within the timeframe of this revision. We therefore limited the analysis to the signals that stood out as 
top pathways in the CellChat analysis, eg input to CXCR4. Notably, we recently reported a thorough 
investigation of the chemokine receptor repertoire and migratory responses in NK cells at different 
stages of differentiation alongside an analysis of chemokine expression in solid tumors (Lachota et al. 
“Mapping the chemotactic landscape in NK cells reveals subset-specific synergistic migratory 
responses to dual chemokine receptor ligation”. EBioMedicine. 2023 Oct;96:104811.). We discuss this 
topic briefly in the revised manuscript with reference to this recent publication and the regulation of 
NK cell infiltration. See page page 21. 
 
9. In figure 6, can one make any inference of incoming signals from with HLA-E on tumor versus 
HLA-E on NK cells and KLRC1/KLRD1 status? In NSCLC where maybe a signal is being observed 
with Monalizumab, is there stronger evidence of this incoming signal in TRANS v CIS? 
 
Author response: HLA-E is one of the dominating incoming (and outgoing) signals to NK cells derived 
from the CellChat analysis. As part of the general request to validate one or more of the inferred 
CellChat pathways, we focused on the HLA-E/NKG2A checkpoint in NSCLC. While we cannot make 
any robust statements on cis/trans regulation on single cells, NK cells and other lymphocytes in the 
TME express high levels of HLA-E and therefore contribute to the strength of this interaction in 
CellChat. Such interaction could theoretically be beneficial in terms of NK cell education but also 
problematic in the recognition of tumor cells (eg as a negative check-point). We analysed tumor 
infiltrating NK cells in 25 patients with NSCLC by flow cytometry and found that the repertoires closely 
resembled those derived from the scRNA-seq analysis with increased frequencies of CD56bright NK cells.  
 
Furthermore, Group 1 and 2 NK cells preferentially received inhibitory input via the MHC-I (HLA-
E/KLRC1) pathway due to high KLRC1 expression on these cellular states (Fig. 6a, d). Inhibitory 
signaling via the HLA-E axis significantly inhibited degranulation and granzyme B release of both 
CD56bright and CD56dim NK cells when co-cultured with A549 (NSCLC) targets cells pre-stimulated 
with IFNg to upregulate HLA-E expression (Fig. 6j-k, Extended Data Fig. 9a-e). Blocking the 
NKG2A/HLA-E axis, using an anti-NKG2A antibody, manifested in significant recovery of function, 
both degranulation and granzyme B release (Fig. 6j-k, Extended Fig. 9e). 



Reviewer #2 
 
(Remarks to the Author) 
In this manuscript, Netskar and colleagues describe a set of bioinformatics analyses conducted on 
single-cell RNA sequencing data of NK cells extracted from peripheral blood, healthy tissues, and 
solid tumours. Employing knowledge of conventional stages of NK cell development in peripheral 
blood, defined by surface markers, the authors construct transfer learning models aimed at identifying 
distinct and common gene expression profiles. Subsequently, these models are applied to tissue- and 
tumour-derived NK cells, revealing their inherent ability to maintain either CD56bright or CD56dim 
expression patterns within their respective environments. Furthermore, they show that NK cells from 
these datasets can be categorised into six groups, where unique expression profiles can be linked to 
better survival in specific solid-tumour cancer types. 
 
Overall, this paper provides an extensive analysis of NK cell transcriptional programs and has the 
potential to be a thoroughly useful resource for NK cell biologists. Collecting NK cell signatures from 
multiple tissues and tumours and showing that there are conserved programs is of high interest to the 
field, particularly for translational scientists looking to genetically modify NK cells for tailored 
treatments of cancers. 
 
Author response: We thank the reviewer for these positive remarks and for the careful review and 
helpful suggestions. 
 
I have the following main concerns 
 
1. The NK cell differentiation model proposed is not entirely supported by the analysis 
In Figure 1c, the authors sort NK cell populations according to surface markers used in the field to 
define NK cell differentiation stages (CD56, NKG2A, self MHC specific (s)-KIR, CD57 and NKG2C). 
From this analysis it results that there is a considerable overlap of dimensional representation (and 
possibly of gene expression) between intermediate and late NK, questioning the ability of these 
markers to resolve different and subsequent stages of NK cell differentiation. 
However, the findings from this experiment do not completely align with subsequent analyses in 
Figures 1D and 1E, where these populations are annotated to form separate clusters with no 
apparent major overlap. It is unclear which genes separate these populations, as these do not 
separate them in 1C. From which data this representation is generated? For example, how is the scVI 
representation in 1A, where there is no obvious cluster structure different from the plots in 1E?  
 
Author response: In response to this comment, we have modified the text/legend in Fig. 1 to better 
explain which representation is shown in each panel, which samples that are included and which labels 
that are used. First, we analyze the bulk NK data sets only and observe that we can integrate them and 
that the batch effects associated with the donor and lab are accounted for (Fig. 1a). We represent this 
also using diffusion map components as we believe that better captures the differentiation trajectory. 
Next, we trained a new model, a scANVI model, where we include both bulk NK and sorted subsets of 
NK cells (visualized in Fig. 1e). This model leverages cell type labels, in our case the subset labels, and 
in the resulting representation the cells belonging to the various subsets are better separated. The data 
displayed in Fig. 1e also contains many more cells/subset, specifically the CD56bright subset since there 
are much fewer cells in the bulk, which also leads to the separation of the clusters/subsets being much 
clearer. We only use this scANVI model for annotation of our data and the downstream analysis relies 
on the bulk data with varying proportions of the individual subsets which then allows us to consider the 
subset composition of the data analyzed. 
 
Signatures are shown in 1F, but this dot-plot contains several redundant and overlapping genes and 
can be more difficult to follow than a conventional dot-plot of each population and unique per-cluster 
genes. 
 



Author response: Unlike analysis of different cell types, there are few (if any) unique per cluster genes 
defining stages of NK cell differentiation. We feel the current plot is the best way of depicting the subset 
transitions, since it reflects the outcome of the scANVI differential expression analysis, in terms of the 
most differentially expressed genes in all possible comparisons of subsets and not just the ones high in 
one subset compared to all others. We discuss these signatures in the context of a continuous 
differentiation with relatively small transcriptional changes between some of these subsets. Notably, 
this classification of intermediate stages matches those defined previously by phenotypes (Fig. 1c), and 
unbiased Leiden clustering (Fig. 1g).  
 
The limitations of the proposed differentiation model are further highlighted by analysis in Figures 
2C and 2D, where PAGA trajectory shows cells from the Early CD56dim population differentiating 
into either Intermediate CD56dim or Late CD56dim, with no description as to signatures that may 
influence this directionality. This phenomenon might relate to the large similarity between 
Intermediate or Late CD56dim. The authors should clarify these points and critically discuss the 
validity of the differentiation model proposed. 
 
Author response: We think the reviewer is correct in suggesting that the branching tendency in the 
PAGA trajectory seen within the conventional donors, that have not undergone CMV-driven “terminal” 
differentiation into the adaptive state, is related to the large similarity between intermediate and late 
CD56dim NK cells. This similarity is both evident from Fig. 1d as well as the PAGA analysis where we 
see high levels of connectivity between these two subsets. See also response to reviewer 1, comment 3. 
As suggested, we have revised the legend of Fig. 1, removed the unsupported statements of branching 
differentiation in the results section, and briefly discuss the implications of the model on the functional 
traits along the differentiation axis.  
 
New wording on Page 8-9: “However, while adaptive donor NK cells continued their progression to 
intermediate CD56dim cells, terminating in the transcriptionally distinct adaptive population, 
conventional donors instead progressed towards intermediate/late CD56dim populations (Fig. 2c-d).” 
 
2. Validity of tissue cell-type annotation and tissue-specific NK cell signatures 
The authors perform an extensive and impressive re-analysis of 136 scRNA-seq datasets (Figure 3A, 
detailed in supplementary figure 3), with the goal of extracting tumour NK cells for comparison with 
those in peripheral blood. 
I have two major criticisms here: 
 
2A-The validity of cell lineage annotation in tissues (NK cells versus “ILC”) needs to be ascertained 
 
In Figure 3B, the authors use a combination of the prediction algorithm CellTypist (which model is 
used, is it the same for all tissue samples?), CITE-seq (where available) and their own clustering 
methods to identify cell types. Could the authors expand on how they define NK cells, in the context of 
the entire tissue dataset?  
 
Author response: In the submitted version of the manuscript, we used CellTypist (v1). After the 
upstream removal of ambient RNA and reintegration of the atlas, including a complete integration of 
all immune cells, we re-ran all cell type annotations, using CellTypist (v2), and all analyses downstream 
of the annotations.  The CITE-seq data and our own clustering/scoring of CD56bright and CD56dim NK 
cells, works as a validation of the annotation. This is further strengthened in Fig. 4d-e, where we provide 
a fine-grained annotation of CellTypist-identified NK cells using our trained model for subset 
annotation based on FACS-sorted subsets. Altogether, we are confident that this approach captures 
diverse stages of NK cells in normal tissues and tumors.  
 
What really separates NK cells from what is loosely defined as “ILCs”? Which ILC lineages, ILC3, 
ILC2, ILC1? 
 



Author response: Primarily we rely on the annotations resulting from running the CellTypist prediction 
algorithm and “ILCs” are defined by the signature provided by the CellTypist model. The model does 
include signatures also for ILC1, ILC2 and ILC3, but we noticed that the general ILC signature scored 
highest for these cells. The cell type label “ILCs” in the revised Fig. 3b is the cell type ILC from 
CellTypist (v2). To further interrogate the separation between ILCs and NK cells and to analyse the 
presence of ILC1, ILC2 and ILC3 in tissues and tumors, we performed a new subanalysis presented in 
Extended Data Fig. 5. We extracted the cells annotated as ILCs from the integrated data set from tumors 
and tissues. We performed a clustering (Leiden) of these cells and scored them based on described 
ILC1, ILC2 and ILC3 signatures. Based on this scoring we labeled some cells as ILC2 and some cells 
as ILC3, while all the cells scored low on the ILC1 signature. The NK cells in our data scored low on 
all three signatures. When looking at the prediction probability of the ILC1, ILC2 and ILC3 signatures 
from CellTypist we also noticed that ILC2 and ILC3 scored the highest, while ILC1 scored very low. 
New Extended Data Fig. 5c-d shows expression of a key marker of ILCs, IL7R, across the NK cells 
and identified ILC clusters. 
 
Some examples: in Figure 1F of peripheral NK cells, the authors show high expression of CST7, 
CMC1 and KLRB1 across all NK subsets. This is in contrast to where the authors now propose that 
TRDC, a primarily T cell-specific gene, is specific to CD56bright NK cells, a plausible difference for 
tissue NK cells. The presence of XCL1 being a unique marker of ILCs (ILC2? ILC3? Are there 
overlapping tissue signatures with NK?), which the authors have included in the NK CD56bright 
score from Figure 1B. 
 
Author response: In Fig. 1f, CST7, CMC1 and KLRB1 are consistent across NK cell subsets, but these 
genes are not exclusive to NK cells. This is not necessary for the genes to be informative and contribute 
to gene signatures that separates NK cell subsets. Please see the response above about the use of the dot 
plot in Fig. 1f. The performance of the prediction score based on these signatures, generated by the 
scANVI tool, is tested and shown in Fig. 1d.  
 
In the original version of Fig. 3b, we highlighted three genes, from a longer list of signature genes, that 
showed up as markers for each of the immune cell types in the lung tumor data set only. As for all cell-
typist derived gene signatures the individual genes are not uniquely expressed in each defined cell type. 
The signature represents the composition of genes and expression that together best define and separates 
each cell type from all other cell types. As proposed by the reviewer in comment 2Bii (below), we have 
now integrated all immune cell signatures across all tumors and tissues and then re-annotated all cell 
types using CellTypist (v2). We performed multiple comparisons to identify the marker genes to 
highlight. First, we compared NK, ILC, NKT and T cells. Then we compared the two NK cell subset to 
each other, and all the T cell subsets among themselves. This resulted in lists of markers for each cell 
type that were differentially expressed. We curated these lists to highlight genes we found most relevant 
(New Extended Data Fig. 3a). 
 
2B-Tissue-specific NK cell signatures are underappreciated 
2Bi: By integrating the tissue-derived NK cell data with those from peripheral blood NK, I think the 
authors miss the chance here to highlight what would be most interesting to the readers: identifying 
reliably tissue-resident NK cells as well as the heterogeneity of the tissue-specific signatures. 
 
Author response: To address the state of NK cells in the tumor relative to NK cells in normal tissues 
we felt it made most sense to create a reference of normality that include both peripheral blood NK cells 
and tissue-derived NK cells. We believe this is the only way to discriminate putative perturbations in 
the TME from “normal” tissue signatures. Nevertheless, we agree that it is a good idea to perform a 
deeper analysis of tissue resident NK cells and possibly use this comparison to define an even better 
NK cell specific tissue resident signatures and to capture underlying heterogeneity. Therefore, we 
performed a global DEG analysis of all integrated TrNK cells and compared these to PB-NK cell 
counterparts. We did this analysis for CD56bright and CD56dim NK cells separately. We were able to 
generate a solely NK-derived tissue-residency signature (atlas-TR: PSMA2, SLC5A3, CCL4L2, CLN3, 
SCGB1A1, AREG), which outperformed the conventional literature-derived TR signature across tissue 



and tumor type (Revised Fig 3e and Extended Data Fig 5.). Expression of CCL4L2, encoding a 
chemokine which induces chemotaxis of CCR5 and CCR1-expressing cells, such as T cells, dendritic 
cells and macrophages, has previously been described in NK cells isolated from melanoma samples (ref 
63). This represents an independent verification, as this dataset was not included in our study. These 
melanoma-infiltrating NK cells also exhibited high AREG expression, an EGF receptor ligand. Notably, 
upregulation of AREG has also been described in the setting of healthy and cirrhotic liver-resident NK 
cells (ref 64), a tissue type not included in our pan-cancer atlas. Intriguingly, SCGB1A1, a member of 
the secretoglobin family, functions as a potent inhibitor of phospholipase A2 (ref 65), a well described 
immunosuppressive molecule contributing to development of the TME. Hence, it is tempting to 
speculate that secretion of the SCGB1A1-encoded protein could be another effector mechanism through 
which TiNK cells can positively contribute to remodeling of the TME.   
 
2Bii: The authors conclude from Figures 3E and 3F that there is a high degree of heterogeneity 
within tissues, but a conservation of either a CD56bright or CD56dim peripheral identity, shown by a 
measure of ‘connectivity’ but no specific gene signature overlap/divergence. The context of tissue NK 
cells within the total tissue dataset is critical, as placing any cell between the two states (here, 
CD56bright or CD56dim), will always place it somewhere between one of them. There should be 
more detailed content on the signature behind the overlap and the divergence between tissue and PB 
NK cells, and on the signatures across different tissues. An integrative analysis combining all those 
datasets depicted in Supplementary Figure 3 could not only remove doubts from NK cell type 
annotation but also provide an extensive comparison of tissue-resident signatures that have been 
notoriously difficult to define for human NK cells versus ILC1s. 
 
Author response: This concern is partially addressed in response to comment 2Bi. We agree with the 
reviewer regarding the usefulness of expanded analysis and have therefore integrated all immune cells 
in the resource across tissues. This turned out to be a massive undertaking as it led to us having to redo 
large parts of the downstream analysis, requiring us to run this on multiple computer clusters. This led 
to a revised Fig. 3b and d, as described above (before one cancer type, now pan-cancer) and to a deeper 
analysis of tissue residency (described above and shown in Extended Data Fig. 5e-g). We have also 
been able to corroborate the NK cell annotation and describe how it differs from ILCs (Extended Data 
Fig. 5c-d).  
 
We would like to clarify that when integrating the tissue-derived cells with the peripheral blood, the 
tissue-derived cells are not restricted to be placed between these two states, but we observe that the 
CD56brights from the tissue place themselves near the CD56brights from peripheral blood and the CD56dim 
from the tissue place themselves near the CD56dim from peripheral blood. The model that we refer to as 
our reference model is trained by integration of blood and tissue NK cells. It does not build on our 
subset-trained model and does not force any cell to be placed between CD56bright or CD56dim. The tissue 
and blood data are treated the exact same way. The fact that both tissue-resident and tumor-infiltrating 
NK cells retain their overarching bright/dim signature (the two dominant transcriptional signatures in 
peripheral blood) is important as it allows us to specifically delineate how these cells have been 
perturbed from their presumed baseline signatures.  
 
2Biii: Finally, bearing in mind that this dataset is comprised of several donors, across many batches, 
labs and tissue origins - how is the data integrated, and how was this determined to be the best 
method of integration and representation? 
 
Author response: The NK data where we leverage the known subset annotations was integrated using 
scANVI and the bulk NK data was integrated using scVI. The data from individual tumors/tissues was 
integrated using scANVI, allowing us to harmonize annotations. The integration of all immune cells 
across all tumor and tissue types was done using scVI. For establishing what we refer to as our normal 
reference we used scVI for integration. scVI/scANVI was selected based on published benchmarking 
studies of integration methods, but we did not benchmark this ourselves. We cite the following paper 
10.1038/s41592-021-01336-8 and described this in the methods section: “The probabilistic models scVI 
and scANVI as implemented in scvi-tools3 were used for integration of scRNA-seq data. These 

https://doi.org/10.1038/s41592-021-01336-8


methods have been shown to perform well for integration of scRNA-seq data, especially when dealing 
with complex batch effects and integrating atlas- level data”. This article nicely shows that autoencoder-
based frameworks such as scVI and scANVI tended to perform better on tasks with more cells and 
complex batch structure as we are dealing with in our analysis. We used the representations of the data 
provided by scVI/scANVI for all downstream analysis tasks.  
 
3. Identification of stressed NK cells in tumours should be further validated 
The presence of a 'stressed' NK population (neighbourhood 1 in figure 5A) could certainly be an 
interesting finding; however, several steps are needed to validate that this is not an artefactual 
finding (for example those found in 10.1038/s41593-022-01022-8): 
 
i. Are count matrices corrected for ambient RNA removal with a tool like CellBender, soupX or 
decontX? 
 
Author response: This is a very important point that has been carefully addressed during revision at 
multiple levels. We ran decontX, one of the tools suggested, to adjust the count matrices for ambient 
RNA. decontX can run without empty droplet-data, allowing us to adjust the matrices also for the data 
where only the filtered count matrices have been made available. We adjusted the matrices for each 
sample for all the tissue and tumor types. Thereafter the whole atlas was rebuilt, and all downstream 
analyses were rerun (CellChat, annotation, GRN analysis, Milo and survival analyses). The biggest 
differences between the adjusted and non-adjusted matrices were seen in ribosomal and mitochondrial 
genes and there was no impact on the main results. The online methods file has been updated to describe 
these additional steps. 
 
ii. Are tissue dissociation methods for skin different from those for solid tumours? The distribution of 
SKCM (Fig 3H) suggests that these NK cells either have a highly-specific signature, which will skew 
the representation and work against the method milo attempts to use, or that during dissociation of 
skin samples, a signature is generated which is highly different from other cancer types - both entirely 
plausible possibilities 
 
iii. Previous single cell RNA sequencing papers describe cell populations with up-regulation of genes 
for heat shock proteins (10.4110/in.2020.20.e34) and several reports even suggest dissociation 
methods which minimise these effects, specifically for tumours (10.1186/s13059-019-1830-0). 
 
Author response: We scored each sample for the dissociation related stress signature identified in one 
of the papers cited by reviewer #2 (10.1186/s13059-019-1830-0). From analysis of these scores, we 
found no evidence that individual samples or tissue/tumor types are particularly affected by upstream 
processing of tissues. Specifically, we did not see a particularly high expression of these signatures in 
the melanoma and skin samples as opposed to the other tumor/tissue types. These samples also don’t 
have different dissociation methods compared to the other tumor/tissue types. Directly regressing out 
these dissociation related stress signatures, which partially captures a general stress signature, can be 
problematic since we risk removing biologically relevant signals. Neuschulz et al. 
(10.15252/msb.202211147) notes that: “While it should be possible to regress out dissociation response 
from scRNA‐seq datasets based on [dissociation related stress signatures], we wish to note that this can 
be potentially problematic, since cellular stress response may not only be due to dissociation but can 
also be caused by biological factors.” We therefore have not regressed out dissociation response before 
performing the downstream analysis downstream of removing ambient RNA. Other indirect validation 
of the stress signature includes a deeper analysis of the individual programs, including metabolism, 
ROS, hypoxia etc. (Revised Fig. 5). We have also been able to identify stressed group 1 NK cells in 
spatial transcriptomics data, not subject to any upstream dissociation/digestion (New Fig. 7). 
 
4. Relevance for tumour immunology 
The focus of NK cells in tumours and tissues is the particular strength of this paper, and even with 
other criticisms above it should not be lost how valuable this analysis is. However, the final set of 
figures in 6B-E about cell interaction analysis remains the weakest part of this paper, particularly as 



it is a very straightforward piece of analysis within one R package and could be expanded. The clarity 
of each of these plots' accuracy is questionable, as each ligand/receptor is measured by an arbitrary 
'strength', and no validation is given of any of these interactions. If one of these pathways were 
validated in vitro, it would lend significant strength to the study. 
 
Author response: We thank the reviewer for this positive remark and believe the resource have improved 
further through addressing the many constructive comments and suggestions, not the least the upstream 
removal of ambient RNA and the integration of all immune cells across all tissues and tumors. With 
regards to the limitations of CellChat, we agree with the reviewer that the inferred interactions have 
limited value without functional validation. In the revised manuscript we moved the CellChat analysis 
to a separate descriptive figure (New Fig. 6) and scored the major incoming and outgoing signals 
to/from the six NK cell states across ALL tumor types. In terms of validating incoming signals, we 
choose to look closer at the NKG2A/HLA-E pathway in the context of anti-NKG2A (biosimilar of 
monalizumab) therapy as suggested by Reviewer 1. This was one of the dominating incoming signals 
to CD56bright TiNK cells in the CellChat analysis across all tumor types (Revised Fig. 6). Although, the 
NKG2A-HLA-E checkpoint is well described, its role in regulating CD56bright NK cell responses and 
the potential reversal of this by therapeutic anti-NKG2A has not been formally addressed. We therefore 
performed functional experiments on PB-NK cells and show that degranulation and cytokine production 
by CD56bright NK cells is shut down by IFN-treatment of lung cancer cell lines, resulting in HLA-E 
upregulation, and efficiently restored by anti-NKG2A treatment. Revised Fig. 6j-k and Extended data 
Fig. 9). These data are discussed in the context of significant outgoing signals specifically from group 
1 CD56bright NK cells in the tumor, releasing IFN-g (Revised Fig. 6e-g).   
 
 
Specific points: 
The utility of the representation in Figure 3C is unclear. There have been 6 representations of 
peripheral blood NK cells by this point in the paper. Some more uniformity and clear description in 
each Figure legend of which data set is used for which representation would be very useful. 
 
Author response: We appreciate that this representation may have been confusing and decided to 
remove it from the ms. We have also clarified the underlying data used in the various representations 
in the legend of Fig. 1 and Fig. 3. 
 
In Figure 5A, the authors utilise their final model to understand and interrogate inter-tissue and 
inter-tumour differences by using milo to detect neighbourhoods of cells in a cluster-free fashion. This 
method works by comparing intra-neighbourhood differences, instead of against each other, and is 
highly dependent on the data's preparation, including normalisation, variable features, representation 
method and number of neighbours used. 
It is unclear how the authors determined that this is the optimal way to represent this data, which this 
method is so sensitive to. Would the results be different if they used the diffusion map, tSNE, or scVI 
representation? 
 
Author response: The neighborhood graph used for Milo is computed using the scVI representation, 
which is the only representation of the total NK dataset we use for increased consistency. This has now 
been further clarified in the methods. We avoided tSNE or UMAP representation for this analysis (or 
any other analysis, expect for visualization) as this representation can lead to distortions of high 
dimensional data (10.1371/journal.pcbi.1011288). 
 
Figure 6A shows survival curve analysis of 7 cancer types, split by whether they are enriched for 
signatures of NK cells of neighbourhoods 1 or 3. It is unclear which genes are used to split these 
samples, such as differential gene expression between group 1 and group 3, or group 1 and everything 
else, etc. Are these NK cell-specific, or are they found in the wide tissue/tumour dataset? 
 
Author response: We compare the groups using differential expression analysis implemented in Milo 
and identify top differentially expressed genes. We score these signatures in the inferred NK expression 



matrix from BayesPrism. Therefore, it is not directly relevant if they are expressed in other cell types, 
since this will have no impact on the survival analysis performed here. Although not done here, the 
resource offers extensive possibilities to extract whole tumor immune ecosystems and look at more 
dependable effects between states of multiple cell types, such as for example EcoTyper. We plan to do 
so but this is not feasible within the timeframe of the current revision. 
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Decision Letter, first revision: 
25th Apr 2024 

 

Dear Dr. Malmberg, 

 

Thank you for submitting your revised manuscript "Pan-cancer profiling of tumor-infiltrating natural 

killer cells through transcriptional reference mapping" (NI-RS36733A). It has now been seen by the 

original referees and their comments are below. The reviewers find that the paper has improved in 

revision, and therefore we'll be happy in principle to publish it in Nature Immunology, pending minor 

revisions to comply with our editorial and formatting guidelines. 

 

We will now perform detailed checks on your paper and will send you a checklist detailing our editorial 

and formatting requirements in about a week. Please do not upload the final materials and make any 

revisions until you receive this additional information from us. 

 

If you had not uploaded a Word file for the current version of the manuscript, we will need one before 

beginning the editing process; please email that to immunology@us.nature.com at your earliest 

convenience. 

 

Thank you again for your interest in Nature Immunology Please do not hesitate to contact me if you 

have any questions. 

 

Sincerely, 

 

Jamie D.K. Wilson, D.Phil 

Chief Editor 

Nature Immunology 

212 726 9207 

j.wilson@us.nature.com 

 

 

Reviewer #1 (Remarks to the Author): 

 

I am satisfied with the authors rebuttal and find the manuscript greatly improved. Congratulations to 

the authors on a excellent body of work 

 

 

Reviewer #2 (Remarks to the Author): 

 

The authors have addressed convincingly all my criticisms, I have no further comments. 
  

  

 

Final Decision Letter: 
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Dear Dr. Malmberg, 

 

I am delighted to accept your manuscript entitled "Pan-cancer profiling of tumor-infiltrating natural 

killer cells through transcriptional reference mapping" for publication in an upcoming issue of Nature 

Immunology. 

 

Over the next few weeks, your paper will be copyedited to ensure that it conforms to Nature 

Immunology style. Once your paper is typeset, you will receive an email with a link to choose the 

appropriate publishing options for your paper and our Author Services team will be in touch regarding 

any additional information that may be required. 

 

After the grant of rights is completed, you will receive a link to your electronic proof via email with a 

request to make any corrections within 48 hours. If, when you receive your proof, you cannot meet 

this deadline, please inform us at rjsproduction@springernature.com immediately. 

 

You will not receive your proofs until the publishing agreement has been received through our system. 

 

Due to the importance of these deadlines, we ask that you please let us know now whether you will be 

difficult to contact over the next month. If this is the case, we ask you provide us with the contact 

information (email, phone and fax) of someone who will be able to check the proofs on your behalf, 

and who will be available to address any last-minute problems. 

 

Acceptance is conditional on the data in the manuscript not being published elsewhere, or announced 

in the print or electronic media, until the embargo/publication date. These restrictions are not 

intended to deter you from presenting your data at academic meetings and conferences, but any 

enquiries from the media about papers not yet scheduled for publication should be referred to us. 

 

Please note that Nature Immunology is a Transformative Journal (TJ). Authors may publish their 

research with us through the traditional subscription access route or make their paper immediately 

open access through payment of an article-processing charge (APC). Authors will not be required to 

make a final decision about access to their article until it has been accepted. Find out more about 

Transformative Journals. 

 

Authors may need to take specific actions to achieve compliance with funder and 

institutional open access mandates. If your research is supported by a funder that requires 

immediate open access (e.g. according to Plan S principles) then you should select the gold OA route, 

and we will direct you to the compliant route where possible. For authors selecting the subscription 

publication route, the journal’s standard licensing terms will need to be accepted, including self-

archiving policies. Those licensing terms will supersede any other terms that the author or any third 

party may assert apply to any version of the manuscript. 

 

If you have any questions about our publishing options, costs, Open Access requirements, or our legal 

forms, please contact ASJournals@springernature.com 

 

Your paper will be published online soon after we receive your corrections and will appear in print in 

the next available issue. 

 

You may wish to make your media relations office aware of your accepted publication, in case they 

https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/transformative-journals
https://www.springernature.com/gp/open-research/funding/policy-compliance-faqs
https://www.springernature.com/gp/open-research/plan-s-compliance
https://www.springernature.com/gp/open-research/policies/journal-policies
https://www.springernature.com/gp/open-research/policies/journal-policies
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consider it appropriate to organize some internal or external publicity. Once your paper has been 

scheduled you will receive an email confirming the publication details. This is normally 3-4 working 

days in advance of publication. If you need additional notice of the date and time of publication, 

please let the production team know when you receive the proof of your article to ensure there is 

sufficient time to coordinate. Further information on our embargo policies can be found here: 

https://www.nature.com/authors/policies/embargo.html 

 

Also, if you have any spectacular or outstanding figures or graphics associated with your manuscript - 

though not necessarily included with your submission - we'd be delighted to consider them as 

candidates for our cover. Simply send an electronic version (accompanied by a hard copy) to us with a 

possible cover caption enclosed. 

 

To assist our authors in disseminating their research to the broader community, our SharedIt initiative 

provides you with a unique shareable link that will allow anyone (with or without a subscription) to 

read the published article. Recipients of the link with a subscription will also be able to download and 

print the PDF. 

 

As soon as your article is published, you will receive an automated email with your shareable link. 

 

You can now use a single sign-on for all your accounts, view the status of all your manuscript 

submissions and reviews, access usage statistics for your published articles and download a record of 

your refereeing activity for the Nature journals. 

 

If you have not already done so, we strongly recommend that you upload the step-by-step protocols 

used in this manuscript to the Protocol Exchange. Protocol Exchange is an open online resource that 

allows researchers to share their detailed experimental know-how. All uploaded protocols are made 

freely available, assigned DOIs for ease of citation and fully searchable through nature.com. Protocols 

can be linked to any publications in which they are used and will be linked to from your article. You 

can also establish a dedicated page to collect all your lab Protocols. By uploading your Protocols to 

Protocol Exchange, you are enabling researchers to more readily reproduce or adapt the methodology 

you use, as well as increasing the visibility of your protocols and papers. Upload your Protocols at 

www.nature.com/protocolexchange/. Further information can be found at 

www.nature.com/protocolexchange/about . 

 

Please note that we encourage the authors to self-archive their manuscript (the accepted version 

before copy editing) in their institutional repository, and in their funders' archives, six months after 

publication. Nature Portfolio recognizes the efforts of funding bodies to increase access of the research 

they fund, and strongly encourages authors to participate in such efforts. For information about our 

editorial policy, including license agreement and author copyright, please visit 

www.nature.com/ni/about/ed_policies/index.html 

 

An online order form for reprints of your paper is available 

at https://www.nature.com/reprints/author-reprints.html. Please let your coauthors and your 

institutions' public affairs office know that they are also welcome to order reprints by this method. 
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